
Chapter 10
Introduction to Petri Nets

Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu

10.1 Introduction

Petri nets (PNs) are a discrete event system model first introduced in the early 1960s
by Carl Adam Petri in his Ph.D dissertation [14]. In this chapter we focus on the
most common class of PNs, called place/transition (or P/T) net. It is a purely logic
model that does not aim to represent the occurrence time of events, but only the
order in which events occur.

Petri nets have been specifically designed to model systems with interacting com-
ponents and as such are able to capture many characteristics of an event driven sys-
tem, namely concurrency, asynchronous operations, deadlocks, conflicts, etc. Fur-
thermore, the PN formalism may be used to describe several classes of logical mod-
els (e.g., P/T nets, Colored PNs, nets with inhibitor arcs), performance models (e.g.,
Timed PNs, Time PNs, Stochastic PNs), continuous and hybrid models (continuous
PNs, hybrid PNs). Some of these models are considered in this book: timed PNs are
studied in Chapters 16 and 17 while continuous PNs are the object of Chapters 18,
19 and 20.

The main features of PNs can be summarized in the following items.

• PNs are both a graphical and mathematical formalism. Being a graphical formal-
ism, they are easy to interpret and provide a useful visual tool both in the design
and analysis phase.

• They provide a compact representation of systems with a very large state space.
Indeed they do not require to explicitly represent all states of a dynamical system
but only an initial one: the rest of the state space can be determined from the rules
that govern the system evolution. Thus a finite structure may be used to describe
systems with an infinite number of states.
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• They permit a modular representation, i.e., if a system is composed by several
subsystems that interact among them, it is usually possible to represent each sub-
system with a simple subnet and then, through appropriate net operators, combine
the subnets to obtain a model of the whole system.

Several PN analysis techniques have been presented in the literature. In this chapter
we focus on analysis by enumeration that requires the construction of the reachabil-
ity graph of the net representing the set of reachable markings and transition firings.
If this set is not finite, a finite coverability graph may be constructed. Techniques
based on structural analysis, on the contrary, permit the analysis of several proper-
ties based on the net structure, e.g., focusing on the state equation of the net or on
the net graph; they are described in the next chapter.

The chapter is structured as follows. P/T nets and the rules that govern their
evolution are introduced in Section 10.2. In Section 10.3 elementary PN structures
are described and a physical modeling example is presented. In Section 10.4 the
reachability and coverability graphs are presented. Behavioral properties of interest
are also defined and characterized. Finally, Section 10.5 points out some further
interesting reading.

10.2 Petri Nets and Net Systems

We will first define the algebraic and graphical structure of P/T nets. Adding a mark-
ing to such a structure, a marked net (or net system), i.e., a discrete event system, is
obtained. The laws that govern its dynamical evolution are also studied.

10.2.1 Place/Transition Net Structure

A P/T net is a bipartite weighted directed graph. The two types of vertices are called
places (represented by circles) and transitions (represented by bars or rectangles).

Definition 10.1. A place/transition (or P/T) net is a structure N = (P,T,PPPrrreee,PPPooosssttt)
where:

• P = {p1, p2, · · · pm} is the set of m places.
• T = {t1, t2, · · · tn} is the set of n transitions.
• PPPrrreee : P×T −→N is the pre-incidence function that specifies the number of arcs

directed from places to transitions (called “pre” arcs) and is represented as m×n
matrix.

• PPPooosssttt : P× T −→ N is the post-incidence function that specifies the number of
arcs directed from transitions to places (called “post” arcs) and is represented
as m× n matrix.
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Example 10.1. In Fig. 10.1 it is represented the net N = (P,T,PPPrrreee,PPPooosssttt) with set
of places P = {p1, p2, p3, p4} and set of transitions T = {t1, t2, t3, t4, t5}. Here:

PPPrrreee =

⎡

⎢
⎢
⎢
⎣

1 1 0 0 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 1

⎤

⎥
⎥
⎥
⎦

p1

p2

p3

p4

t1 t2 t3 t4 t5

PPPooosssttt =

⎡

⎢
⎢
⎢
⎣

1 0 0 0 1

0 2 0 0 0

0 0 1 0 0

0 0 0 1 0

⎤

⎥
⎥
⎥
⎦

p1

p2

p3

p4

t1 t2 t3 t4 t5

2 

p1 p2 

p3 

p4 

t1 t2 

t3 

t4 

t5 

Fig. 10.1 A place/transition net

The element Post[p2, t2] = 2 denotes that there are two arcs from transition t2 to
place p2. This is represented in the figure by means of a single barred arc with
weight (or multiplicity) 2. �

We denote by PPPrrreee[·, t] the column of PPPrrreee relative to t, and by PPPrrreee[p, ·] the row of
PPPrrreee relative to p. The same notation is used for matrix PPPooosssttt.

The incidence matrix of a net defined as

CCC = PPPooosssttt−PPPrrreee, (10.1)

is represented by an m×n matrix of integers where a negative element is associated
with a “pre” arc (from place to transition), while a positive element is associated
with a “post” arc (from transition to place).

