
Chapter 11
Structural Analysis of Petri Nets

Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu

11.1 Introduction

This chapter is devoted, as the previous one, to the presentation of background ma-
terial on P/T nets. In particular, here the main focus is on structural analysis that
consists in a set of algebraic tools that do not require the enumeration of the reach-
ability set of a marked net but are based on the analysis of the state equation, on the
incidence matrix, etc.

It is shown how the existence of some vectors, called P- and T-vectors, charac-
terize the behavior of the net. In particular P-vectors enable to express some im-
portant constraints on the number of places in certain subsets of places, e.g., they
can be constant, increasing or decreasing during the net evolution. On the contrary,
T-vectors are related to transitions and express the effect of some sequences of tran-
sitions on the marking of the net, e.g., they can keep it unaltered, or make it increase
or decrease.

The structural counterpart of several behavioral properties, that we had defined
in the previous chapter, will also be defined. The properties we will consider are
boundedness, conservativeness, repetitiveness, reversibility and liveness: in their
structural form they are related to the net structure regardless of the initial mark-
ing. These properties will be characterized in terms of P- and T-vectors.

Subclasses of Petri nets are finally defined. Some of these classes pose some re-
strictions on the nature of physical systems they can model. However, this restricted
modeling power often leads to simplified analysis criteria and this motivates the
interest in these subclasses.

Maria Paola Cabasino · Alessandro Giua · Carla Seatzu
Department of Electrical and Electronic Engineering, University of Cagliari, Italy
e-mail: {cabasino,giua,seatzu}@diee.unica.it

C. Seatzu et al. (Eds.): Control of Discrete-Event Systems, LNCIS 433, pp. 213–233.
springerlink.com c© Springer-Verlag London 2013



214 M.P. Cabasino, A. Giua, and C. Seatzu

11.2 Analysis via State Equation

In this section we present an approach to characterize marking reachability by means
of the state equation of a net, that can be solved using integer programming tech-
niques. The main limitation of this approach consists in the fact that in general it
only provides necessary (but not sufficient) conditions for reachability. However, as
discussed at the end of this chapter, there exist classes of nets (such as acyclic nets,
state machines and marked graphs) for which the analysis based on the state equa-
tion provides necessary and sufficient conditions for reachability. Unfortunately,
both marked graphs and state machines are very restricted classes of models.

Definition 10.5 introduced the notion of transition firing and allows one to com-
pute the marking reached after the firing of an enabled transition through a simple
matrix equation. Such a condition can be generalized to a sequence of transitions σ .

Definition 11.1. Given a net N with set of transitions T = {t1, t2, · · · , tn} and a se-
quence of transitions σ ∈ T ∗, we call firing vector (or firing count vector) of σ the
vector

σ = [σ [t1] σ [t2] · · · σ [tn]]
T ∈ N

n

whose entry σ [t] denotes how many times transition t appears in sequence σ .

Consider the sequence σ = t1t2t2 in the net in Fig. 11.1(a). Since t1 appears once in
σ , while t2 appears twice, the firing vector of σ is σ = [1 2]T .

(a) 

t1 p1 p2 t2 

t2 

[1 0 0] 

[0 1 0] 

t1 

p3 

2 

[0 1 ω ] 

t2 

(b) 

Fig. 11.1 (a) A marked PN; (b) its coverability graph

Proposition 11.1 (State equation). Let 〈N,mmm0〉 be a marked net and CCC its incidence
matrix. If mmm is reachable from mmm0 firing σ it holds that

mmm = mmm0 +CCC ·σ . (11.1)

Proof. Assume that mmm0[σ〉mmm with σ = t j1t j2 · · · t jr , i.e., mmm0[t j1〉mmm1[t j2〉mmm2 · · · [t jr〉mmmr,
with mmmr = mmm. It holds that:

mmm = mmmr = mmmr−1 +CCC[·, t jr ] = · · ·= mmm0 +
r

∑
k=1

CCC[·, t jk ] = mmm0 +CCC ·σ

and the state equation is satisfied. �
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Consider the net system in Fig. 11.1(a). It is easy to verify that mmm′ = [0 1 4]T , reach-
able from the initial marking mmm0 = [1 0 0]T firing σ = t1t2t2, satisfies the equation
mmm′ = mmm0 +CCC ·σ .

Definition 11.2. Given a marked net 〈N,mmm0〉 with m places and n transitions, let CCC
be its incidence matrix. The potentially reachable set of 〈N,mmm0〉 is the set

PR(N,mmm0) = {mmm ∈N
m | ∃yyy ∈ N

n : mmm = mmm0 +CCC · yyy},

i.e., the set of vectors mmm ∈N
m such that there exists a vector yyy ∈Nn that satisfies the

state equation.

Proposition 11.2. [1] Let 〈N,mmm0〉 be a marked net. It is: R(N,mmm0)⊆ PR(N,mmm0).

Proof. We simply need to prove that if mmm is reachable, then mmm is also potentially
reachable. Indeed, if mmm is reachable, there exists a sequence σ such that mmm0[σ〉mmm.
Thus mmm = mmm0 +CCC · yyy with yyy = σ , i.e., mmm ∈ PR(N,mmm0). �

We show by means of an example that the converse of Proposition 11.2 does not
hold, i.e., it may happen that R(N,mmm0)� PR(N,mmm0).

Consider the marked net in Fig. 11.1(a) whose incidence matrix is CCC = [ −1 0;
1 0; 0 2 ]. The initial marking is mmm0 = [1 0 0]T . Let mmm = [1 0 2]T . Equation mmm =
mmm0 +CCC · yyy is verified by yyy = [0 1]T . However, σ = t2 is not enabled at the initial
marking and mmm is not reachable.

Definition 11.3. Given a marked net 〈N,mmm0〉, potentially reachable but not reach-
able markings are said to be spurious markings.

The presence of spurious markings implies that in general the state equation analysis
provides necessary, but not sufficient, conditions for reachability. Note however, that
the necessary condition in Proposition 11.2 often allows to verify that a marking is
not reachable. In the net in Fig. 11.1(a), consider the marking mmm = [0 2 0]T and a
generic vector yyy = [y1 y2]

T ∈ N
2. The equation mmm = mmm0 +CCC · yyy implies

mmm−mmm0 = CCC · yyy⎡

⎣
−1

2
0

⎤

⎦ =

⎡

⎣
−y1

y1

2y2

⎤

⎦ .

The first and second of such equalities require that: y1 = 1 and y1 = 2. Thus the
equation does not admit solution and mmm is not reachable because it does not satisfy
Proposition 11.2.

In the previous Chapter 10 we introduced the notion of covering set (cfr. Defi-
nition 10.12) that provides an approximation of the reachability set. In particular,
by Proposition 10.3, it is R(N,mmm0) ⊆ CS(N,mmm0). It is natural to wonder if an in-
clusion relationship exists between PR(N,mmm0) and CS(N,mmm0). The PN system in
Fig. 11.1(a) shows that no relationship exists. Indeed, it is

CS(N,mmm0) = {[1 0 0]T}∪{[0 1 k]T , k ∈ N}
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as it can be easily verified looking at the coverability graph in Fig. 11.1(b). More-
over, it is

PR(N,mmm0) = {[1 0 2k]T , k ∈ N}∪{[0 1 2k]T , k ∈ N}.

Therefore there exist markings that belong to PR(N,mmm0), but do not belong to
CS(N,mmm0), and viz. As an example, given mmm = [0 1 3]T , it is mmm ∈ CS(N,mmm0) but
mmm 
∈ PR(N,mmm0). On the contrary, if we consider mmm′ = [1 0 2]T , it is mmm′ ∈ PR(N,mmm0),
but mmm′ 
∈CS(N,mmm0).

11.3 Analysis Based on the Incidence Matrix

11.3.1 Invariant Vectors

Definition 11.4. Given a net N with m places and n transitions, let CCC be its incidence
matrix. A P-vector1 xxx ∈ N

m with xxx 
= 000 is called:

• P-invariant: if xxxT ·CCC = 000T ;
• P-increasing: if xxxT ·CCC � 000T ;
• P-decreasing: if xxxT ·CCC � 000T .

A T-vector2 yyy ∈ N
n with yyy 
= 000 is called:

• T-invariant: if CCC · yyy = 000;
• T-increasing: if CCC · yyy � 000;
• T-decreasing: if CCC · yyy � 000.

Consider the nets in Fig. 11.2 (a) and (b) whose incidence matrices are respectively

CCCa =

⎡

⎣
−1 2

1 −1
0 −1

⎤

⎦ and CCCb =CCCT
a =

[
−1 1 0

2 −1 −1

]

.

For the net in figure (a) one readily verifies that vector xxxI = [1 1 1]T is a P-invariant,
vector xxxC = [1 1 0]T is a P-increasing and vector xxxD = [0 0 1]T is a P-decreasing.
For the net in figure (b) one readily verifies that vector yyyI = [1 1 1]T is a T-invariant,
vector yyyC = [1 1 0]T is a T-increasing and vector yyyD = [0 0 1]T is a T-decreasing.

The following definition holds.

Definition 11.5. The support of a P-vector xxx ∈Nm, denoted ‖xxx‖, is the set of places
p ∈ P such that x[p]> 0. The support of a T-vector yyy ∈ N

n, denoted ‖yyy‖, is the set
of transitions t ∈ T such that y[t]> 0.

As an example, for the net in Fig. 11.2(a) it is ‖xxxI ‖= {p1, p2, p3}, ‖xxxC ‖= {p1, p2}
and ‖xxxD ‖= {p3}.

1 A P-vector can also be represented by a function xxx : P→ N.
2 A T-vector can also be represented by a function yyy : T → N.
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Fig. 11.2 Two PNs for the analysis via invariants

The following proposition allows to give a physical interpretation of P-vectors.

Proposition 11.3. Given a net N, let xxxI be a P-invariant, xxxC a P-increasing, xxxD a
P-decreasing. For all markings mmm ∈ N

m and for all enabled sequences σ ∈ L(N,mmm)
such that mmm[σ〉mmm′ it holds that

xxxT
I ·mmm′ = xxxT

I ·mmm; xxxT
C ·mmm′ � xxxT

C ·mmm; xxxT
D ·mmm′ � xxxT

D ·mmm. (11.2)

Proof. If mmm′ is reachable from mmm with the firing of sequence σ it holds that: mmm′ =
mmm+CCC ·σ and for any P-vector xxx it holds that xxxT ·mmm′ = xxxT ·mmm+ xxxT ·CCC ·σ .

