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Introduced by Carl Adam Petri in his PhD
thesis in 1962 (about concurrent
programming)

Tool introduced first in Computer Science
→ Automatic Control→ Operations
Research

In the field of Industrial Automation Petri
nets inspired the Grafcet programming
language for Programmable Logic
Controllers (PLCs)

M. Silva
Half a century after Carl Adam Petri’s Ph.D. thesis: A
perspective on the field
Annual Reviews in Control, 2013

R. Alla
Grafcet: a powerful tool for specification of logic
controllers
IEEE Transactions on Control System Technology, 1995
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A place/transition (P/T) or Petri net is
an oriented bipartite graph. Formally it
can be defined as the 4-ple

N = (P ,T ,Pre ,Post)

where
P is a set of m places
T is a set of n transitions
Pre : P × T 7→ N is the pre-incidence
function (but we will represent it as a
m × n matrix)
Post : P × T 7→ N is the
post-incidence function
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P/T net – Example UNI
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P = {p1 ,p2 ,p3}
T = {t1 , t2 , t3 , t4}

Pre =

 1 1 0 0
0 0 1 0
0 0 0 2


Post =

 0 0 0 2
1 0 0 0
0 1 1 0

 .
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The incidence matrix C UNI
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Given a P/T net N = {P ,T ,Pre ,Post} with m places and n
transitions, the incidence matrix C ∈ Zm×n is given by

C = Post− Pre

In general, the incidence matrix does not contain sufficient
information to reconstruct the net structure (→ this will
have an impact on the use of the so-called state equation)
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Pre and post sets UNI
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Given a transition t ∈ T we denote with
•t = {p ∈ P | Pre(p , t) > 0}, the preset of t (input places)
t• = {p ∈ P | Post(p , t) > 0}, the postset of t (output places)

Given a place p ∈ P we denote with
•p = {t ∈ T | Post(p , t) > 0}, the preset of p (input transitions)
p• = {t ∈ T | Pre(p , t) > 0}, the postset of p (output
transitions)
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From a graph to a model for DES
The net system S
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P/T nets are just graphs
In order to use them to model dynamic systems, we need to
introduce the concept of state
The marking is the way we have to define a discrete state
space
The marking can be defined as a function (other definition can
be found in literature, like marking as a multiset)

m : P 7→ N ,

that assigns to each place a nonnegative integer number of
tokens
The marking is usually represented as a vector m ∈ Nm

A P/T net N with its initial marking m0 is called net system,
and is denoted with 〈N ,m0〉
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Marking – example UNI
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m0 = (1 0 2)T
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How the state evolves in S? UNI
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Enabling condition

A transition t is enabled at the marking m if

m ≥ Pre(· , t)

i.e., if each place p ∈ P contains a number of tokens greater
than or equal to Pre(p , t)

m
[
t〉 denotes that t is enabled at m

m¬
[
t〉 dentoes that t is not enabled at m
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How the state evolves in S? UNI
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Firing of a transition

A transition t enabled at m can fire
The firing of t removes Pre(p , t) tokens from each
place p ∈ P and adds Post(p , t) tokens in each place p ∈ P
Hence, the firing of t yields the new marking

m′ = m − Pre(· , t) + Post(· , t) = m + C(· , t)

m
[
t〉m′ denotes that the firing of t from m leads to m′
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Firing of a sequence UNI
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A firing sequence σ = t1t2 . . . t r ∈ T ∗ is enabled at m if and
only if
m
[
t1〉 and m

[
t1〉m1

m1
[
t2〉 and m1

[
t2〉m2

. . .

mr−1
[
t r 〉 and mr−1

[
t r 〉mr

m
[
σ〉 denotes that σ is enabled at m, whilem

[
σ〉m′ denotes that

the firing sequence σ strarting from m yields the marking m′

The empty sequence

ε is the empty sequence and it is
m
[
ε〉 ∀ m ∈ Nm

m
[
ε〉m
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Firing sequence – Example UNI
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The firing sequence σ = t4t1
is enable at m =