Note that the incidence matrix does not contain, in general, sufficient information
to reconstruct the net structure. As an example, in the net in Fig. 10.1 it holds:

CCC =

⎡

⎢
⎢
⎢
⎣

0 −1 0 0 1

0 2 −1 −1 0

0 0 1 0 −1

0 0 0 1 −1

⎤

⎥
⎥
⎥
⎦
.

In this net there exist both a “pre” and a “post” arc between place p1 and transition
t1; we say that p1 and t1 form a self-loop, i.e., a directed cycle in the graph of the
net only involving one place and one transition. In such a case, the algebraic sum
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of PPPrrreee and PPPooosssttt determines an element C[p1, t1] = 0, hiding the existence of arcs
between these two vertices. A net without self-loops is called pure.

Finally, given a transition t ∈ T we denote its set of input and output places as:

•t = {p ∈ P | Pre[p, t]> 0} and t• = {p ∈ P | Post[p, t]> 0},

while given a place p ∈ P we denote its set of input and output transitions as:

•p = {t ∈ T | Post[p, t]> 0} and p• = {t ∈ T | Pre[p, t]> 0}.

As an example, in the net in Fig. 10.1 it holds •t2 = {p1}, t•2 = {p2}, •p2 = {t2} and
p•2 = {t3, t4}.

10.2.2 Marking and Net System

The marking of a P/T net defines its state.

Definition 10.2. A marking is a function mmm : P→ N that assigns to each place a
nonnegative integer number of tokens.

As an example, in the net in Fig. 10.1, a possible marking mmm is m[p1] = 1,
m[p2] = m[p3] = m[p4] = 0. Other possible markings are: mmm′ with m′[p2] = 2,
m′[p1] = m′[p3] = m′[p4] = 0; mmm′′ with m′′[p2] = m′′[p4] = 1, m′′[p1] = m′′[p3] = 0;
etc. A marking is usually denoted as a column vector with as many entries as the
number m of places. Thus mmm = [1 0 0 0]T , mmm′ = [0 2 0 0]T , mmm′′ = [0 1 0 1]T .

Graphically, tokens are represented as black bullets inside places. See as an ex-
ample Fig. 10.4.

Definition 10.3. A net N with an initial marking mmm0 is called marked net or net
system, and is denoted 〈N,mmm0〉.

A marked net is a discrete event system with a dynamical behavior as discussed in
the following section.

10.2.3 Enabling and Firing

Definition 10.4. A transition t is enabled at a marking mmm if

mmm≥ PPPrrreee[·, t] (10.2)

i.e., if each place p ∈ P contains a number of tokens greater than or equal to
Pre[p, t]. To denote that t is enabled at mmm we write mmm[t〉. To denote that t ′ is not
enabled at mmm we write ¬mmm[t ′〉.
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In the net in Fig. 10.1 the set of enabled transitions at mmm = [1 0 0 0]T is {t1, t2};
the set of enabled transitions at mmm′ = [0 2 0 0]T is {t3, t4}; {t3, t4} is also the set of
transitions enabled at mmm′′ = [0 1 0 1]T since t5 is not enabled, even if p4 is marked,
because p3 is not marked.

A transition with no input arcs, such as t in Fig. 10.2, is called a source transition.
A source transition t is always enabled, since, being in such a case PPPrrreee[·, t] = 000, the
condition in equation (10.2) is satisfied for all markings mmm.

p t 

Fig. 10.2 A transition with no input arcs

Definition 10.5. A transition t enabled at a marking mmm can fire. The firing of t re-
moves Pre[p, t] tokens from each place p∈P and adds Post[p, t] tokens in each place
p ∈ P, yielding a new marking

mmm′ = mmm−PPPrrreee[·, t]+PPPooosssttt[·, t] = mmm+CCC[·, t]. (10.3)

To denote that the firing of t from mmm leads to mmm′ we write mmm[t〉mmm′.
Note that the firing of a transition is an atomic operation since the removal of tokens
from input places and their addition in output places occurs in an indivisible way.
Consider the net in Fig. 10.1 at marking mmm = [1 0 0 0]T . If t2 fires, mmm′ = [0 2 0 0]T

is reached. Note that at marking mmm = [1 0 0 0]T , t1 may also fire; the firing of such
a transition does not modify the marking being CCC[·, t1] = 000, thus it holds mmm[t1〉mmm. If
the marking of the net in Fig. 10.1 is equal to mmm′ = [0 2 0 0]T , t4 may fire leading to
mmm′′ = [0 1 0 1]T ; note that t3 is also enabled at mmm′ = [0 2 0 0]T and may fire instead
of t4.

Finally, in the marked net in Fig. 10.2 t is always enabled and can repeatedly fire,
leading the initial marking mmm0 = [0] to markings [1], [2] etc.

Definition 10.6. A firing sequence at marking mmm0 is a string of transitions σ =
t j1t j2 · · · t jr ∈ T ∗, where T ∗ denotes the Kleene closure of T , such that

mmm0[t j1〉mmm1[t j2〉mmm2 · · · [t jr〉mmmr,

i.e., for all k ∈ {1, . . . ,r} transition t jk is enabled at mmmk−1 and its firing leads to
mmmk = mmmk−1 +CCC[·, t jk ]. To denote that the sequence σ is enabled at mmm we write mmm[σ〉.
To denote that the firing of σ at mmm leads to the marking mmm′ we write mmm[σ〉mmm′.

