A (very) short introduction to timed automata

Prof. Gianmaria DE TOMMASI Email: detommas@unina.it

May 2021

1 Timed Discrete Event Systems

2 Timed (deterministic) automata

Timed DES

- Timed Discrete Event Systems (Timed DES) are used to describe the behaviour of a DES by means of timed sequences.
- Note: the dynamic of the system is still event-driven!

Timed sequence

$$s = \{(e^{1}, \tau_{1}), (e^{2}, \tau_{2}), \dots, (e^{n}, \tau_{n}), \dots\}$$

where

- e^i is the *i*-th event
- τ_i is the time instant associated to the occurrence of the *i*-th event

A **clock structure** is the *object* introduced to associate an occurrence time τ to each event *e* in a timed sequence *s*

Given the event set E the clock structure is the set

$$\Theta = \{\Theta_e : e \in E\}$$

where each element is a lifetime (or enabling delay) set

$$\Theta_{e} = \{\theta_{e,1}, \theta_{e,2}, \ldots\}$$

where $\theta_{e,k} \in \mathbb{R}_+ \cup \{0\}$ with $e \in E, k \in \mathbb{N}$.

- $\theta_{e,k}$ is the *k*-th lifetime of *e* and **is the time interval between the activation** (enabling) of *e* and its firing (occurrence)
- The lifetimes can be either a priori known (deterministic timed DES) or defined as probability density functions (stochastic timed DES)

The timed *jargon*

Let us consider an event $e \in E$ and let τ be a time instant such that

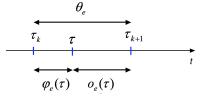
 $\tau_k < \tau < \tau_{k+1} ,$

being τ_k the enabling time instant for *e*, and τ_{k+1} the firing time instant, i.e. the time when it will occur.

We use the following notation:

- $\varphi_e(\tau)$ is activation time, i.e. the time interval in which *e* has been enabled
- $o_e(\tau)$ is the **clock**, i.e. the residual lifetime until *e* will fire

• $\varphi(\tau) + o(\tau) = \theta_e \ \forall \ \tau \in (\tau_k, \tau_{k+1})$



- Given an event e ∈ E its score ν_e denotes the number of activations of e since the initial time τ₀.
- If a time *τ*' the state transition *x* → *x*' occurs due to the occurrence of *e*', then

Given an event $e \in E$, the initial value of ν_e is

$$\nu_{e} = 1 \text{ if } e \in \Gamma(x_{0})$$

• $\nu_e = 0$ otherwise

A timed automaton is an automaton *enriched* with a clock structure

$$G_d = (X, E, f, \Gamma, x_0, X_m, \Theta)$$

G_d generates a timed sequence s according

to the usual transition function

$$x'=f\left(x\,,e'\right)$$

where x' is the state *reached* after the occurrence of $e' \in \Gamma(x)$ to the current values of the clocks o_e , following the rule

$$e' = \arg\min_{e \in \Gamma(x)} \{ O_e \}$$

Clock update

Given an event $e \in E$, let o'_e be the value of the correspondent clock o_e when the state x' is reached, then

- $o'_e = o_e o^*$ if $[e \in \Gamma(x')] \land [e \neq e'] \land [e \in \Gamma(x)]$
- $o'_e = \theta_{e,\nu_e+1}$ if $[e \in \Gamma(x')] \land [(e = e') \lor (e \notin \Gamma(x))]$ where

$$o^* = \min_{e \in \Gamma(x)} \{o_e\}$$

i.e. o^* denotes the elapsed time to perform the transition from x to x', and

$$e' = \arg\min_{e \in \Gamma(x)} \{o_e\}$$

■ Given an event e ∈ E, the initial value for the correspondent clock o_e is

$$o_e = \theta_{e,1}$$
 if $e \in \Gamma(x_0)$

• *o_e* not defined, otherwise

Evolution of a timed automaton

Algorithm to compute the timed sequence generated by a timed automaton

Let us assume that G_d is in the state x at time τ

1 Compute

$$o^* = \min_{e \in \Gamma(x)} \{ o_e \}$$

2 Compute the *next* event as

$$e' = \arg\min_{e \in \Gamma(x)} \{O_e\}$$

3 Compute the *next* state as

$$x'=f\left(x\,,e'\right)$$

4 Compute the time of occurrence τ' of e' as

$$\tau' = \tau + o^*$$

- 5 Update o'_e and ν'_e for all $e \in E$
- 6 goto Step 1

- The **enabling memory** assumption implies that a clock o_e is reset to a new lifetime θ_{e,ν_e+1} every time is newly enabled (*standard* assumption)
- The total memory assumption implies that o_e is update until is not expired, i.e. it is NOT reset to a new lifetime θ_{e,νe+1} every time is newly enabled
- Update of the score (total memory case)

$$\nu'_e = \nu_e + 1$$
 if $e = e'$

• $\nu'_e = \nu_e$ otherwise (ν_e is initialized to 1 for all $e \in E$)

Update of the clock (total memory case)