(
1 0 2

)T

Its firing yields

m′ =
(
2 1 0

)T
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Firing sequence – Example UNI
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Firing count vector UNI
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Given a net system S and a firing sequence σ ∈ T ∗, it is
possible to introduce the firing count vector σ ∈ Nn whose
entry σ(ti) = σi denotes how many times transition ti appears
in the sequence σ

Example

T = {t1 , t2 , t3}
σ = t3t1t1t3t2
σ = (2 1 2)T
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Language of a net system S UNI
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So far we have dealt with the so called unlabeled Petri nets
The set of transitions somehow corresponds to the set of
events that drive the system dynamic
It is then possible to associate a language to S = 〈N ,m0〉
defined as follows

L(N ,m0) =
{
σ ∈ T ∗ | m0

[
σ〉
}

It readily follows that ε ∈ L(N ,m0)
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Reachability set R(N ,m0) UNI
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Given a net system S = 〈N ,m0〉 a marking m is said to be
reachable (from m0) if there exists a firing sequence
σ ∈ L(N ,m0) such that m0

[
σ〉m

It is then possible to introduce the reachability set R(N ,m0)
of S as follows

R(N ,m0) =
{

m ∈ Nm | ∃ σ ∈ L(N ,m0) s.t. m0
[
σ〉m

}

Obviously it is m0 ∈ R(N ,m0)
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Reachability set – Examples UNI
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Given a net system S = 〈N ,m0〉 and a reachable
marking m ∈ R(N ,m0) such that m0

[
σ〉m with σ ∈ L(N ,m0).

If σ is the firing count vector associated to firing sequence σ
then the following state equation holds

m = m0 + C · σ
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Reachability graph UNI
NA

DIE
II I

If a net system S has a reachability set R(N ,m0) with finite
cardinality, then it is possible to explicitly represent the whole
state space by means of an automaton, called reachability
graph

Figure: Algorithm taken from Cabasino et al., “Introduction to Petri
nets"
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Reachability graph – Example UNI
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Coverability graph - 1/2 UNI
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If the cardinality of R(N , m0) is infinite, then the reachability graph cannot be constructed

In order to represent marking whose components can arbitrarily grow, the symbol ω is adopted to denote an
arbitrarily large component in a marking vector

Coverability tree
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Coverability graph - 2/2 UNI
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Figure: Algorithm taken from Cabasino et al., “Introduction to Petri
nets"
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Coverability graph – Example UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 24 of 64



Behavioral properties of Petri net
systems
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The behavioral properties of Petri net systems are those ones
that depends (also) on the initial marking m0

reachability
boundedness
conservativeness
repetitiveness
reversibility
liveness
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Reachability UNI
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The reachability problem

Given a net systems S = 〈N ,m0〉 and a generic marking
m ∈ Nm, is m ∈ R(N ,m0)?

it is straightforward to see that if R(N ,m0) has finite cardinality, i.e. the net
system is bounded, then the problem is decidable. In this case the
reachability problem is equivalent to the decidability of regular
languages
it is also straightforward to show that in the general case the problem is at
least semi-decidible
In the 1980s it has been proved the the reachability problem is decidible, but
the corresponding algorithm has a very high complexity

C. Reutenauer
Aspects Mathématiques des Réseaux
de Petri
Prentice Hall, 1989
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k-boundedness

A place p is k -bounded in the system S = 〈N ,m0〉 if for all
the reachable markings m ∈ R(N ,m0) it holds m(p) ≤ k
A system S is k -bounded if all its places are k -bounded

When we are not interested in any specific k , then the
system S is simply called bounded
Obviously the following holds

S is bounded⇔ R(N ,m0) is finite
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Reversibility UNI
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Reversibility

A net system S is reversibile if for all m ∈ R(N ,m0) it holds
that m0 ∈ R(N ,m)

Reversibility implies that a system S can always be reinitialized
to its initial marking m0