The empty sequence ε (i.e., the sequence of zero length) is enabled at all mark-
ings mmm and is such that mmm[ε〉mmm.

In the net in Fig. 10.1 a possible sequence of transitions enabled at marking mmm =
[1 0 0 0]T is σ = t1t1t2t3, whose firing leads to mmm′′′ = [0 1 1 0]T .

Let us now introduce the notion of conflict.
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Definition 10.7. Two transitions t and t ′ are in structural conflict if •t ∩•t ′ 
= /0, i.e.,
if there exists a place p with a pre arc to both t and t ′.
Given a marking mmm, we say that transitions t and t ′ are in behavioral conflict (or
in conflict for short) if mmm≥ PPPrrreee[·, t] and mmm≥ PPPrrreee[·, t ′] but mmm 
≥ PPPrrreee[·, t]+PPPrrreee[·, t ′],
i.e., they are both enabled at mmm, but mmm does not contain enough tokens to allow the
firing of both transitions.

In the net in Fig. 10.1 transitions t3 and t4 are in structural conflict. Such conflict is
also behavioral at marking mmm′′ = [0 1 0 1]T since p2 ∈ •t3∩•t4 only contains one to-
ken that can be used for the firing of only one of the two transitions. On the contrary,
the conflict is not behavioral at marking mmm = [1 0 0 0]T since the two transitions are
not enabled. Analogously, the conflict is not behavioral at marking mmm′ = [0 2 0 0]T ,
since p2 contains enough tokens to allow the firing of both transitions.

To a marked net 〈N,mmm0〉 it is possible to associate a well precise dynamics, given
by the set of all sequences of transitions that can fire at the initial marking.

Definition 10.8. The language of a marked net 〈N,mmm0〉 is the set of firing sequences
enabled at the initial marking, i.e., the set

L(N,mmm0) = {σ ∈ T ∗ | mmm0[σ〉}.

Finally, it is also possible to define the state space of a marked net.

Definition 10.9. A marking mmm is reachable in 〈N,mmm0〉 if there exists a firing sequence
σ such that mmm0[σ〉mmm. The reachability set of a marked net 〈N,mmm0〉 is the set of
markings that can be reached from the initial marking, i.e., the set

R(N,mmm0) = {mmm ∈ N
m | ∃σ ∈ L(N,mmm0) : mmm0[σ〉mmm}.

Note that in the previous definition the empty sequence, that contains no transition,
is also considered. Indeed, since mmm0[ε〉mmm0, it holds mmm0 ∈ R(N,mmm0).

As an example, let us consider the marked net in Fig. 10.3(a), where the initial
marking assigns a number r of tokens to p1. The reachability set is R(N,mmm0) =
{[i j k]T ∈ N

3 | i+ j + k = r} and it is thus finite. On the contrary, the language
L(N,mmm0) of such a net system is infinite since sequences of arbitrary length can fire.

(a) (b) (c) 

t1 

t3 t2 

p1 

p3 

p2 

t2 p1 p2 t1 

t1 

p1 

t2 

p2 

p3 

r 

Fig. 10.3 Some examples of marked nets
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In the net in Fig. 10.3(b), the reachability set is R(N,mmm0) = N
2 and such a set is

infinite. A generic marking mmm with m[p1] = i and m[p2] = j can be reached from
mmm0 firing the sequence t1i+ j t2 j. Also the language is infinite. Finally, in the net in
Fig. 10.3(c), it is R(N,mmm0) = {[1 0 0]T , [0 1 0]T , [0 0 1]T} and L(N,mmm0) = {ε, t1, t2}.

Summarizing, a double meaning is associated with the marking of a net: on one
side the marking denotes the current state of the system; on the other side it specifies
which activities can be executed, i.e., which transitions can fire. The transition firing
determines the dynamical behavior of the marked net.

10.3 Modeling with Petri Nets

In this section we present some elementary P/T structures and the semantics associ-
ated with them.

In a discrete event system, the order in which events occur can be subject to
constraints of different nature. In a PN model this corresponds to impose some con-
straints on the order in which transitions fire. In the following we present four main
structures.

e1 e2 e3 

par 
begin 

e1 

e2 

e3 

e1 

e2 

e3 
par 
end 

(a) 

(b) (c) 

(d) 

e1 

e2 

e3 

Fig. 10.4 Elementary structures of PNs: (a) sequentiality; (b) parallelism; (c) synchroniza-
tion; (d) choice

Sequentiality. Events occur in a sequential order.
In Fig. 10.4(a) event e2 can only occur after the occurrence of e1; e3 can occur
only after the occurrence of e2.

Parallelism (or structural concurrency). Events may occur with no fixed order.
In Fig. 10.4(b), after the firing of transition par begin (parallel begin) events e1,
e2, and e3 are simultaneously enabled. Parallelism implies that the three events
are not in structural conflict and can occur in any order since the occurrence of
any event does not modify the enabling condition of the others. Transition par
begin creates a fork in the flow of events.

Synchronization. Several parallel events must have occurred before proceeding.



198 M.P. Cabasino, A. Giua, and C. Seatzu

In Fig. 10.4(c), events e1, e2 and e3 can occur in parallel but transition par end
(parallel end) cannot fire until all of them have occurred. Transition par end
creates a join in the flow of events.