By definition of P-invariant xxxT
I ·CCC = 000T , i.e., xxxT ·CCC ·σ = 0 hence the first result

in (11.2) follows. By definition of P-increasing xxxT
I ·CCC � 000T and since σ � 000 it holds

that xxxT ·CCC ·σ ≥ 0, hence the second result in (11.2) follows. The last result can be
proved in a similar fashion. �

Applying the result of the previous proposition to the net in Fig. 11.2 (a), where
mmm0 = [1 0 3]T , one concludes that for all reachable markings mmm ∈ R(N,mmm0):

• the sum of the tokens in the net remains constant and equal to 4 because the P-
invariant xxxI = [1 1 1]T ensures that m[p1]+m[p2]+m[p3] = xxxT

I ·mmm = xxxT
I ·mmm0 = 4;

• the sum of the tokens in places p1 and p2 may increase starting from the initial
value 1 but never decreases, because the P-increasing xxxC = [1 1 0]T ensures that
m[p1]+m[p2] = xxxT

C ·mmm≥ xxxT
C ·mmm0 = 1;

• the number of tokens in place p3 may decrease starting from the initial value 3
but never increases, because the P-decreasing xxxD = [0 0 1]T ensures that m[p3] =
xxxT

D ·mmm≤ xxxT
D ·mmm0 = 3.

The following proposition provides a physical interpretation of T-vectors.

Proposition 11.4. Given a net N, let mmm ∈ N
m be a marking and σ ∈ L(N,mmm) be a

firing sequence such that mmm[σ〉mmm′. The following properties hold:

• the firing vector σ is a T-invariant⇐⇒ mmm′ =mmm, i.e., sequence σ is repetitive and
stationary;

• the firing vector σ is a T-increasing⇐⇒ mmm′ � mmm, i.e., sequence σ is repetitive
increasing;

• the firing vector σ is a T-decreasing⇐⇒ mmm′ � mmm.



218 M.P. Cabasino, A. Giua, and C. Seatzu

Proof. The three properties can be easily proved considering the state equation
mmm′ = mmm+CCC ·σ and recalling the properties of T-vectors given in Definition 11.4. �

As an example, consider the net in Fig. 11.2 (b). Given the marking mmm = [1 0]T

shown in the figure, sequence σ ′ = t1t2 is enabled and its firing yields marking
mmm′ = [1 1]T � mmm: the firing vector of σ ′ is the T-increasing yyyC = [1 1 0]T . From the
same marking mmm, the firing of sequence σ ′′ = t1t2t3 yields mmm′′ = mmm: the firing vector
of σ ′′ is the T-invariant yyyI = [1 1 1]T .

Remark 11.1. Many authors use a different terminology for P-invariants and T-
invariants, and call them, respectively, P-semiflow and T-semiflow. In particular,
this is the terminology used in the following Chapters 18 and 20. Moreover, in these
chapters the term invariant is used to denote the token conservation law xxxT

I ·mmm′ =
xxxT

I ·mmm in Proposition 11.3. �

11.3.2 P-Invariants Computation

Definition 11.6. A P-invariant xxx ∈ N
m is called:

• minimal if there does not exist a P-invariant xxx′ such that xxx′ � xxx;
• of minimal support if there does not exist a P-invariant xxx′ such that ‖xxx′ ‖�‖xxx‖.

Analogous definitions hold for T-invariants.

As an example, vector xxxI = [1 1 1]T for the net in Fig. 11.2(a) is a minimal P-
invariant that has also minimal support. Note however, that there may exist minimal
invariants that do not have minimal support. As an example, in the net in Fig. 11.3,
P-invariants xxx′ = [1 2 0]T and xxx′′ = [1 0 2]T are minimal and have minimal support;
P-invariant xxx′′′ = 0.5(xxx′ + xxx′′) = [1 1 1]T is minimal but does not have minimal
support.

2 

t1 p1 p2 

p3 

Fig. 11.3 A net with a minimal P-invariant that is not of minimal support

A non minimal or non minimal support P-invariant can always be obtained as the
linear combination, with positive coefficients, of one or more minimal and minimal
support P-invariants. As an example, given the net in Fig. 11.2(a) it holds that xxx′′′ =
0.5(xxx′+ xxx′′).
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The following algorithm determines a set of P-invariants of a net. In particular,
it computes all minimal P-invariants, but also many others that are not minimal
(in general an exponential number of non minimal). Solutions for this issue can be
found in [12].

Algorithm 11.2. (P-invariants computation). Consider a net N with m places and n
transitions and let CCC be its incidence matrix.

1. Compute the table AAA := |CCC | IIIm×m |, where IIIm×m is the m×m identity matrix.
2. For j := 1, . . . ,n (column index associated with transitions):

a. let J+ := {i | A[i, j] > 0} be the set of row indices that correspond to positive
entries in column j;

b. let J− := {i | A[i, j] < 0} be the set of row indices that correspond to negative
entries in column j;

c. for each pair (i+, i−) ∈ J+× J−:
i. let d := lcm{A[i+, j],−A[i−, j]} be the least common multiplier of entries

A[i+, j] and −A[i−, j];
ii. let d+ := d/A[i+, j] and d− :=−d/A[i−, j];

iii. add the new row d+ AAA[i+, ·]+ d− AAA[i−, ·] to the table (the new row has the
j−th entry equal to zero by construction);

d. remove from AAA all rows with index J+ ∪ J−, corresponding to non-null ele-
ments along the j−th column.

3. The resulting table AAA is in the form AAA = | 000r×m | XXXT |, where 000r×m is a null r× n
matrix, while XXX is a matrix with m rows and r columns. Each column of XXX is a
P-invariant.

Note that in the previous algorithm if any of the two sets J+ or J− is empty, at
Step 2(c) no row is added. Moreover, the resulting table will be empty, i.e., r = 0, if
the net N has no P-invariant.

Finally, note that it could be necessary to divide a column of XXX for the largest
common divisor of its entries to obtain a P-invariant that is minimal.

Let us now present a simple example of application of such algorithm. Consider
the net in Fig. 11.4.

t1 

p3 

p1 

p2 

t4 t3 

p4 

p5 

t2 

2 

2 

2 

Fig. 11.4 A net for the computation of P-invariants
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Initially construct the table

−1 0 0 2 1 0 0 0 0 p1

1 0 −2 0 0 1 0 0 0 p2

0 0 1 −1 0 0 1 0 0 p3

0 −2 0 1 0 0 0 1 0 p4

0 1 −1 0 0 0 0 0 1 p5

where for a better understanding each row has been labeled with the corresponding
place. At Step j = 1 the sum of rows p1 and p2 is computed and added to the table,
while the two rows are removed, thus obtaining the table

0 0 1 −1 0 0 1 0 0 p3

0 −2 0 1 0 0 0 1 0 p4

0 1 −1 0 0 0 0 0 1 p5

0 0 −2 2 1 1 0 0 0 p1 + p2

At step j = 2 the linear combination of row p4 with row p5 multiplied by 2 is
executed, and the two rows are removed, obtaining the table

0 0 1 −1 0 0 1 0 0 p3

0 0 −2 2 1 1 0 0 0 p1 + p2

0 0 −2 1 0 0 0 1 2 p4 + 2p5

At step j = 3 two combinations are computed and added to the table: the sum of
row p3 multiplied by 2 and either row p1 + p2 or row p4 +2p5. Removing the three
rows, we get the table

0 0 0 0 1 1 2 0 0 p1 + p2 + 2p3

0 0 0 −1 0 0 2 1 2 2p3 + p4 + 2p5

At Step j = 4 there are no possible combinations and we simply remove row 2p3 +
p4 + 2p5 that has a non-null entry in the fourth column. The resulting table is

0 0 0 0 1 1 2 0 0 p1 + p2 + 2p3

Thus the net has a single minimal and minimum support P-invariant xxx= [1 1 2 0 0]T .
From the definition of P-invariants and T-invariants, one can readily see that the

T-invariants of a net N with incidence matrix CCC are the P-invariants of the dual net3

with incidence matrix CCCT , and viz. Thus Algorithm 11.2 can also be used to compute
the T-invariants initializing the table as AAA := | CCCT | IIIn×n |. The i−th row in such a
case should be labeled by transition ti.

It is also important to observe that the previous algorithm can be modified to
determine increasing (or decreasing) P-vectors: at Step 2(d) rather than eliminating
all the rows in I+ ∪I− only the rows with index I− (or I+) should be removed

3 See Definition 11.19 for a formal definition of duality.
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since if xxx is an increasing (decreasing) vector positive (negative) entries in the prod-
uct zzzT = xxx ·CCC are allowed. However, in general, when the algorithm is applied for
the computation of increasing or decreasing vectors, the resulting vectors are not
only the minimal ones or those of minimum support, but many others as well that
can be obtained as a linear combination of them.

11.3.3 Reachability Analysis Using P-Invariants

In this section we discuss how P-invariants can be used to approximate the reacha-
bility set of a marked net.

Definition 11.7. [1] Let 〈N,mmm0〉 be a net with m places and XXX = [xxx1 xxx2 · · · xxxk] a
matrix m× k, whose generic column xxxi is a P-invariant of N.

The X−invariant set of 〈N,mmm0〉 is the set

IX(N,mmm0) = {mmm ∈ N
m | XXXT ·mmm = XXXT ·mmm0},

i.e., the set of vectors mmm ∈ N
m such that xxxT

i ·mmm = xxxT
i ·mmm0 for all i ∈ {1, . . . ,k}.

It is easy to prove that the potentially reachable set of a marked net is contained
in the X−invariant set for any matrix of P-invariants XXX . The following proposition
extends the results of Proposition 11.2.