Non reversible systems may exhibit home states

Home state
A marking m̃ ∈ R(N ,m0) is a home state if for
all m ∈ R(N ,m0) it holds that m̃ ∈ R(N ,m)
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Liveness of a transition
Given a net system S a transition t is said to be

dead if no reachable marking enables t

quasi-live if t is enabled by some reachable marking, i.e.
∃ m ∈ R(N ,m0) s.t. m

[
t〉

live if for all reachable markings m ∈ R(N ,m0), t is quasi-live in 〈N ,m〉

Liveness of a net system S

S is dead if all its transitions are dead

S is not quasi-live if some of its transitions are dead and some quasi-live

S is quasi-live if all its transitions are quasi-live

S is live if all its transitions are live

Sometimes a net system is considered live if it has some live transitions (not
necessarily all)
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Liveness – Example UNI
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Boundedness, liveness and reversibility UNI
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Boundedness, liveness and reversibility are independent concepts (image taken from Murata, Proc. IEEE, 1989)
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Use the graphs to check behavioral
properties

UNI
NA

DIE
II I

Both the reachability (for bounded systems) and coverability
graph (for unbounded systems) can be used to assess the
behavioral properties
Reachability graph permits to formulate necessary and
sufficient conditions; there is a link with decidability of regular
languages
Coverability graph permits formulate either necessary or
sufficient conditions
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Structural properties of a Petri net UNI
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The structural properties of Petri net systems are those ones
that depends only on the graph and not on the specific initial
marking m0

analysis based on the state equation
analysis based on invariants
analysis based on siphons and traps
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Use state equation for reachability UNI
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the satisfaction of the state equation is only a necessary
condition for reachability

Given a marking m ∈ Nm, if m ∈ R(N ,m0)⇒ ∃σ ∈ Nn such that
m = m0 + C · σ

Potentially reachable marking PR(N ,m0)

PR(N ,m0) = {m ∈ Nm | ∃ y ∈ Nn s.t. m = m0 + C · y}

It is R(N ,m0) ⊆ PR(N ,m0)

The markings in PR(N ,m0) \ R(N ,m0) are called spurious
markings, since they satisfy the state equation but are not
reachable
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Spurious markings – Examples UNI
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m0 = (2 0 0)T

If y = (1 0 1)T then

m = (1 0 0)T ∈ PR(N ,m0)

while

m = (1 0 0)T /∈ R(N ,m0)
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When PR(N ,m0) = R(N ,m0)? UNI
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There are cases where the satisfaction of the state equation
becomes necessary and sufficient for reachability, i.e.
PR(N ,m0) = R(N ,m0)

Acyclic nets
Some classes of ordinary nets (nets with all arcs that have
unitary multiplicity)

State machines (only choices and convergences)
Marked graphs (only parallelisms and synchronizations)

When PR(N ,m,0 ) = R(N ,m0), the following feasibility
problem with integer unknowns and linear constraints can be
solved to assess reachability
m ∈ Nm is reachable if and only if it is possible to find a
σ ∈ Nn such that

C · σ = m −m0

which is NP-hard
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P-invariants
Given a net N a vector x ∈ Nm with x 6= 0 is called a
P-invariant if

xT · C = 0T

T-invariants
Given a net N a vector y ∈ Nn with y 6= 0 is called a T-invariant
if

C · y = 0
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If a marking m is reachable then it satisfies the state equation

m = m0 + C · σ

by multiplying by a P-vector x

xT ·m = xT ·m0 + xT · C · σ

hence, if m ∈ R(N ,m0) then

xT ·m = xT ·m0
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T-invariants UNI
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Let σ be a firing sequence such that m0
[
σ〉m. If the

corresponding firing count vector σ is a T-invariant, then it
is m = m0

All sequences σ whose corresponding firing count vector σ is a
T-invariant are repetitive and stationary sequences
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Siphons and traps UNI
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Siphons and traps are usually introduced for ordinary nets, i.e. nets with all
arcs with unitary multiplicity