Choice (or structural conflict). Only one event among many possible ones can
occur.
In Fig. 10.4(d), only one event among e1, e2 and e3 can occur, because the firing
of any transition disables the others. Note that the choice is characterized by two
or more transitions sharing an input place that determines a structural conflict.

To the above elementary structures it is often possible to associate a dual semantics,
that takes into account the variation of markings, rather than the order in which
transitions fire. In such a case, tokens represent available resources.

4

milk

flour 

butter bechamelcar 

body 

wheels 

(a) (b) 

load 
M1

load 
M2 

robot 

(c) 

t1 

t4 t2 

t3 

Fig. 10.5 Elementary structures of PNs: (a) disassembly; (b) assembly; (c) mutual exclusion

Disassembly. A composite element is separated into elementary parts.
In Fig. 10.5(a) the marked net represents the disassembly of a car, obtaining four
wheels and a body. The transition is similar to the transition par begin previously
introduced.

Assembly. Several parts are combined to produce a composite element.
In Fig. 10.5(b), the marked net describes the recipe to prepare bechamel sauce.
The transition is similar to par end introduced above.

Mutual exclusion. A resource (or a set of resources) can be employed in several
operations. However, while it has been acquired for a given operation, it is not
available for other operations until it is released.
In Fig. 10.5(c), a single robot is available to load parts in two machines. When
the place robot is marked the robot is available, while if either place load M1 or
load M2 is marked the robot is acquired for the corresponding operation. From
the situation in figure, if t1 fires, the loading of the first machine starts and place
robot gets empty: thus t3, whose firing corresponds to the reservation of the robot
for the loading of the second machine, is disabled until the firing of t2 that moves
the token again in place robot. Analogously, from the situation in figure the fir-
ing of t3 disables t1 until the firing of t4. The structure is similar to “choice” in
Fig. 10.4(d).

We conclude this section presenting an example taken from the manufacturing do-
main. Note that manufacturing is one of the application areas where PNs have been
more extensively used since the early 1990s [4, 6].
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disassembly assembly 
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machine 
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Pb 
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Pa 

processing 
Pb 

Pa 

processed 

Pb 
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t1 t2 

t3 

t5 

t4 

t6 t7 t8 

Fig. 10.6 Petri net model of a manufacturing cell

Figure 10.6 presents the Petri net model of a manufacturing cell where compos-
ite parts Pab are processed. The cell consists of a single machine. A composite part
is initially disassembled in two elementary parts Pa and Pb, that are, one at a time,
processed by the machine. Finally, the two processed parts are assembled again and
removed from the cell. The PN in Fig. 10.6 describes such a system. Places associ-
ated with resources are: Pab available, Pa available, Pa processed, Pb available, Pb

processed, machine. In figure, four tokens are initially assigned to place Pab avail-
able: this denotes the presence of four parts Pab that are available to be disassembled.
The firing of t1 represents the withdrawal of a part Pab to be disassembled. The dis-
assembly operation is modeled by transition t2. After such an operation one part
Pa and one part Pb are available to be processed. A single machine is available to
process parts of both types. When transition t3 fires, the machine starts processing a
part of type Pa and no other part can be processed until t4 fires, i.e., the machine is
released. Analogously, transition t5 represents the acquisition of the machine for the
processing of a part of type Pb, while t6 represents its release. Transitions t7 models
the assembly operation, that can only occur when a part of each type is available.
At the end of the assembly operation, the processed part Pab exits the cell and a new
part to be processed enters the system. This is modeled by transition t8. Note that
this operation mode is typical of those processes where parts move on pallets, that
are available in a finite number.

10.4 Analysis by Enumeration

In this section we present an important technique for the analysis of PNs based
on the enumeration of the reachability set of the net and of the transition function
between markings. If the reachability set is finite, an exhaustive enumeration is pos-
sible and the reachability graph of the net is constructed. If the reachability set is
not finite, a finite coverability graph can still be constructed using the notion of
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ω-marking; the coverability graph provides a larger approximation of the reachabil-
ity set and of the net language.

10.4.1 Reachability Graph

The main steps for the construction of the reachability graph of a marked net 〈N,mmm0〉
are summarized in the following algorithm.

Algorithm 10.2. (Reachability Graph).

1. The initial node of the graph is the initial marking mmm0. This node is initially
unlabeled.

2. Consider an unlabeled node mmm of the graph.

a For each transition t enabled at mmm, i.e., such that mmm≥ PPPrrreee[·, t]:
i. Compute the marking mmm′ = mmm+CCC[·, t] reached from mmm firing t.
ii. If no node mmm′ is on the graph, add a new node mmm′ to the graph.
iii.Add an arc t from mmm to node mmm′.

b Label node mmm “old”.

3. If there exist nodes with no label, goto Step 2.

In the case of nets with an infinite reachability set the algorithm does not terminate.
However, a simple test to detect this case can be added at Step 2.a: if there exists
a marking mmm′′, computed previously, such that the new marking mmm′ is greater than
and different from mmm′′, then stop the computation because the reachability graph is
infinite.

An example of reachability graph is given in Fig. 10.7.