Proposition 11.5. [1] Let 〈N,mmm0〉 be a marked net and XXX a matrix whose columns
are P-invariants of N. It holds: R(N,mmm0)⊆ PR(N,mmm0)⊆ IX(N,mmm0).
Proof. The first inequality derives from Proposition 11.2. It is sufficient to prove that
if mmm is potentially reachable, then mmm is also X−invariant. In fact, if mmm is potentially
reachable, there exists a vector yyy ∈ N

n such that mmm = mmm0 +CCC · yyy. Thus XXXT ·mmm =
XXXT ·mmm0 +XXXT ·CCC ·yyy. Being XXX a matrix whose columns are P-invariants of N it holds
that XXXT ·CCC · yyy = 000, thus mmm ∈ IX(N,mmm0). �

Let us now present an example where it is R(N,mmm0)⊂ PR(N,mmm0)⊂ IX(N,mmm0), i.e.,
where strict inclusion holds. Consider again the net in Fig. 11.1(a). There exists only
a minimal P-invariant xxx = [1 1 0]T , thus let XXX = xxx. Moreover,

R(N,mmm0) = { [1 0 0]T}∪{[0 1 2k]T , k ∈ N },

and, as already discussed in Section 11.2,

PR(N,mmm0) = { [1 0 2k]T , k ∈ N }∪{ [0 1 2k]T , k ∈ N } ⊂ R(N,mmm0).

A generic mmm is an X−invariant only if:

XXXT · mmm = XXXT · mmm0

[1 1 0] ·

⎡

⎣
m[p1]
m[p2]
m[p3]

⎤

⎦ = [1 1 0] ·

⎡

⎣
1
0
0

⎤

⎦
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or equivalently m[p1] +m[p2] = 1. Moreover, since each m[pi] should be a non-
negative integer, it holds that:

IX(N,mmm0) = {[1 0 k]T , k ∈ N }∪{ [0 1 k]T , k ∈ N },

i.e., it is PR(N,mmm0)⊂ IX(N,mmm0).
We conclude this section extending the result in Proposition 10.3.

Proposition 11.6. Let 〈N,mmm0〉 be a marked net and XXX a matrix whose columns are
P-invariants of N. It holds that: R(N,mmm0)⊆CS(N,mmm0)⊆ IX(N,mmm0).

Proof. The first inequality derives from Proposition 10.3. It is sufficient to prove
that mmm ∈CS(N,mmm0) implies that mmm is also X−invariant. To this aim we first observe
that the support of no P-invariant contains unbounded places. Therefore, if p is an
unbounded place, for all marking mmm∈ Ix(N,mmm0), m[p] may take any value in N. This
implies that the statement mmm∈CS(N,mmm0) ⇒ mmm∈ IX(N,mmm0) may be at most violated
by bounded places. However, either of this cannot occur since bounded places in
the coverability graph only contain reachable markings being by Proposition 11.5,
R(N,mmm0)⊆ IX(N,mmm0). �

11.4 Structural Properties

In this section we define meaningful structural properties of a P/T net. In Sec-
tion 10.4.3 of the previous chapter we defined several behavioral properties of
a marked net 〈N,mmm0〉, such as boundedness, conservativeness, repetitiveness, re-
versibility and liveness. In this section we define the structural counterpart of these
properties, relating them to the net structure independent of a particular initial mark-
ing. We also show how such properties can be verified using P-vectors and T-vectors.

Most of the proofs of the results presented in this section are omitted; the inter-
ested reader is addressed to [13].

11.4.1 Structural Boundedness

This property implies boundedness for all initial markings.

Definition 11.8. Consider a P/T net N and one of its places p ∈ P.

• Place p is structurally bounded if it is bounded in 〈N,mmm0〉 for all initial markings
mmm0.

• Net N is structurally bounded if the marked net 〈N,mmm0〉 is bounded for all initial
markings mmm0.

This property can be characterized in terms of P-vectors .
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Proposition 11.7. Consider a P/T net N and a place p ∈ P.

1. Place p is structurally bounded if and only if there exists a P-invariant or a P-
decreasing xxx with x[p]> 0, i.e., p ∈ ‖xxx‖.

2. The net N is structurally bounded if and only if there exists a P-invariant or a
P-decreasing of positive integers xxx ∈ N

m
+, i.e., P = ‖xxx‖.

As an example, the net in Fig. 11.1(a) has P-invariant [1 1 0]T . Thus places p1 and
p2 are structurally bounded while place p3 is not structurally bounded. Therefore
the net is not structurally bounded.

Structural boundedness implies (behavioral) boundedness, since it holds for all
initial markings. The opposite is not true: consider the net in Fig. 11.1(a) with initial
marking mmm0 = [0 0 r]T (for all r ∈ N). The resulting marked net is bounded, even
if it is not structurally bounded: indeed in such a net only places p1 and p2 are
structurally bounded.

11.4.2 Structural Conservativeness

Definition 11.9. Consider a P/T net N and one of its places p ∈ P.

• Net N is structurally strictly conservative if the marked net 〈N,mmm0〉 is strictly
conservative for all initial markings mmm0.

• Net N is structurally conservative if the marked net 〈N,mmm0〉 is conservative for
all initial markings mmm0.

This property can be characterized in terms of P-invariants.

Proposition 11.8. Consider a P/T net N.

• N is structurally strictly conservative if and only if vector 111 = {1}m is a P-
invariant.

• N is structurally conservative if and only if there exists a P-invariant of positive
integers xxx ∈ N

m
+, i.e., a P-invariant whose support contains all places.

Structural conservativeness implies (behavioral) conservativeness, since it holds for
all initial markings. The opposite is not true. As an example, the net in Fig. 10.12(a)
in Chapter 10 is conservative with respect to the vector [1 1]T for the given initial
marking, but such a net admits no P-invariant, thus it is not structurally conservative.
It is easy to see that the net system 〈N,mmm0〉 is not conservative if m0[p1] ≥ 1 and
m0[p1]+m0[p2]≥ 2, since in such a case transition t4 would be almost-live and its
firing would decrease the number of tokens in the net.

Let us finally observe, as already discussed for the corresponding behavioral
properties, that structural conservativeness implies structural boundedness while the
opposite is not true. The net in Fig. 10.10 (Chapter 10) is an example of a structurally
bounded net being vector [1] a P-decreasing, while it is not structurally conservative
since it admits no P-invariant.
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11.4.3 Structural Repetitiveness and Consistency

These properties are the structural counterpart of repetitiveness and stationarity in-
troduced for sequences of transitions.

Proposition 11.9. Consider a P/T net N.

• N is repetitive if there exists an initial marking mmm0 such that 〈N,mmm0〉 admits a
repetitive sequence containing all transitions.

• N is consistent if there exists an initial marking mmm0 such that 〈N,mmm0〉 admits a
repetitive stationary sequence containing all transitions.

These properties can be characterized in terms of T-vectors.

Proposition 11.10. Let N be a P/T net.

• N is repetitive if and only if it admits either a T-invariant or a T-increasing of
strictly positive integers yyy ∈ N

n
+, i.e., a T-increasing whose support contains all

transitions.
• N is consistent if and only if it admits a T-invariant of strictly positive integers

yyy ∈N
n
+, i.e., a T-invariant whose support contains all transitions.

As an example the net in Fig. 11.8(b) is repetitive and consistent. If such a net is
modified assuming that the multiplicity of the arc from t ′ to p′ is equal to 2, the
resulting net is repetitive but not consistent.

11.4.4 Structural Liveness

Definition 11.10. A P/T net N is structurally live if there exists an initial marking
mmm0 such that the marked net 〈N,mmm0〉 is live.

It is possible to give a necessary condition for such property.

Proposition 11.11. A P/T net N with incidence matrix CCC is structurally live only if
it does not admit a P-decreasing .

As an example, the net in Fig. 11.2(a) has a P-decreasing xxxD = [0 0 1]T , i.e., the
number of tokens in p3 can never increase. This net is structurally dead: regardless
of the initial marking, each time t2 fires the number of tokens in p3 decreases and
when the place gets empty, t2 becomes dead.

11.5 Implicit Places

We now introduce the notion of implicit place that is useful in a large variety of
problems, such as simulation, performance evaluation and deadlock analysis.
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Definition 11.11. [21] Let 〈N,mmm0〉 be a PN system with N = (P∪{p},T,PPPrrreee,PPPooosssttt).
Place p is implicit if and only if L(N,mmm0) = L(N′,mmm′0) where N′ = (P,T,PPPrrreee[P,T ],
PPPooosssttt[P,T ]) is the restriction of N to P, i.e., the net obtained from N removing p and
its input and output arcs, and mmm′0 = mmm0[P] is the projection of mmm0 on P.

In simple words, a place p of a marked PN is said to be implicit if deleting it does not
change the “behavior” of the marked net, i.e., the language it can generate. Therefore
a place p is implicit if there does not exist a marking mmm ∈ R(N,mmm0) and a transition
t ∈ T such that mmm[P]≥ PPPrrreee[P, t] and m[p]< Pre[p, t].

As an example, both places p1 and p2 in Fig. 11.5(a) are implicit places.
The following theorem provides a sufficient condition for a place p to be implicit.

Theorem 11.1. [21] Let 〈N,mmm0〉 be a PN system with N = (P∪{p},T,PPPrrreee,PPPooosssttt).
Let

γ∗ = min
{

yyyT ·mmm0[P]+ μ | yyyT ·CCC[P,T ]≤CCC[p,T ]
yyyT ·PPPrrreee[P, p•]+ μ ·1T ≥ PPPrrreee[p, p•]
yyy≥ 0, μ ≥ 0} .

(11.3)

If m0[p]≥ γ∗, then p is implicit.

p1 

t1 

p2 

t2 

p3 

t4 

p4 

t5 

t3 

(b) 

p2 p1 p3 

t1 

(a) 

t2 

Fig. 11.5 (a) A PN with two implicit places; (b) a PN with a siphon and a trap

If a place p can be made implicit for every possible initial marking then it is called
structurally implicit.

Definition 11.12. [21] Let N = (P∪{p},T,PPPrrreee,PPPooosssttt) be a PN. Place p is struc-
turally implicit if for every mmm0[P], there exists a m0[p] such that p is implicit in
〈N,mmm0[P∪{p}]〉.

Both places p1 and p2 in Fig. 11.5(a) are also structurally implicit. An example of a
place that is implicit but not structurally implicit is given in [21].

A characterization of structurally implicit places is the following:

Theorem 11.2. [21] Let N = 〈P∪{p},T,PPPrrreee,PPPooosssttt〉. Place p is structurally implicit
iff (equivalently):

• ∃ yyy > 1 such that CCC[p,T ]≥ yyyT ·CCC[P,T ].
• 
 ∃ xxx≥ 1 such that CCC[P,T ] · xxx≥ 0 and CCC[p,T ]< 0.
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Structurally implicit places are very important when performing structural analy-
sis. Many approaches in this framework are based on either the addition or the re-
moval of structurally implicit places. Indeed, the addition of structurally implicit
places can: (i) increase the Hamming distance useful for error/fault detecting and
error/fault correcting codes [19]; (ii) decompose the system for computing perfor-
mance evaluation (divide and conquer techniques) [22]; (iii) decompose the system
for decentralized control [25]; (iv) cut spurious (deadlock) solutions improving the
characterization of the state equation [1]. On the contrary, the removal of struc-
turally implicit places can: (i) simplify the implementation having less nodes and
(ii) improve the simulation of continuous PNs under infinite server semantics [16] .