Siphons
A siphon of an ordinary net N is a set of places S ⊆ P such that the set of
input transitions of S is included in the set of output transitions of S, that is⋃

p∈S

•p ⊆
⋃
p∈S

p•

Traps
A trap of an ordinary net N is a set of places T ⊆ P such that the set of
output transitions of T is included in the set of input transitions of T, that is⋃

p∈T

p• ⊆
⋃
p∈T

•p

Gianmaria De Tommasi – detommas@unina.it 40 of 64



Siphon and traps – Example UNI
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Use P-invariants for reachability UNI
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The X -invariant set IX (N ,m0)

Let S = 〈N ,m0〉 be a net system with m places and consider
the matrix X = {x1 ,x2 , . . . , xk} ∈ Nm×k , whose generic
column x i is a P-invariant of N. The X -invariant set of S is

IX (N ,m0) =
{

m ∈ Nm | X T ·m = X T ·m0

}

It can be easily proved that

R(N ,m0) ⊆ PR(N ,m0) ⊆ IX (N ,m0)
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Estimates of the reachability
set R(N ,m0)
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Labeled Petri net systems UNI
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Given an alphabet (of events) E , a labeled Petri net system
is the 4-ple

S` = (N , ` ,m0 ,F )

where
` : T 7→ E ∪ {ε} is the labeling function that associates an
event e ∈ E ∪ {ε} to every transition t ∈ T
F is the set of final markings

NOTE: an event can be associated to more than one transition
→ source of nondeterminism
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Types of labeling functions UNI
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Three different types of labeling functions can be considered
free labeling – all transitions are distinctly labeled and none is
labeled as the silent event ε; the labeling function does not add
any relevant information, i.e. we can consider T = E
ε–free labeling (usually referred to also as λ–free)– no
transition is labeled with the silent event ε (source of
nondeterminism)
arbitrarily labeling – no restriction posed on the labeling
function (further source of nondeterminism)
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From sequences to words UNI
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The labeling function `(·) can be recursively extended to firing
sequences σ so to associate them words w

` : T ∗ 7→ E∗ with
`(ε) = ε
`(σt) = `(σ)`(t)

The adopted notation will be
e = `(t), with t ∈ T and e ∈ E
w = `(σ), with σ ∈ T ∗ and w ∈ E∗
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Languages of a labeled net system UNI
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Similarly to what has been done in the case of automata, also
in the case of labeled Petri net system, the following two
different languages can be introduced
The generated language (sometimes referred to as the prefix
language)

L(S`) =
{

w = `(σ) ∈ E∗ s.t. m0
[
σ〉
}

The marked language (sometimes referred to as the terminal
language)

Lm(S`) =
{

w = `(σ) ∈ E∗ s.t. m0
[
σ〉mf ∈ F

}
L(S`) and Lm(S`) are used as in the automata context for
supervisory control based on language specifications
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Parallel composition of Petri net systems UNI
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Let S1 =
(
N1 , `1 ,m01 ,F1

)
and S2 =

(
N2 , `2 ,m02 ,F2

)
two

labeled systems. Their parallel composition (concurrent
composition) S = S1‖S2 that generates the language

L(S) = L(S1)‖L(S2)

and marks the language

Lm(S) = Lm(S1)‖Lm(S2)

and his given by the following algorithm.
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Algorithm for parallel composition
of labeled PNs
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Let Pi , Ti and Ei (i = 1 , 2) be the place set, transition set, and the alphabet
of Si .

The place set P of N is the union of the place sets of N1 and N2, i.e.
P = P1 ∪ P2

The transition set T of N and the corresponding labels are computed as
follows

For each transition t ∈ T1 ∪ T2 labeled ε, a transition with the same •t
and t• and labeled ε belongs to T
For each transition t ∈ T1 ∪ T2 labeled e ∈ (E1 \ E2) ∪ (E2 \ E1), a
transition with the same •t and t• and labeled e belongs to T
Consider a symbol e ∈ E1 ∩ E2 and assume it labels µ1

transitions Te ,1 ⊆ T1 and µ2 transitions Te ,2 ⊆ T2. Then µ1 × µ2

transitions labeled e belong to T . The input (output) bag of each of
these transitions is the sum of the input (output) bags of one transition
in Te ,1 and of one transition in Te,2

m0 =
(
mT

01
mT

02

)T

F =
{(

mT
1 mT

2
)T | m1 ∈ F1 and m2 ∈ F2

}
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Parallel composition – The FMS example UNI
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The FMS example with PNs UNI
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What are the Petri net languages? UNI
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The languages recognized by the finite state automata are the regular
languages (Kleene theorem)