(b) 

[1 1 0] 

[0 2 0] [1 0 1] 

[2 0 0] 

[0 1 1] [0 0 2] 

t1 

t1 

t1 

t3 

t3 

t3 
t2 

t2 

t2 

(a) 

t1 

p1 

t2 

t3 p3 p2 

Fig. 10.7 (a) A bounded PN system and its reachability graph

The following proposition holds, whose proof immediately follows from the def-
inition of reachability graph.

Proposition 10.1. Consider a bounded marked net 〈N,mmm0〉 and its reachability
graph.
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(a) Marking mmm belongs to the reachability set R(N,mmm0) ⇐⇒ mmm is a node of the
graph.

(b) Given mmm ∈ R(N,mmm0), sequence σ = t j1 t j2 · · · , belongs to L(N,mmm) and can be
generated with the trajectory mmm[t j1〉mmm′[t j2〉mmm′′ · · · ⇐⇒ there exists in the graph
a directed path γ = mmm t j1 mmm′ t j2 mmm′′ · · · .

As shown in [5], given a bounded PN, the problem of construction of the reacha-
bility graph is not primitive recursive. This implies that every method based on the
reachability graph construction has an unpredictable complexity. This explains the
importance of structural analysis which is the object of the following Chapter 11.

10.4.2 Coverability Graph

The procedure used for the construction of the reachability graph obviously does not
terminate if the net is unbounded. Indeed in such a case, a situation like the following
would surely occur. There exists a directed path that starts from mmm0 to m̃mm, and from
such a node there exists a directed path leading to mmm′ � m̃mm. To characterize the
existence of sequences of transitions whose firing indefinitely increase the marking
of some places, we assign a special symbol ω to all entries of mmm′ that are strictly
greater than the corresponding entries of m̃mm.

Definition 10.10. An ω−marking of a net N with m places is a vector mmmω ∈ (N∪
{ω})m, where one or more components may be equal to ω .

Thus ω should be thought as “arbitrarily large” and we assume that ∀n ∈N it holds
ω > n and ω± n = ω .
Using the notion of ω−marking, a finite approximation of the reachability graph,
called coverability graph, can be constructed. The construction of the coverability
graph first requires the construction of the coverability tree, a graph with no loops
where duplicated nodes may exist. The following algorithm summarizes the main
steps for the computation of the coverability tree of a marked net 〈N,mmm0〉 with inci-
dence matrix CCC.

Algorithm 10.3. (Coverability tree).

1 The root node of the tree is the initial marking mmm0. This node is initially unla-
beled.

2 Consider an unlabeled node mmm of the tree.

a For each transition t enabled at mmm, i.e., such that mmm≥ PPPrrreee[·, t]:
i. Compute the marking mmm′ = mmm+CCC[·, t] reached from mmm firing t.
ii. For all markings m̃mm � mmm′ on the path from the root node mmm0 to node mmm and

for all p ∈ P,
if m̃[p]< m′[p] then let m′[p] = ω .

iii.Add a new node mmm′ to the tree.
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iv. Add an arc t from mmm to the new node mmm′.
v. If there already exists a node mmm′ in the tree, label the new node mmm′ “dupli-

cated”.
b Label node mmm “old”.

3 If there exist nodes with no label, goto Step 2.

Karp and Miller [10] proved that Algorithm 10.3 always terminates in a finite num-
ber of steps even if the net has an infinite state space.

Consider as an example, the marked net in Fig. 10.8(a). The coverability tree is
shown in Fig. 10.8(b) where labels “old” in the internal nodes have been omitted to
make the figure more readable.

t1 

t4 

(a) 

t1 

t2 

t2 

p1 p3 

t3 
p2 

[1 0 0] [0 0 1] 
t4 

[0 0 1] 

t2 
[1 ω 0] [0 ω 1] 

t4 
[0 ω 1] 

[1 ω 0] [0 ω 1] 

t1 

t1 t3 
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t4 

t2 [1 0 0] [0 0 1] 

t4 

t2 
[1 ω 0] [0 ω 1] 

t1 

t3 

(c) (b) 

2 2 

Fig. 10.8 (a) A PN; (b) coverability tree; (c) coverability graph

As summarized in Algorithm 10.4, “merging” duplicated nodes of the coverabil-
ity tree, we obtain the coverability graph.

Algorithm 10.4. (Coverability graph).

1 If the tree contains no nodes with label “duplicated” goto Step 4.
2 Consider a node mmm of the graph with label “duplicated”.

Such a node has no output arcs but an input arc t from node mmm′.
Moreover, there surely exists in the graph another node mmm with label “old”.

a Remove arc t from node mmm′ to node mmm “duplicated”.
b Add an arc t from node mmm′ to node mmm “old”.
c Remove node mmm “duplicated”.

3 If there still exist nodes with label “duplicated” goto Step 2.
4 Remove labels from nodes.
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The coverability graph of the marked net in Fig. 10.8(a) is shown in Fig. 10.8(c).
In the case of nets with an infinite reachability set, the coverability graph provides

a finite description that approximates this infinite set.

Definition 10.11. A marking mmm ∈ N
m is said to be ω-covered by a vector mmmω ∈

(N∪{ω})m if mω [p] = m[p] for all places p such that mω [p] 
= ω; this relation is
denoted mmmω ≥ω mmm.