Note that other restrictions of the concept of implicit place have been proposed
in the literature [21], e.g., that of concurrent implicit place that is particularly useful
in performance evaluation or control of timed models. For a detailed study on this,
we address to [1].

11.6 Siphons and Traps

Let us now introduce two structural complementary objects, namely siphons and
traps. Siphons and traps are usually introduced for ordinary nets and most of the
literature dealing with them refers to such a restricted class of nets. However, some
authors extended their definitions to non ordinary nets. See e.g. [23] and the refer-
ences therein.

Definition 11.13. A siphon of an ordinary PN is a set of places S ⊆ P such that the
set of input transitions of S is included in the set of output transitions of S, i.e.,

⋃

p∈S

•p⊆
⋃

p∈S

p•.

A siphon is minimal if it is not the superset of any other siphon.

Definition 11.14. A trap of an ordinary PN is a set of places S⊆ P such that the set
of output transitions of S is included in the set of input transitions of S, i.e.,

⋃

p∈S

p• ⊆
⋃

p∈S

•p.

A trap is minimal if it is not the superset of any other trap.

The main interest on siphons and traps derives from the following two considera-
tions. Once a siphon becomes empty, it remains empty during all the future evo-
lutions of the net. Once a trap becomes marked, it remains marked during all the
future evolutions of the net.

Consider the net in Fig. 11.5(b). The set S = {p1, p2} is a siphon. The token
initially in p2 may move to p1 and again to p2, through the firing of t1 and t2,
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respectively. However, once t3 fires, S becomes empty and remains empty during all
future evolutions of the net. On the contrary, S′ = {p3, p4} is a trap. Once a token
enters in p3, it can only move to p4 and to p3 again, but it will never leave S′.

Traps and siphons have been extensively used for the structural analysis of PNs.
Following [21], here we limit to mention three of the most significant results in this
context.

• In an ordinary deadlocked system, the subset of unmarked places is a siphon,
otherwise one of its input transitions would be enabled.

• Taking into account that traps remain marked, if every siphon of an ordinary net
contains an initially marked trap, then the system is deadlock-free.

• If mmm is a home state of a live system, then every trap must be marked, otherwise
once the trap becomes marked — and it will eventually do by liveness — mmm
cannot be reached any more.

Linear algebraic characterizations of siphons and traps have been given since the
nineties [21] and can be considered as the starting point for extensive and fruitful
theories on liveness analysis and deadlock prevention, particularly in the case of
some net subclasses [4, 5, 6, 11, 24].

11.7 Classes of P/T Nets

The P/T net definition given in the previous chapter corresponds to a model some-
times called general P/T net. In this section we present some classes of P/T nets
that satisfy particular structural conditions. In particular, the considered classes are
summarized in the Venn diagram in Fig. 11.6.

Fig. 11.6 Venn diagram of the different classes of P/T nets
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11.7.1 Ordinary and Pure Nets

Definition 11.15. A P/T net N = (P,T,PPPrrreee,PPPooosssttt) is called:

• ordinary if PPPrrreee : P× T −→ {0,1} and PPPooosssttt : P× T −→ {0,1}, i.e., if all arcs
have unitary multiplicity;

• pure if for each place p and transition t it holds that Pre[p, t] ·Post[p, t] = 0, i.e.,
if the net has no self-loop;

• restricted if it is ordinary and pure.

Even if the definition of restricted net seems more restrictive than that of a general
P/T net, it is possible to prove that the two formalisms have the same modeling
power, in the sense that they can describe the same class of systems.

In the following we present a rather intuitive construction to convert a general net
into an equivalent4 restricted one, by removing arcs with multiplicity greater than
one and self-loops.

The first construction, shown in Fig. 11.7, removes arcs with a multiplicity
greater than one. Let r be the maximum multiplicity among all “pre” and “post”
arcs incident on place p. We replace p with a cycle of r places p(i) and transitions
t(i), i = 1, . . . ,r, as in the figure. Each arc “post” (“pre”) with multiplicity k ≤ r is
replaced by k arcs, each one directed (coming from) k different places. Disregard-
ing the firing of transitions t(i) and keeping into account that for each marking mmm of
the original net and a corresponding marking mmm′ of the transformed net it holds that
m[p] = ∑r

i=1 m′[p(i)], the two nets have the same behavior.

t1 

p 

2 

3 

t2 

t4 t3 

(a) 

p(1) p(2) 
p(3)

t(1)
t(3)t(2)

t1 t2 

t4 t3 

(b) 

Fig. 11.7 (a) A place of a non-ordinary net; (b) transformation to eliminate the arcs of non-
unitary multiplicity

The second construction, shown in Fig. 11.8, removes a self-loop from t to p: the
firing of t in the original net corresponds to the firing of t ′ and t ′′ in the modified
net.

4 Here the term equivalent is used in a purely qualitative fashion: a formal discussion of
model equivalence (e.g., in terms of languages, bisimulation, etc.) goes beyond the scope
of this book.
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(b) 

p p p’ 

t’ 

t” 

t 

(a) 

Fig. 11.8 (a) A self-loop; (b) transformation to remove the self-loop

11.7.2 Acyclic Nets

Definition 11.16. A P/T net is acyclic if its underlying graph is acyclic, i.e., it does
not contain directed cycles.

The net in Fig. 11.3 is acyclic. On the contrary, the net in Fig. 11.1 is not acyclic
because it contains the self-loop p2t2 p2. Analogously, the nets in Fig. 11.2 are not
acyclic because they both contain cycle p1t1 p2t2 p1.

The main feature of acyclic nets is that their state equation has no spurious solu-
tions.

Proposition 11.12. [13] Let N be an acyclic net. For all initial markings mmm0, it holds
that R(N,mmm0) = PR(N,mmm0).

Therefore for this class of nets, the analysis based on the state equation provides
necessary and sufficient conditions to solve the reachability problem.

11.7.3 State Machines

Definition 11.17. A state machine is an ordinary net whose transitions have exactly
one input and one output arc, i.e., it holds that ∑p∈P Pre[p, t] = ∑p∈P Post[p, t] = 1
for all transitions t ∈ T.

The net in Fig. 11.9(a) is a state machine, while all the other nets in the same figure
are not.

A state machine with a single token is analogous to a finite state automaton: each
place of the net corresponds to a state of the automaton and the position of the token
denotes the current state of the automaton. Since each place can have more than one
output transition, as place p1 in Fig. 11.9(a), state machines can model a “choice”.

The initial marking can also assign to a state machine a number of tokens greater
than one. In such a case it is possible to represent a limited form of “parallelism”,
that originates from the firing of transitions enabled by different tokens. On the
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Fig. 11.9 Ordinary PNs: (a) a state machine; (b) a marked graph; (c) a free-choice net; (d) a
non free-choice net

contrary, it is not possible to model a “synchronization” since the enabling of a
transition depends on a single place.

The particular structure of state machines leads to a more restrictive model than
ordinary nets, in the sense that it is not possible in general to find a state machine
that is equivalent to an arbitrary ordinary net. Nevertheless, such restriction allows
to significantly simplify the study of their properties [14, 17]. In particular, the fol-
lowing two important results can be proved.

• A state machine is always bounded.
• If a state machine is connected (but not necessarily strictly connected), then for

all initial markings mmm0, it holds that R(N,mmm0) = PR(N,mmm0), i.e., a marking is
reachable if and only if it is potentially reachable.

11.7.4 Marked Graphs

Definition 11.18. A marked graph, also called marked event (or synchronization)
graph, is an ordinary net whose places have exactly one input and one output tran-
sition, i.e., ∑t∈T Pre[p, t] = ∑t∈T Post[p, t] = 1 for all places p ∈ P.

The net in Fig. 11.9(b) is a marked graph, while all the other nets in the same figure
are not.

Since each place of a marked graph has a single output transition, this structure
cannot model a “choice”. However, it can model “parallelism” because a transition
may have more than one output place. Moreover, it can model a “synchronization”
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since the enabling state of a transition can depend on several places; such is the case
of transition t1 in Fig. 11.9(b).

There exists a dual relation between state machines and marked graphs.

Definition 11.19. Given a net N = (P,T,PPPrrreee,PPPooosssttt) with m places and n transitions,
the dual net of N is the net NT = (T,P,PPPrrreeeT ,PPPooossstttT ) with n places and m transitions.

The dual net can be obtained from the original one simply replacing each node
“place” with a node “transition” and viz., and inverting the directions of arcs. If the
original net has incidence matrix CCC, the dual net has incidence matrix CCCT . Moreover,
if N′ is the dual net of N, then N is the dual net of N′.

The two nets in Fig. 11.9(a)-(b) are one the dual net of the other.

Proposition 11.13. If N is a state machine (resp., marked graph) its dual net NT is
a marked graph (resp., state machine).

Proof. The construction of the dual net transforms each node “place” into a node
“transition” and viz., and does not change the multiplicity of the arcs but only their
orientation. Thus, if N is a state machine each transition has a single input place
and a single output place and in NT each place has a single input transition and a
single output transition, thus the resulting net is a marked graph. A similar reasoning
applies if N is a marked graph. �

As in the case of state machines, also for marked graphs some important properties
can be proved. For a detailed discussion on this we address to [14].

11.7.5 Choice-Free Nets

A generalization of state machines and marked graphs is the following.

Definition 11.20. A free-choice net is an ordinary net such that from p ∈ P to t ∈ T
is either the single output arc from p or the single input arc to t, i.e., for all places
p ∈ P if Pre[p, t] = 1 it holds that:

[∀t ′ 
= t : Pre[p, t ′] = 0] ∨ [∀p′ 
= p : Pre[p′, t] = 0].

The admissible structures in a free-choice net are shown in Fig. 11.10(a)-(b) while
a non-admissible structure is shown in Fig. 11.10(c).