What about finite Petri nets, i.e. Petri nets with a finite number of places and
transitions?
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Can Petri nets recognize any language? UNI
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Twofold representation UNI
NA

DIE
II I

Given their twofold representation – both graphical and algebraic – linear
programming techniques can be used to assess both structural and
behavioral properties in Petri nets systems

This is one of the main advantages when compared to automata

Example – Reachability
Given a net system S = 〈N , m0〉 with m places, and a marking m ∈ Nm , if the following problem is infeasible, then
m is unreachable, i.e. m /∈ R(N , m0)

max 0T · σ
s.t.

C · σ = m − m0

σ ≥ 0

σ ∈ Rn

M. Silva, E. Teruel and J. M. Colom

Linear Algebraic and Linear Programming Techniques for the Analysis of Place/Transition Net Systems
Lectures notes in computer science, 1998
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Sufficient condition for boundedness UNI
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Given a net system S = 〈N ,m0〉 with m places and p ∈ P, if
the solution of the following ILP problem (NP-hard)

sb(p) = maxm(p)
s.t.
m = m0 + C · σ
m ≥ 0
σ ≥ 0
m ∈ Nm

σ ∈ Nn

is such that
sb(p) ≤ k

then the place p is k -bounded
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Example of linear programming
relaxation
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If the solution of the following LP problem (polynomial time)

sb(p) = maxm(p)
s.t.
m = m0 + C · σ
m ≥ 0
σ ≥ 0
m ∈ Rm

σ ∈ Rn

is such that
bsb(p)c ≤ k

then the place p is k -bounded
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Structural boundedness - cont’d UNI
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Theorem
Given a net N, the following statements are equivalents

N is structurally bounded, i.e. every place is bounded for
every initial marking m0

There exists x > 0 such that xT · C ≤ 0 (integer feasibility
problem with linear constraints)
There does not exists any y ≥ 0 such that C · y  0 (integer
feasibility problem with linear constraints)
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Mutual exclusion UNI
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Theorem – sufficient condition
Given a net system S = 〈N ,m0〉, if the following feasibility
problem does not admit any solution m ∈ Nm ,σ ∈ Nn

m = m0 + C · σ
σ ≥ 0

m(p) ≥ 1
m(p′) ≥ 1

then the places p and p′ are in mutual exclusion
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Deadlock freeness UNI
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Theorem – sufficient condition
Given a net system S = 〈N ,m0〉, if the following feasibility
problem does not admit any solution m ∈ Nm ,σ ∈ Nn

m = m0 + C · σ
m ≥ 0
σ ≥ 0∨

p∈•t
m(p) < Pre(p , t) , ∀ t ∈ T

then S is deadlock free
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Software tools UNI
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Many tools
Maybe even more than for automata (due to the infinite number
of PNs subspecies)
A database is maintained at Petri Nets World website
http://www.informatik.uni-hamburg.de/TGI/PetriNets/index.php

Many tools have been developed for model-based verification
and validation
Some tools

TINA (LAAS/CNR)
Petri Net Toolbox (University “Gh. Asachi" of Iasi)
SNAKES (Python toolkit for coloured Petri nets)
. . .
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Software tools UNI
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If the algebraic approach is used, tools to solve ILP problems
are needed

Solvers: CPLEX, XPRESS,
GLPK (free, http://glpkmex.sourceforge.net/),. . .

YALMIP: a useful Matlab parser for optimization problems
https://yalmip.github.io/
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Petri nets vs automata – Pros. . .

More powerful expressive power – not just regular languages
More compact and modular representation
Twofold representation that permits to use linear
programming techniques

. . .and cons

Lack of necessary and sufficient conditions to due practical
semi-decidability of the reachability problem
Many proposed algorithms are NP-hard . . .which nowadays
does not necessarily represent a problem
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