Thus a node mmmω in the graph represents all markings that are ω-covered by it.
Due to the presence of ω-markings, the coverability graph does not always pro-

vide necessary and sufficient conditions to decide the reachability of a marking
or the existence of a firing sequence. Such results are summarized in the follow-
ing proposition, where a node that can contain ω components is denoted with the
notation mmmω .

Proposition 10.2. Consider a marked net 〈N,mmm0〉 and its coverability graph.

(a) Marking mmm is reachable =⇒ there exists a node mmmω ≥ω mmm in the graph.
(b) Given a marking mmm∈R(N,mmm0), sequence σ = t j1 t j2 · · · , belongs to the language

L(N,mmm) and can be generated with a trajectory mmm[t j1〉mmm′[t j2〉mmm′′ · · · =⇒ there
exists in the graph a directed path γ = mmmω t j1 mmm′ω t j2 mmm′′ω · · · , with mmmω ≥ω mmm,
mmm′ω ≥ω mmm′ etc.

The main feature of the coverability graph is that of not providing a general algo-
rithm, valid in all cases, to determine the reachability of a marking.

Example 10.5. Consider the marked net in Fig. 10.8 and its coverability graph.
Based on Proposition 10.2(a) we conclude that marking [0 0 1]T is reachable, be-
cause it appears in the graph. On the contrary, based on Proposition 10.2(a), marking
[1 1 1]T is not reachable since it is covered by no node in the graph. Finally, if we
consider a marking [0 k 1]T for a given value k > 0, it is not possible to draw a
conclusion concerning its reachability, being it covered by node [0 ω 1]T : as an
example, [0 2 1]T is a reachable marking, while [0 3 1]T is not reachable.

Let us also observe that by Proposition 10.2(b) a coverability graph may contain
directed paths associated with sequences that are not enabled. As an example, in
the net in Fig. 10.8, σ = t1t2t3t3 cannot fire at the initial marking: indeed in an
admissible sequence, t3 can fire at most as many times as t1, due to the constraint
imposed by place p2 that is initially empty. However, starting from mmm0 there is in
the graph a path whose arcs form sequence σ . �

We conclude this section introducing the notion of covering set, that is a (not nec-
essarily strict) superset of R(N,mmm0).

Definition 10.12. Given a marked net 〈N,mmm0〉, let V ⊆ ({N∪{ω})m be the set of
nodes of its coverability graph. The covering set of 〈N,mmm0〉 is

CS(N,mmm0) = {mmm ∈N
m | ∃mmmω ∈V, m[p] = mω [p] if mω [p] 
= ω} .
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By Proposition 10.2, we can state the following result.

Proposition 10.3. Given a marked net 〈N,mmm0〉, it holds R(N,mmm0)⊆CS(N,mmm0).

As an example, in the case of the marked net in Fig. 10.8, it holds CS(N,mmm0) =
{[1 0 0]T , [0 0 1]T}∪{[1 k 0]T , k ∈ N}∪{[0 k 1]T , k ∈ N} ⊂ R(N,mmm0). However,
if N′ is a new net obtained from the net in Fig. 10.8 changing the multiplicity of the
arcs incident on place p2 from 2 to 1, then CS(N′,mmm0) = R(N′,mmm0).

Other approximations of the reachability set will be given in the following
Chapter 11.

10.4.3 Behavioral Properties

In this section we define the main behavioral properties of a marked net, i.e., those
properties that depend both on the net structure and on the initial marking.

10.4.3.1 Reachability

A fundamental problem in the PN net setting is the following, known as the reach-
ability problem.

• Given a marked net 〈N,mmm0〉 and a generic marking mmm, is mmm ∈ R(N,mmm0)?

As already discussed in the previous section, if the net has a finite state space, such
a problem can be solved constructing the reachability graph. However, in the case of
nets with an infinite state space, the coverability graph does not provide necessary
and sufficient conditions to test if a given marking is reachable.

It is easy to show that the reachability problem is at least semi-decidable1. In-
deed, if we consider a marked net 〈N,mmm0〉 and a marking mmm whose reachability has
to be verified, we can generate in an orderly fashion all sequences in L(N,mmm0), start-
ing first with those of length 1, then with those of length 2, etc., and compute the
markings reached with each of these sequences. If mmm is reachable with a sequence of
length k, at the kth step the algorithm terminates with a positive answer. However,
if mmm is not reachable, this algorithm never halts.

In the 1980s it has been proved that the reachability problem is also decidable,
even if the corresponding algorithm has a very high complexity [16].

1 A problem whose solution may either be YES or NO is said to be:

• decidable if there exists an algorithm that, for each possible formulation of the problem,
halts in a finite number of steps providing the correct solution;

• semi-decidable if there exists an algorithm that, for each possible formulation of the prob-
lem, halts in a finite number of steps providing the correct solution in one of the two cases
(e.g., if the answer is YES), while it may not halt in the other case (e.g., if the answer is
NO).
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10.4.3.2 Boundedness

The boundedness property, associated with a place or with a net, implies that the
number of tokens in the place or in the net, never exceeds a given amount. As an
example, this property may imply that no overflow occurs in a buffer, or can be used
to dimension the number of resources required by a process.