A free-choice net thus can model “choice”, “parallelism” and “synchronization”.
As an example, in the free-choice net in Fig. 11.9(c) transitions t1 and t2 are in
structural conflict and model a choice in place p1; t3 models a synchronization.

However, a free-choice net cannot represent ”choice” and “synchronization” rel-
atively to the same transition. As an example, the net in Fig. 11.9(d) is not a free-
choice net since transition t3 models a synchronization and at the same time one of
the admissible choices for place p1.
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p2 

t1 
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p1 t1 
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Fig. 11.10 Elementary structures: (a)-(b) free-choice; (c) not free-choice

Note that each state machine and each marked graph are also free-choice net.
However, the class of free-choice net is larger than the union of these two classes.
The net in Fig. 11.9(c) is a free-choice net even if it is neither a state machine nor
a marked graph. Also, free-choice nets satisfy particular conditions that allow to
reduce the computational complexity of the analysis of their properties with respect
to the case of ordinary nets. A rich literature exists on this topic. See e.g. [3].

11.8 Further Reading

As in the case of Chapter 10, further details on the proposed topics can be found in
the survey paper by Murata [13] and on the books of Peterson [14] and David and
Alla [2]. Moreover, for more details on methods to improve the state equation based
on implicit places, we address to the paper by Silva et al. [21]. Significant results
related to the analysis of structural boundedness and structural liveness can be found
in [20, 21], most of which are based on rank theorems. Finally, very interesting
results on deadlock analysis and prevention are summarized in the book of Li and
Zhou [10] and in the book edited by Zhou and Fanti [7].
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Chapter 12
Supervisory Control of Petri Nets
with Language Specifications

Alessandro Giua

12.1 Introduction

In this chapter, we study Petri nets (PNs) as language generators and we show how
PNs can be used for supervisory control of discrete event systems under language
specifications.

Supervisory control, originated by the work of Ramadge and Wonham [13], is
a system theory approach that has been gaining increasing importance because it
provides a unifying framework for the control of Discrete Event Systems (DESs). A
general overview of Supervisory Control has been presented in Chapter 3.

In the original work of Ramadge and Wonham finite state machines (FSMs) were
used to model plants and specifications. FSMs provide a general framework for es-
tablishing fundamental properties of DES control problems. They are not conve-
nient models to describe complex systems, however, because of the large number
of states that have to be introduced to represent several interacting subsystems, and
because of the lack of structure. More efficient models have been proposed in the
DES literature. Here the attention will be drawn to Petri net models.

PNs have several advantages over FSMs. First, PNs have a higher language com-
plexity than FSM, since Petri net languages are a proper superset of regular lan-
guages. Second, the states of a PN are represented by the possible markings and
not by the places: thus they give a compact description, i.e., the structure of the net
may be maintained small in size even if the number of the markings grows1. Third,
PNs can be used in modular synthesis, i.e., the net can be considered as composed

Alessandro Giua
Department of Electrical and Electronic Engineering, University of Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy
e-mail: giua@diee.unica.it

1 However, we should point out that many analysis techniques for Petri nets are based on the
construction of the reachability graph, that suffers from the same state explosion problem
typical of automata. To take advantage of the compact PN representation, other analysis
techniques (e.g. structural) should be used.

C. Seatzu et al. (Eds.): Control of Discrete-Event Systems, LNCIS 433, pp. 235–255.
springerlink.com c© Springer-Verlag London 2013
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of interrelated subnets, in the same way as a complex system can be regarded as
composed of interacting subsystems.

Although PNs have a greater modeling power than FSMs, computability theory
shows that the increase of modeling power often leads to an increase in the compu-
tation required to solve problems. This is why a section of this paper focuses on the
decidability properties of Petri nets by studying the corresponding languages: note
that some of these results are original and will be presented with formal proofs. It
will be shown that Petri nets represent a good tradeoff between modeling power and
analysis capabilities

The chapter is structured as follows. In Section 1 Petri net generators and lan-
guages are defined. In Section 2 the concurrent composition operator on languages
is defined and extended to an operator on generators. In Section 3 it is shown how
the classical monolithic supervisory design can be carried out using Petri net mod-
els. Finally, in Section 4 some issues arising from the use of unbounded PNs in
supervisory control are discussed.

12.2 Petri Nets and Formal Languages

This section provides a short but self-standing introduction to Petri net languages.
PN languages represent an interesting topic within the broader domain of formal
language theory but there are few books devoted to this topic and the relevant mate-
rial is scattered in several journal publications. In this section and in the following
we focus on the definition of Petri net generators and operators that will later be
used to solve a supervisory control problem.

12.2.1 Petri Net Generators

Definition 12.1. A labeled Petri net system (or Petri net generator) [7, 12] is a
quadruple G = (N, �,mmm0,F) where:

• N = (P,T,PPPrrreee,PPPooosssttt) is a Petri net structure with |P|= m and |T |= n;
• � : T → E∪{λ} is a labeling function that assigns to each transition a label from

the alphabet of events E or assigns the empty word2 λ as a label;
• mmm0 ∈N

n is an initial marking;
• F ⊂ N

n is a finite set of final markings.

Three different types of labeling functions are usually considered.

• Free labeling: all transitions are labeled distinctly and none is labeled λ , i.e.,
(∀t, t ′ ∈ T ) [t 
= t ′ =⇒ �(t) 
= �(t ′)] and (∀t ∈ T ) [�(t) 
= λ ].

2 While in other parts of this book the empty string is denoted ε , in this section we have
chosen to use the symbol λ for consistency with the literature on PN languages.
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• λ -free labeling: no transition is labeled λ .
• Arbitrary labeling: no restriction is posed on �.

The labeling function may be extended to a function � : T ∗ → E∗ defining: �(λ ) = λ
and (∀t ∈ T,∀σ ∈ T ∗) �(σ t) = �(σ)�(t).

Example 12.1. Consider the nets in Fig. 12.1 where the label of each transition is
shown below the transition itself. Net (a) is a free-labeled generator on alphabet
E = {a,b}. Nets (b) and (c) are λ -free generators on alphabet E = {a}. Net (d) is
an arbitrary labeled generator on alphabet E = {a}. �

Fig. 12.1 PN generators of Example 12.1

Three languages are associated with a generator G depending on the different no-
tions of terminal strings.

• L-type or terminal language:3 the set of strings generated by firing sequences
that reach a final marking, i.e.,

LL(G) = {�(σ) | mmm0 [σ〉 mmm f ∈ F}.

• G-type or covering language or weak language: the set of strings generated by
firing sequences that reach a marking mmm covering a final marking, i.e.,

LG(G) = {�(σ) | mmm0 [σ〉 mmm≥ mmm f ∈ F}.

• P-type or prefix language:4 the set of strings generated by any firing sequence,
i.e.,

LP(G) = {�(σ) | mmm0 [σ〉 }.
3 This language is called marked behavior in the framework of Supervisory Control and is

denoted Lm(G).
4 This language is called closed behavior in the framework of Supervisory Control and is

denoted L(G).
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Example 12.2. Consider the free-labeled generator G in Fig. 12.2. The initial mark-
ing, also shown in the figure, is mmm0 = [1 0 0]T . Assume the set of final markings is
F = {[0 0 1]T}. The languages of this generator are:

LL(G) = {amcbm | m≥ 0};

LG(G) = {amcbn | m≥ n≥ 0};

LP(G) = {am | m≥ 0}∪{amcbn | m≥ n≥ 0}. �

Fig. 12.2 Free-labeled generator G of Example 12.2

12.2.2 Deterministic Generators

A deterministic PN generator [7] is such that the word of events generated from the
initial marking uniquely determines the marking reached.

Definition 12.2. A λ -free generator G is deterministic iff for all t, t ′ ∈ T , with t 
= t ′,
and for all mmm ∈ R(N,mmm0): mmm [t〉∧mmm [t ′〉=⇒ �(t) 
= �(t ′).

According to the previous definition, in a deterministic generator two transitions
sharing the same label may never be simultaneously enabled and no transition may
be labeled by the empty string. Note that a free-labeled generator is also determin-
istic. On the contrary, a λ -free (but not free labeled) generator may be deterministic
or not depending on its structure and also on its initial marking.

Example 12.3. Consider generators (b) and (c) in Fig. 12.1: they have the same net
structure and the same λ -free labeling, but different initial marking. The first one
is deterministic, because transitions t1 and t2, sharing label a can never be simul-
taneously enabled. On the contrary, the second one is not deterministic, because
reachable marking [1 1 0]T enables both transitions t1 and t2: as an example, the ob-
served word aa may be produced by two different sequences yielding two different
markings

⎡

⎣
2
0
0

⎤

⎦ [t1〉

⎡

⎣
1
1
0

⎤

⎦ [t1〉

⎡

⎣
0
2
0

⎤

⎦ or

⎡

⎣
2
0
0

⎤

⎦ [t1〉

⎡

⎣
1
1
0

⎤

⎦ [t2〉

⎡

⎣
1
0
1

⎤

⎦ .

�
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The previous definition of determinism was introduced in [18] and used in [7, 12].
It may be possible to extend it as follows.

Definition 12.3. A λ -free generator G is deterministic iff for all t, t ′ ∈ T , with t 
= t ′,
and for all mmm ∈ R(N,mmm0): mmm [t〉∧mmm [t ′〉 =⇒ [�(t) 
= �(t ′)]∨ [PPPooosssttt[·, t]−PPPrrreee[·, t] =
PPPooosssttt[·, t ′]−PPPrrreee[·, t ′]].

With this extended definition, we accept as deterministic a generator in which two
transitions with the same label may be simultaneously enabled at a marking mmm,
provided that the two markings reached from mmm by firing t and t ′ are the same. Note
that with this extended definition, while the word of events generated from the initial
marking uniquely determines the marking reached it does not necessarily uniquely
determine the sequences that have fired.

12.2.3 Classes of Petri Net Languages

The classes of Petri net languages are denoted as follows:

• L f (resp. G f , P f ) denotes the class of terminal (resp. covering, prefix) lan-
guages generated by free-labeled PN generators.

• Ld (resp. Gd , Pd) denotes the class of terminal (resp. covering, prefix) languages
generated by deterministic PN generators.

• L (resp. G , P) denotes the class of terminal (resp. covering, prefix) languages
generated by λ -free PN generators.

• L λ (resp. G λ , Dλ , Pλ ) denotes the class of terminal (resp. covering, prefix)
languages generated by arbitrary labeled PN generators.