• $o'_e = o_e$ otherwise (o_e is initialized to $\theta_{e,1}$ for all $e \in E$)

If the clock structure is made of probability density functions, than the timed automaton becomes *stochastic*

Let us denote with $\boldsymbol{\Psi}$ the stochastic clock structure

 $\Psi = \{\Psi_{\textbf{e}} \ : \ \textbf{e} \in \textbf{\textit{E}}\}$

with Ψ_e is the *pdf* defined in $\mathbb{R}_+ \cup \{0\}$ associated to $e \in E$. By using Ψ_e the lifetimes of *e* become random variables. Hence a **stochastic automaton** is the tuple

$$G_{s} = (X, E, f, \Gamma, x_{0}, X_{m}, \Psi)$$

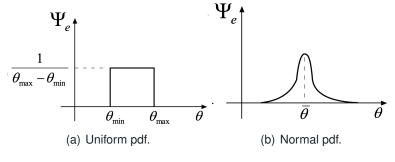


Figure: Examples of pdf for Ψ_e .

The evolution of a stochastic automaton depends on the *next* event as for (deterministic) timed automata

$$e = \arg\min_{e \in \Gamma(x)} \{o_e\}$$

and both the enabling or total memory approaches can be adopted, taking into account that the lifetimes for each event $e \in E$ are generated using Ψ_e

For stochastic automata, the state trajectory $x(\cdot)$ is a random process $\{x(\tau)\}$, while, for a given time instant τ , $x(\tau)$ is a random variable

A Markov process is a random process such that

$$\Pr\left\{\mathbf{x}(\tau + \mathbf{d}\tau) = \mathbf{x}_j \mid \mathbf{x}_{[\tau_0, \tau]}\right\} = \Pr\left\{\mathbf{x}(\tau + \mathbf{d}\tau) = \mathbf{x}_j \mid \mathbf{x}(\tau) = \mathbf{x}_i\right\}$$

In a Markov process

- All past state information is irrelevant (no state memory)
- How long the process has been in the current state is irrelevant (no state age memory)
- For a stationary Markov process it is

$$\Pr\left\{x(\tau + d\tau) = x_j \mid x(\tau) = x_i\right\} = \lambda_{ij}d\tau$$

- It can be proved that, for a stochastic automaton {x(τ)} is a Generalized Semi-Markov Process (GSMP).
- A GSMP is a random process such that

$$\Pr\left\{x(\tau + d\tau) = x_j \mid x(\tau) = x_i\right\} = \lambda_{ij}(\varphi_{e_1}, \varphi_{e_2}, \dots, \varphi_{e_n})d\tau$$

where φ_{e_k} are the lifetimes of the enabled events $e \in \Gamma(x_i)$ If

$$\Psi_{\boldsymbol{\theta}}(\theta) = \lambda_{ij} \boldsymbol{\theta}^{-\lambda_{ij}\theta}$$

i.e., if the pdfs for the lifetimes are exponential, then a GSMP becomes a Markov process

Since an automaton as a *discrete* state space X, then Markov process induced by a stochastic automata with exponential lifetimes becomes a (discrete) **Markov chain**, in which

$$\Pr\left\{x(k+1) = x_j \mid x(k) = x_i\right\} = p_{ij}(k), \quad \forall x_i, x_j \in X \text{ and } k \in \mathbb{N}$$

and where

$$\sum_{x_j \in X} {{
m p}_{ij}(k)} = 1\,, orall\, x_i \in X ext{ and } k \in \mathbb{N}$$

A discrete Markov chain is defined as

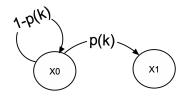
$$\mathcal{MC} = (X, \mathcal{P}(k), \pi(0))$$

where

- X is the state space
- $P(k) = [p_{ij}(k)]$, $k \in \mathbb{N}$, x_i , $x_j \in X$ is the transition matrix
- $\pi(0) = \Pr \{x(0) = x_i\}, x_i \in X \text{ is the initial probability} and it is$

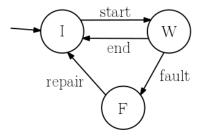
$$\pi(k+1) = \pi(k)P(k), k \in \mathbb{N}$$

Similarly to automata, Markov chains can be graphically represented by a graph



Simple manufacturing process

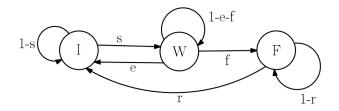
- $\blacksquare E = \{ start, end, fault, repair \}$
- $\blacksquare X = \{I, W, F\}$
- If Ψ = {Ψ_{start}, Ψ_{end}, Ψ_{fault}, Ψ_{repair}} are all exponential then the stochastic automata can be seen as a Markov chain



Example 2/2

Let

$$P = \begin{bmatrix} 1 - s & s & 0 \\ e & 1 - e - f & f \\ r & 0 & 1 - r \end{bmatrix}$$



A (very) short introduction to timed automata

Prof. Gianmaria DE TOMMASI Email: detommas@unina.it

May 2021