Definition 10.13. A place p is k−bounded in 〈N,mmm0〉 if for all reachable markings
mmm∈ R(N,mmm0) it holds m[p]≤ k. A place 1-bounded is safe (or binary). A marked net
〈N,mmm0〉 is k−bounded if all places are k−bounded. A marked net that is 1−bounded
is called safe (or binary) .

When it is not important to specify the value of k, the place (net) is simply called
bounded.

Proposition 10.4. [12] A marked net 〈N,mmm0〉 is bounded if and only if it has a finite
reachability set.

Proposition 10.5. Consider a marked net 〈N,mmm0〉 and its coverability graph.

• A place p is k−bounded⇐⇒ for each node mmmω of the graph it holds mmmω [p] ≤
k 
= ω .

• The marked net is bounded⇐⇒ no node of the graph contains the symbol ω .

The net in Fig. 10.8 is unbounded. Places p1 and p3 are safe, while place p2 is
unbounded. The net in Fig. 10.9 is safe.

p3 

p1 

p2 

t2 t1 t1 

[1 1 0] [0 0 1] 

t2 

Fig. 10.9 A safe Petri net and its reachability graph

10.4.3.3 Conservativeness

A property strictly related to boundedness is conservativeness implying that the
weighted sum of tokens in a net remains constant. Such a property ensures that
resources are preserved.

Definition 10.14. A marked net 〈N,mmm0〉 is strictly conservative if for all reachable
markings mmm ∈ R(N,mmm0) the number of tokens that the net can contain does not vary,
i.e., if:

111T ·mmm = ∑
p∈P

m[p] = ∑
p∈P

m0[p] = 111T ·mmm0
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It is easy to verify graphically if a marked net is strictly conservative. Indeed all
transitions should have a number of “pre” arcs equal to the number of “post” arcs.

Note however, that such a condition is not necessary for strict conservativeness:
there may exist a transition with a different number of “pre” and “post” arcs that
never fires. The net in Fig. 10.7 is strictly conservative since the total number of
tokens is always equal to two. The net in Fig. 10.8 is not strictly conservative.

A generalization of strict conservativeness is the following.

Definition 10.15. A marked net 〈N,mmm0〉 is conservative if there exists a vector of
positive integers xxx ∈ N

m
+ such that for all reachable markings mmm ∈ R(N,mmm0) it is:

xxxT ·mmm = xxxT ·mmm0

i.e. the number of tokens weighted through xxx does not vary.

The net in Fig. 10.9 is not strictly conservative, but it is conservative. Indeed, con-
sider the vector xxx = [1 1 2]T . It is easy to verify that for all reachable markings mmm it
is xxxT ·mmm = xxxT ·mmm0 = 2.

Conservativeness is related to boundedness.

Proposition 10.6. If a marked net 〈N,mmm0〉 is conservative then it is bounded.

Note however, that there may also exist bounded nets that are not conservative. An
example is given in Fig. 10.10 that shows a safe net that is not conservative: indeed
its reachability set is {[1], [0]}, thus chosen an arbitrary positive integer x it holds
0 = x ·0 
= x ·1 = x.

t p 

Fig. 10.10 A bounded Petri net that is not conservative

In the following Chapter 11 it will be shown how, using the incidence matrix, it
is possible to compute a vector xxx with respect to whom the net is conservative.

10.4.3.4 Repetitiveness

Repetitiveness of a sequence of transitions ensures that the sequence can occur in-
definitely.

Definition 10.16. Given a marked net 〈N,mmm0〉, let σ be a non empty sequence of
transitions and mmm ∈ R(N,mmm0) a marking enabling it. Sequence σ is called repetitive
if it can fire an infinite number of times at mmm, i.e., it holds

mmm[σ〉mmm1[σ〉mmm2[σ〉mmm3 · · ·

A marked net 〈N,mmm0〉 is repetitive if there exists a repetitive sequence in L(N,mmm0).
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The following proposition characterizes repetitive sequences.

Proposition 10.7. Let σ be a non empty sequence of transitions such that mmm[σ〉mmm′.
Sequence σ is repetitive if and only if mmm≤ mmm′.

We distinguish two types of repetitive sequences.

Definition 10.17. A repetitive sequence σ enabled at mmm is called:

• stationary if mmm[σ〉mmm,
• increasing if mmm[σ〉mmm′ with mmm′ � mmm.

As an example, the net in Fig. 10.3(c) does not contain repetitive sequences. In the
net in Fig. 10.8 repetitive sequences are tk

1 and tk
4, with k ∈ N+: sequences tk

1 are
increasing, while sequences tk

4 are stationary.
Increasing sequences exist only on unbounded nets.

Proposition 10.8. [12] A marked net 〈N,mmm0〉 is bounded if and only if it does not
admit increasing repetitive sequences.

As discussed in Chapter 11 it is immediate to verify if a given sequence σ is repeti-
tive (either stationary or increasing) using the incidence matrix of the net. Here we
only consider the information given by the analysis of the reachability graph.

Proposition 10.9. Consider a marked bounded net 〈N,mmm0〉 and its reachability
graph. A sequence σ is stationary ⇐⇒ there exists a directed cycle in the graph
whose arcs form σ .