Table 12.1 shows the relationship among these classes. Here A→ B represents a
strict set inclusion A � B.

Table 12.1 Known relations among classes of Petri net languages. An arc→ represents the
set inclusion

L f → Ld → L → L λ

↑ ↑
G f → Gd → G → G λ

↑ ↑ ↑ ↑
P f → Pd → P → Pλ

While a formal proof of all these relations can be found in [1], we point out that
the relations on each line — that compare the same type of languages of nets with
different labeling — are rather intuitive. Additionally, one readily understands that
any P-type language of a generator G may also be obtained as a G-type language
defining as a set of final markings F = {0}.



240 A. Giua

Parigot and Peltz [10] have defined PN languages as regular languages with the
additional capability of determining if a string of parenthesis is well formed.

If we consider the class L of PN languages, it is possible to prove [12] that L is a
strict superset of regular languages and a strict subset of context-sensitive languages.
Furthermore, L and the class of context-free languages are not comparable. An
example of a language in L that is not context-free is: L = {ambmcm | m ≥ 0}. An
example of a language that is context-free but is not in L is: L = {wwR | w ∈ E∗}5

if |E|> 1.
All these results are summarized in Fig. 12.3. Note that the class Ld , although

contained in L , occupies the same position as L in the hierarchy shown in the
figure.

Fig. 12.3 Relations among the class L and other classes of formal languages

In the framework of Supervisory Control, we will assume that the generators
considered are deterministic. In particular, class Ld (or possibly Gd for unbounded
nets) will be used to describe marked languages, while class Pd will be used to
describe closed languages. There are several reasons for this choice.

• Systems of interest in supervisory control theory are deterministic.
• Although each class of deterministic languages defined here is strictly included

in the corresponding class of λ -free languages, it is appropriate to restrict our
analysis to deterministic generators. In fact, several properties of interest are de-
cidable for deterministic nets while they are not for λ -free nets [1, 11, 18].

• In [1] it was shown that the classes Gd and Ld are incomparable, and furthermore
Gd ∩Ld = R, where R is the class of regular languages. Hence taking also into
account the G-type language (in addition to the L-type language) one extends the
class of control problems that can be modeled by deterministic unbounded PNs.

5 The string wR is the reversal of string w.
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12.2.4 Other Classes of Petri Net Languages

Gaubert and Giua [1] have explored the use of infinite sets of final markings in the
definition of the marked behavior of a net. With each more or less classical subclass
of subsets of Nm — finite, ideal (or upper), semi-cylindrical, star-free, recognizable,
rational (or semilinear) subsets — it is possible to associate the class of Petri net
languages whose set of accepting states belongs to the class.

When comparing the related Petri net languages, it was shown that for arbitrary
or λ -free PN generators, the above hierarchy collapses: one does not increase the
generality by considering semilinear accepting sets instead of the usual finite ones.
However, for free-labeled and deterministic PN generators, it is shown that one gets
new distinct subclasses of Petri net languages, for which several decidability prob-
lems become solvable.

12.3 Concurrent Composition and System Structure

In this section we recall the definition of the concurrent composition operator on
languages and introduce the corresponding operator on nets.

Definition 12.4 (Concurrent composition of languages). Given two languages
L1 ⊆ E∗1 and L2 ⊆ E∗2 , their concurrent composition is the language L on alpha-
bet E = E1∪E2 defined as follows:

L = L1 ‖ L2 = { w ∈ E∗ | w ↑E1∈ L1, w ↑E2∈ L2 }

where w ↑Ei denotes the projection of word w on alphabet Ei, for i = 1,2.

We now consider the counterpart of this language operator on a net structure.

Definition 12.5 (Concurrent composition of PN generators)
Let G1 = (N1, �1,mmm0,1,F1) and G2 = (N2, �2,mmm0,2,F2) be two PN generators.
Their concurrent composition, denoted also G = G1 ‖ G2, is the generator G =
(N, �,mmm0,F) that generates LL(G) = LL(G1) ‖ LL(G2) and LP(G) = LP(G1) ‖
LP(G2).

The structure of G may be determined with the following procedure.

Algorithm 12.4. Let Pi, Ti and Ei (i = 1,2) be the place set, transition set, and the
alphabet of Gi.

• The place set P of N is the union of the place sets of N1 and N2, i.e., P = P1∪P2.
• The transition set T of N and the corresponding labels are computed as follows:

– For each transition t ∈ T1∪T2 labeled λ , a transition with the same input and
output bag of t and labeled λ belongs to T .
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– For each transition t ∈ T1 ∪T2 labeled e ∈ (E1 \E2)∪ (E2 \E1), a transition
with the same input and output bag of t and labeled e belongs to T .

– Consider a symbol e ∈ E1 ∩E2 and assume it labels m1 transitions Te,1 ⊆ T1

and m2 transitions Te,2 ⊆ T2. Then m1×m2 transitions labeled e belong to
T . The input (output) bag of each of these transitions is the sum of the input
(output) bags of one transition in Te,1 and of one transition in Te,2.

• mmm0 = [mmmT
0,1 mmmT

0,2]
T .

• F is the cartesian product of F1 and F2, i.e., F = {[mmmT
1 mmmT

2 ]
T |mmm1 ∈ F1,mmm2 ∈ F2}.

The composition of more than two generators can be computed by repeated appli-
cation of the procedure. Note that while the set of places grows linearly with the
number of composed systems, the set of transitions and of final markings may grow
faster.

Example 12.5. Let G1 = (N1, �1,mmm0,1,F1) and G2 = (N2, �2,mmm0,2,F2) be the two
generators shown in Fig. 12.4. Here F1 = {[1 0]T} and F2 = {[1 0]T , [0 1]T}. Their
concurrent composition G = G1 ‖G2 is also shown in Fig. 12.4. The initial marking
of G is mmm0=[1 0 1 0]T and its set of final markings is F={[1 0 1 0]T , [1 0 0 1]T}. �

Fig. 12.4 Two generators G1, G2 and their concurrent composition G of Example 12.5

12.4 Supervisory Design Using Petri Nets

In this section we discuss how Petri net models may be used to design supervisors
for language specifications within the framework of Supervisory Control. The de-
sign of a supervisor in the framework of automata was presented in Chapter 3 and
we assume the reader is already familiar with this material.
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12.4.1 Plant, Specification and Supervisor

Here we comment on some of the assumptions that are peculiar to the PN setting.

• The plant is described by a deterministic PN generator G on alphabet E . Its
closed language is L(G) = LP(G) while its marked6 language is Lm(G) = LL(G).
We assume such a generator is nonblocking, i.e., LL(G) = LP(G).

The transition set of G is partitioned as follows: T = Tc∪Tuc, where Tc are the
controllable transitions that can be disabled by a control agent, while Tuc are the
uncontrollable transitions. Note that this allows a generalization of the automata
settings where the notion of controllability and uncontrollability is associated to
the events. In fact, it is possible that two transitions, say t ′ and t ′′, have the same
event label �(t ′) = �(t ′′) = e∈ E but one of them is controllable while the other is
not. In the rest of the chapter, however, we will not consider this case and assume
that the event alphabet may be partitioned as E = Ec∪Euc where

Ec =
⋃

t∈Tc

�(t), Euc =
⋃

t∈Tuc

�(t) and Ec∩Euc = /0.

It is also common to consider plants composed by m PN generators G1, . . . ,Gm

working concurrently. The alphabets of these generators are E1, . . . ,Em. The
overall plant is a PN generator G = G1 ‖ · · · ‖ Gm on alphabet E = E1∪·· ·∪Em.

• The specification is a language K ⊂ Ê∗, where Ê ⊂ E is a subset of the plant
alphabet. Such a specification defines a set of legal words on E given by {w ∈
E∗ | w ↑Ê∈ prefix(K)}.
The specification K is represented by a deterministic nonblocking PN generator
H on alphabet Ê whose marked language is Lm(H) = LL(H) = K. As for the
plant, other choices for the marked language are possible.

• The supervisor7 is described by a nonblocking PN generator S on alphabet E .
It runs in parallel with the plant, i.e., each time the plant generates an event e
a transition with the same label is executed on the supervisor. The control law
computed by S when its marking is mmm is given by g(mmm) = Euc∪{e ∈ Ec | (∃t ∈
Tc)mmm[t〉, �(t) = e}.

12.4.2 Monolithic Supervisor Design

The monolithic supervisory design requires three steps. In the first step, a coarse
structure for a supervisor is synthesized by means of concurrent composition of
the plant and specification. In the second step, the structure is analyzed to check

6 While in the case of bounded nets the L-type language can describe any marked language,
in the case of unbounded generators other choices for the marked language are possible
considering the G-type language of the generator or even any other type of terminal lan-
guages as mentioned in § 12.2.4. This will be discussed in Section 12.5.

7 See also Definition 3.9 in Chapter 3.9.
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if properties of interest (namely, the absence of uncontrollable and blocking states)
hold. In the third step, if the properties do not hold, this structure is trimmed to avoid
reaching undesirable states.

Algorithm 12.6. (Monolithic supervisory design). We are given a plant G and a
specification H.

1. Construct by concurrent composition the generator J = G ‖H.
2. Determine if the generator J satisfies the following properties:

• nonblockingness, i.e., it does not contain blocking markings from which a final
marking cannot be reached;

• controllability, i.e., it does not contain uncontrollable markings such that
when G and H run in parallel an uncontrollable event is enabled in G but
is not enabled in H.

If J satisfies both properties, then both H and J are suitable supervisors.
3. If J contains blocking or uncontrollable markings, we have to trim it to obtain a

nonblocking and controllable generator S. The generator S obtained through this
procedure is at the same time a suitable maximally permissive supervisor and the
corresponding closed-loop system.

In the previous algorithm, the generator J constructed in step 1 represents the largest
behavior of the plant that satisfies all the constraints imposed by the specifications.
More precisely, its closed language

L(J) = {w ∈ E | w ∈ L(G),w ↑Ê∈ L(H)}

represents the behavior of the plant restricted to the set of legal words, while its
marked behavior

Lm(J) = {w ∈ E | w ∈ Lm(G),w ↑Ê∈ Lm(H)}

represents the marked behavior of the plant restricted to the set of legal words
marked by the specification.

In step 2 we have used informally the term ”blocking marking” and ”uncontrol-
lable marking”. We will formally define these notions in the following.

We first define some useful notation. The structure of the generators is J =
(N, �,mmm0,F), G = (N1, �1,mmm0,1,F1), and H = (N2, �2,mmm0,2,F2), where N = (P,T,
PPPrrreee,PPPooosssttt) and Ni = (Pi,Ti,PPPrrreeei,PPPooosssttti), (i = 1,2). We define the projection of a
marking mmm of N on net Ni, (i = 1,2), denoted mmm ↑i, is the vector obtained from mmm by
removing all the components associated to places not present in Ni.

We first present the notion of a blocking marking.

Definition 12.6. A marking mmm ∈ R(N,mmm0) of generator J is a blocking marking if
no final marking may be reached from it, i.e., R(N,mmm)∩F = /0. The generator J is
nonblocking if no blocking marking is reachable.

We now present the notion of an uncontrollable marking.
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Definition 12.7. Let Tu ⊆ T be the set of uncontrollable transitions of J. A marking
mmm∈ R(N,mmm0) of generator J is uncontrollable if there exists an uncontrollable tran-
sition t ∈ Tu that is enabled by mmm ↑1 in G but that is not enabled by mmm ↑2 in H. The
generator J is controllable if no uncontrollable marking is reachable.

Determining if a generator J is nonblocking and controllable is always possible, as
we will show in the next section. We also point out that for bounded nets this test
can be done by construction of the reachability graph8 as in the following example
of supervisory design.

Example 12.7. Consider the generators G1 and G2, and the specification H in
Fig. 12.5 (left). Note that all nets are free-labeled, hence we have an isomorphism
between the set of transitions T and the set of events E: in the following each tran-
sitions will be denoted by the corresponding event.

Fig. 12.5 Left: Systems G1,G2 and specification H for the control problem of Example 12.7.
Right: System J = G1 ‖ G2 ‖ H

G1 describes a conveyor that brings in a manufacturing cell a raw part (event a)
that is eventually picked-up by a robot (event b) so that a new part can enter. G2

describes a machine that is loaded with a raw part (event c) and, depending on the
operation it performs, may produce parts of type A or type B (events d or e) before
returning to the idle state. The set of final states of both generators consists of the
initial marking shown in the figure.

The specification we consider, represented by the generator H, describes a cyclic
operation process where a robot picks-up a raw part from the conveyor, loads it on

8 As we have already pointed out, the construction of the reachability graph suffers from the
state explosion problem. An open area for future research is the use of more efficient anal-
ysis techniques (e.g., structural) to check nonblockingness and controllability for language
specification.
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the machine and after recognizing that a part of type A has been produced repeats
the process. The set of final states consists of the initial marking shown in the figure.

The overall process is G = G1 ‖ G2 and the generator J = G ‖ H, is shown in
Fig. 12.5 (right). Its set of final states consists of the initial marking shown in the
figure.

Assume now that the controllable transition/event set is Ec = {a,c,d,e} and the
uncontrollable transition/event set is Eu = {b}.

It is immediate to show that generator J is blocking and uncontrollable. To show
this we have constructed the reachability graph of J in Fig. 12.6. The two markings
shown in thick boxes are blocking because from them it is impossible to reach the
initial marking (that is also the unique final marking). The three markings shaded in
gray are uncontrollable: in fact, in all these markings m[p2] = 1, i.e., uncontrollable
transition b is enabled in the plant G, while m[p5] = 0, i.e., b is not enabled in H. �

Fig. 12.6 Left: Reachability graph of generator J of Example 12.7. Right: the structure of the
trim generator S of Example 12.8

12.4.3 Trimming

Once the coarse structure of a candidate supervisor is constructed by means of con-
current composition, we need to trim it to obtain a nonblocking and controllable
generator.

The next example shows the problems involved in the trimming of a net.

Example 12.8. Let us consider the generator J constructed in Example 12.7.
Refining the PN to avoid reaching the undesirable markings shown in Fig. 12.6

is complex. First, we could certainly remove the transition labeled by e since its
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firing always leads to an undesirable state and it is controllable. After removal of
this transition, the transition labeled by a will be enabled by the following reachable
markings: mmm′ = [1 0 1 0 1 0 0]T ,mmm′′ = [1 0 1 0 0 1 0]T ,mmm′′′ = [1 0 0 1 0 0 1]T . We
want to block the transition labeled a when the markings mmm′′ and mmm′′′ are reached.
Since

m′[p5] = 1 > m′′[p5] = m′′′[p5] = 0,

we can add an arc from p5 to a and from a to p5 as in Fig. 12.6. �

The following algorithm can be given for the trimming of a net.

Algorithm 12.9. Let t be a transition to be controlled, i.e., a transition leading from
an admissible marking to an undesirable marking. Let e be its label.

1. Determine the set of admissible reachable markings that enable t, and partition
this set into the disjoint subsets Ma (the markings from which t should be al-
lowed to fire), and Mna (the markings from which t should not be allowed to fire,
to avoid reaching an undesirable marking). If Ma = /0 remove t and stop, else
continue.

2. Determine a construct in the form:

U (mmm) = [(m[p1
1]≥ n1

1)∧ . . .∧ (m[p1
k1]≥ n1

k1)]∨
. . .
∨[(m[pl

1]≥ nl
1)∧ . . .∧ (m[pl

kl ]≥ nl
kl)],

such that U (mmm) = TRUE if mmm ∈Ma, and U (mmm) = FALSE if mmm ∈Mna.
3. Replace transition t with l transitions t1, . . . , tl labeled a. The input (output) arcs

of transition t j, j = 1, . . . , l, will be those of transition t plus n j
i arcs inputting

from (outputting to) place p j
i , i = 1, . . . ,k j.

It is clear that following this construction there is an enabled transition labeled e
for any marking in Ma, while none of these transitions are enabled by a marking in
Mna. We also note that in general several constructs of this form may be determined.
The one which requires the minimal number of transitions, i.e., the one with the
smallest l, is preferable.

The following theorem gives a sufficient condition for the applicability of the
algorithm.

Theorem 12.1. The construct of Algorithm 12.9 can always be determined if the net
is bounded.

Proof. For sake of brevity, we prove this result for the more restricted class of
conservative nets. One should keep in mind, however, that given a bounded non
conservative net, one can make the net conservative adding dummy sink places that
do not modify its behavior.

A net is conservative if there exists an integer vector Y > 0 such that for any
two markings mmm and mmm′ reachable from the initial marking Y T mmm = Y T mmm′. Hence
if mmm 
= mmm′ there exists a place p such that m[p] > m′[p]. Also the set of reachable
markings is finite.



248 A. Giua

On a conservative net, consider mmmi ∈Ma, mmm j ∈Mna. We have that Ma and Mna

are finite sets and also there exists a place pi j such that mi[pi j] = ni j > m j[pi j].
Hence

U (mmm) =
∨

i∈Ma

[
∧

j∈Mna

(m[pi j]≥ ni j)

]

is a construct for Algorithm 12.9. �

Unfortunately, the construct may contain up to |Ma| OR clauses, i.e., up to |Ma|
transitions may be substituted for a single transition to control. Note, however, that
it is often possible to determine a simpler construct as in Example 12.8, where the
construct for the transition labeled a was U (mmm) = [m[p5]≥ 1].

12.5 Supervisory Control of Unbounded PN Generators

As we have seen in the previous section, the monolithic supervisory design pre-
sented in Algorithm 12.6 can always be applied when the plant G and the specifica-
tion H are bounded PN generators. Here we consider the case of general, possibly
unbounded, generators.

In step 1 of the monolithic supervisory design algorithm the unboundedness of
the G or H does not require any special consideration, since the procedure to con-
struct the concurrent composition J = G ‖ H is purely structural in the PN setting.
Thus we need to focus on the last two steps, and discuss how it is possible to check
if an unbounded generator G is nonblocking and controllable, and eventually how it
can be trimmed.

We have previously remarked that in the case of bounded nets the L-type lan-
guage can describe any marked language. In the case of unbounded generators other
choices for the marked language are possible considering the G-type language of the
generator or even any other type of terminal language mentioned in § 12.2.4.

In the rest of this section we will only consider two types of marked languages
for a PN generator G.

• L-type language, i.e., Lm(G) = LL(G). This implies that the set of marked mark-
ings reached by words in Lm(G) is F = F , i.e., it coincides with the finite set of
final markings associated to the generator.

• G-type marked language, i.e., Lm(G) = LG(G). This implies that the set of
marked markings reached by words in Lm(G) is

F =
⋃

mmmf∈F

{mmm ∈ N
m | mmm≥mmm f },

i.e., it is the infinite covering set of F .
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12.5.1 Checking Nonblockingness

We will show in this subsection that checking a generator for nonblockingness is
always possible.

Let us first recall the notion of home space.

Definition 12.8. A marking mmm ∈ N
m of a Petri net is a home-marking if it is reach-

able from all reachable markings.
A set of markings M ⊆ N

m of a Petri net is a home space if for all reachable
marking mmm a marking in M is reachable from mmm.

The following result is due to Johnen and Frutos Escrig.

Proposition 12.1. [8] The property of being a home space for finite unions of linear
sets9 having the same periods is decidable.

We can finally state the following original result.

Theorem 12.2. Given a generator J constructed as in step 1 of Algorithm 12.6 it
is decidable if it is nonblocking when its marked language is the L-type or G-type
language.
Proof. Let F be the set of marked markings of the generator. According to Defini-
tion 12.6 generator J is nonblocking iff from every reachable markings mmm a marked
marking in F is reachable. Thus checking for nonblockingness is equivalent to
checking if the set of marked markings F is a home space.

When the marked language is the L-type language, F = F and we observe that
each marking mmm f can be considered as a linear set with base mmm f and empty set of
generators.

When the marked language is the G-type language,

F =
⋃

mmm f∈F

{mmm ∈ N
m | mmm≥ mmm f }= {mmmf +

m

∑
i=1

kieeei | ki ∈ N}

where vectors eeei are the canonical basis vectors, i.e., eeei ∈ {0,1}n, with ei[i] = 1 and
ei[ j] = 0 if i 
= j.

In both cases F is the finite unions of linear sets having the same periods, hence
checking if it is a home space is decidable by Proposition 12.1. �

12.5.2 Checking Controllability

We will show in this subsection that checking a generator for controllability is al-
ways possible. The material presented in this subsection is original and proofs of all
results will be given.

9 We say that E ⊆ N
m is a linear set if there exists some vvv ∈ N

m and a finite set
{vvv1, · · · ,vvvn} ⊆ N

m such that E = {vvv′ ∈ N
m |vvv′ = vvv+∑n

i=1 kivvvi with ki ∈ N}. The vector
vvv is called the base of E , and vvv1, · · · ,vvvn are called its periods.
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We first present some intermediate result.

Lemma 12.1. Let 〈N,mmm0〉 be a marked net with N = (P,T,PPPrrreee,PPPooosssttt) and |P|= m.
Given a marking m̄mm ∈ N

m and a place p̄ ∈ P, we define the set

S (m̄mm, p̄) = {mmm ∈ N
m | m[p̄] = m̄[p̄], (∀p ∈ P\ { p̄}) m[p]≥ m̄[p]}

of those markings that are equal to m̄mm in component p̄ and greater than or equal to
m̄mm in all other components.

Checking if a marking in this set is reachable in 〈N,mmm0〉 is decidable.

Proof. To prove this result, we reduce the problem of determining if a marking in
S (m̄mm, p̄) is reachable to the standard marking reachability problem (see Chapter 10)
of a modified net.

Consider in fact net N′ = (P′,T ′,PPPrrreee′,PPPooosssttt ′) obtained from N as follows. P′ =
P∪ {ps, p f }; T ′ = T ∪ {t f } ∪ {tp | ∀p ∈ P \ { p̄}}. For p ∈ P and t ∈ T it holds
PPPrrreee′[p, t] = PPPrrreee[p, t] and PPPooosssttt ′[p, t] = PPPooosssttt[p, t], while the arcs incident on the
newly added places and transitions are described in the following. Place ps is self-
looped with all transitions in T , i.e., PPPrrreee′[ps, t] = PPPooosssttt ′[ps, t] = 1 for all t ∈ T . Place
p f is self-looped with all new transitions tp, for all p ∈ P\{ p̄}. Transition t f has an
input arc from place ps and an output arc to place p f ; furthermore it has m̄[p] input
arcs from any place p ∈ P \ { p̄}. Finally, for all p ∈ P \ { p̄} transition tp is a sink
transition with a single input arc from place p.

We associate to N′ an initial marking mmm′0 defined as follows: for all p∈P, m′0[p] =
m0[p], while m′0[ps] = 1 and m′0[p f ] = 0. Such a construction is shown in Fig. 12.7
where the original net N with set of places P = { p̄, p′, . . . , p′′} and set of transitions
T = {t1, ldots, tn} is shown in a dashed box. Arcs with starting and ending arrows
represent self-loops.

We claim that a marking in the set S (m̄mm, p̄) is reachable in the original net if and
only if marking mmm′f is reachable in 〈N′,mmm′0〉, where m′f [p̄] = m̄[p̄], m′f [p f ] = 1 and
m′f [p̄] = 0 for p ∈ P′ \ { p̄, p f }.

This can be proved by the following reasoning. The evolution of net N′ before
the firing of t f mimics that of N. Transition t f may only fire from a marking greater
than or equal to m̄mm in all components but eventually p̄. After the firing of t f , the
transitions of the original net are blocked (ps is empty) and only the sink transitions
tp, for all p ∈ P \ { p̄}, may fire thus emptying the corresponding places. The only
place whose markings cannot change after the firing of t f is p̄. �

Theorem 12.3. Given a generator J = G ‖ H constructed as in step 1 of Algo-
rithm 12.6 it is decidable if it is controllable.

Proof. We will show that the set of uncontrollable markings to be checked can be
written as the finite union of sets of the form S (m̄mm, p̄).

Given an uncontrollable transition t ∈ Tuc let PG(t) (resp., PH(t)) be the set of in-
put places of t that belong to generator G (resp., H). Consider now a place p∈ PH(t)
and an integer k ∈ {0,1, . . . ,Pre[p, t]− 1} and define the following marking mmmt,p,k

such that mt,p,k[p] = k, mt,p,k[p′] =Pre[p′, t] if p′ ∈PG(t), else mt,p,k[p′] = 0. Clearly,
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Fig. 12.7 Construction of Lemma 12.1

such a marking is uncontrollable because the places in G contain enough tokens to
enable uncontrollable transition t while place p in H does not contain enough tokens
to enable it. All other markings in S (mmmt,p,k, p) are equally uncontrollable.

Thus the overall set of uncontrollable markings to be checked can be written as
the finite union

⋃

t∈Tuc

⋃

p∈PH(t)

⋃

k∈{0,1,...,Pre[p,t]−1}
S (mmmt,p,k, p)

and by Lemma 12.1 checking if an uncontrollable marking is reachable is
decidable. �

12.5.3 Trimming a Blocking Generator

The problem of trimming a blocking net is the following: given a deterministic
PN generator G with languages Lm(G) and L(G) ⊃ Lm(G) one wants to modify
the structure of the net to obtain a new DES G′ such that Lm(G′) = Lm(G) and
L(G′) = Lm(G′) = Lm(G).

On a simple model such as a state machine this may be done, trivially, by re-
moving all states that are reachable but not coreachable (i.e., no final state may be
reached from them) and all their input and output edges.

On Petri net models the trimming may be more complex. If the Petri net is
bounded, it was shown in the previous section how the trimming may be done with-
out major changes of the net structure, in the sense that one has to add new arcs and
eventually duplicate transitions without introducing new places. Here we discuss the
general case of possibly unbounded nets.

When the marked language of a net is its L-type Petri net language, the trim-
ming of the net is not always possible as will be shown by means of the following
example.
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Example 12.10. Let G be the deterministic PN generator in Fig. 12.8 (left), with
mmm0 = [1 0 0 0]T and set of final markings F = {[0 0 0 1]T}. The marked (L-type) and
closed behaviors of this net are: Lm(G) = {ambamb | m≥ 0} and L(G) = {ambanb |
m≥ n≥ 0}. The infinite reachability graph of this net is partially shown in Fig. 12.8
(right): here the unique final marking is shown in a box.

One sees that all markings of the form [0 k 0 1]T with k ≥ 1 are blocking. To
avoid reaching a blocking marking one requires that p2 be empty before firing the
transition inputting into p4. However, since p2 is unbounded this cannot be done
with a simple place/transition structure. �

Fig. 12.8 Left: Blocking net of Example 12.10: Right: Its labeled reachability graph

It is possible to prove formally that the prefix closure of the marked language of
the net discussed in Example 12.10 is not a P-type Petri net language. The proof is
based on the pumping lemma for P-type PN languages, given in [7].

Lemma 12.2. (Pumping lemma). Consider a PN language L ∈P . Then there exist
numbers k, l such that any word w ∈ L, with | w |≥ k, has a decomposition w = xyz
with 1≤| y |≤ l such that xyiz ∈ L,∀i ≥ 1.

Proposition 12.2. Consider the L-type PN language L′ = {ambamb | m ≥ 0}. Its
prefix closure L = L′ is not a P-type Petri net language.

Proof. Given k according to the pumping lemma, consider the word w= akbakb∈ L.
Obviously, there is no decomposition of this word that can satisfy the pumping
lemma. �

When the marked language of a net is its G-type Petri net language, the trimming
of the net is always possible because the prefix closure of such a language is a
deterministic P-type Petri net language. This follows from the next theorem, that
provides an even stronger result.

Theorem 12.4. [4] Given a deterministic PN generator G = (N, �,mmm0,F) with
LG(G) � LP(G), there exists a finite procedure to construct a new deterministic
PN generator G′ such that LG(G′) = LG(G) and LP(G′) = LG(G′).
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12.5.4 Trimming an Uncontrollable Generator

In this section we show by means of an example that given a PN generator J =G ‖H
obtained by concurrent composition of a plant and of a specification, it is not always
possible to trim it removing the uncontrollable markings.

Example 12.11. Consider a plant G described by the PN generator on the left of
Fig. 12.11 (including the dashed transition and arcs). We are interested in the closed
language of the net, so we will not specify a set of final markings F : all reachable
markings are also final. We assume Tuc = {t1, t3, t5}, i.e., Euc = {a}.

Consider a specification H described by the PN generator on the left of Fig. 12.9
(excluding the dashed transition and arcs).

On the right of Fig. 12.9 we have represented the labeled reachability graph of
G (including the dashed arcs labeled a on the bottom of the graph) and the labeled
reachability graph of H (excluding the dashed arcs labeled a on the bottom of the
graph). Now if we consider the concurrent composition J = G ‖ H and construct
its labeled reachability graph, we obtain a graph isomorphic to the labeled graph of
generator H (only the labeling of the nodes changes).

All markings of the form [0 k 0 1]T with k ≥ 1 are uncontrollable: in fact, when
the plant is in such a marking the uncontrollable transition t5 labeled a is enabled,
while no event labeled a is enabled on J. If we remove all uncontrollable markings,
we have a generator whose closed language is L = {ambamb |m≥ 0} that, however,
as shown in Proposition 12.2, is not a P-type language. �

Based on these results in [3] the following result was proven.

Theorem 12.5. The classes Pd , Gd , and Ld of PN languages are not closed under
the supremal controllable sublanguage operator10.

Fig. 12.9 Left: Generators of Example 12.11. Right: Their labeled reachability graphs

10 See Chapter 3 for a formal definition of this operator.
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12.5.5 Final Remarks

The results we have presented in this section showed that in the case of unbounded
PN generators a supervisor may not always be represented as a PN. In fact, while it
is always possible to check a given specification for nonblockingness and control-
lability — even in the case of generators with an infinite state space — when these
properties are not satisfied the trim behavior of the closed loop system may not be
represented as a net. A characterization of those supervisory control problems that
admit PN supervisors is an area still open to future research.

12.6 Further Reading

The book by Peterson [12] contains a good introduction to PN languages, while
other relevant results can be found in [1, 7, 10, 11, 16, 18].

Many issues related to PNs as discrete event models for supervisory control have
been discussed in the survey by Holloway et al. [5] and in the works of Giua and
DiCesare [3, 4]. The existence of supervisory control policies that enforce liveness
have been discussed by Sreenivas in [15, 17].

Finally, an interesting topic that has received much attention in recent years is the
supervisory control of PNs under a special class of state specifications called Gener-
alized Mutual Exclusion Constraints (GMECs) that can be enforced by controllers
called monitor places [2]. Several monitor-based techniques have been developed
for the control of Petri nets with uncontrollable and unobservable transitions and
good surveys can be found in [6, 9].
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