In the net in Fig. 10.7 each stationary sequence corresponds to a cycle in the reacha-
bility graph. Sequences that correspond to elementary cycles are called elementary.
As an example, t1t2 is an elementary sequence, while t1t2t1t2 is not elementary.

Proposition 10.10. Consider a marked net 〈N,mmm0〉 and its coverability graph.

• A sequence σ is repetitive =⇒ there exists a directed cycle in the graph whose
arcs form σ .

• A sequence σ is stationary ⇐= there exists a directed cycle in the graph that
does not pass through markings containing ω and whose arcs form σ .

Note that a coverability graph has always at least one cycle associated with an in-
creasing sequence. Such is the case of sequence t1 in the net in Fig. 10.8. Moreover,
there can be cycles associated with non repetitive sequences. Such is the case of
sequence t3 in the net in Fig. 10.8: t3 is not repetitive because its firing leads to de-
creasing of two units the number of tokens in p2; however, this is hidden when t3
fires from [0 ω 1]T .

10.4.3.5 Reversibility

Reversibility implies that a system can always be reinitialized to its initial state. This
is a desirable feature in many man-made systems.
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Definition 10.18. A marked net 〈N,mmm0〉 is reversible if for all reachable markings
mmm∈R(N,mmm0) it holds mmm0 ∈R(N,mmm), i.e., if from any reachable marking it is possible
to reach back the initial marking mmm0.

As an example, the net in Fig. 10.11(a) is reversible because from any reachable
marking m = [k], transition t2 can fire k times leading the net back to the initial
marking m0 = [0] in figure. On the contrary, the net in Fig. 10.11(b) is not reversible
because any token that enters in p2 can never be removed coming back to the initial
marking.

(a) 

(b) 

t2 p1 t1 

t2 

t1 

t1 [0] [ω] 

t2 p1 p2 t1 

t1 

t2 

t1 

t1 [0 0] [ω 0] [ω ω] 
t2 

Fig. 10.11 (a) A reversible unbounded marked net and its coverability graph; (b) a non re-
versible unbounded marked net and its coverability graph

The reachability graph provides necessary and sufficient conditions for re-
versibiliy. On the contrary, the coverability graph only provides necessary condi-
tions. This is formalized by the following two propositions whose validity derives
from Propositions 10.1 and 10.2, respectively.

Proposition 10.11. Consider a bounded marked net 〈N,mmm0〉 and its reachability
graph. The marked net is reversible⇐⇒ the graph is strongly connected.

The reachability graph of the net in Fig. 10.7 is not strongly connected: as an exam-
ple, there exists no directed path from marking [1 0 1]T to the initial marking.

Proposition 10.12. Consider a marked net 〈N,mmm0〉 and its coverability graph. The
net is reversible =⇒ each ergodic2 component of the graph contains a node mmmω ≥ω
mmm0.

As an example, the only ergodic component of the coverability graph of the re-
versible net in Fig. 10.11(a) contains marking [ω ]≥ω [0] = m0. Note however, that
also the net in Fig. 10.11(b) has only one ergodic component that contains the mark-
ing [ω ω ]T ≥ω [0 0]T = mmm0 and it is not reversible. Finally, it is possible to conclude

2 Consider a maximal strongly connected component of a graph. Such a component is called
ergodic if there are no edges leading from a node that belongs to the component to a node
that does not belong to it. Otherwise the component is called transient [2].
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by the only analysis of the coverability graph, that the net in Fig. 10.8 is not re-
versible: indeed it has two ergodic components, each one with a single marking
[0 0 1]T and [0 ω 1]T , respectively, none of them covering the initial marking.

Note, finally, that even if the coverability graph does not provide necessary and
sufficient conditions for checking reversibility, such a property is decidable. In
fact checking for reversibility reduces to checking if the initial marking mmm0 is a
home marking, a problem that is known to be decidable [7] (see also Chapter 12,
Definition 12.8).

10.4.3.6 Liveness and Deadlock

Liveness of a transition implies the possibility that it can always eventually fire,
regardless of the current state of the net.

Definition 10.19. Given a marked net 〈N,mmm0〉, we say that a transitions t is:

• dead if no reachable marking enables it, i.e., ∀mmm ∈ R(N,mmm0) ¬mmm[t〉;
• quasi-live if it is enabled by some reachable marking, i.e., ∃mmm∈R(N,mmm0) : mmm[t〉;
• live if for all reachable markings mmm ∈ R(N,mmm0), t is quasi-live in 〈N,mmm〉.

In the net in Fig. 10.12 transition t4 is dead, transitions t1 and t2 are quasi-live,
transition t3 is live. Note a fundamental difference between quasi-live transitions t1
and t2: t1 can fire an infinite number of times, while t2 may only fire once.

t1 t2 

t4 

p1 p2 

t3 

[1 0] [0 1]
t2 

t3 t1 

Fig. 10.12 A PN for the study of liveness

It is also possible to define the liveness property for a marked net.

Definition 10.20. A marked net 〈N,mmm0〉 is:

• dead, if all its transitions are dead;
• not quasi-live, if some of its transitions are dead and some are quasi-live;
• quasi-live, if all its transitions are quasi-live;
• live, if all its transitions are live.

The net in Fig. 10.12 is not quasi-live because it contains both dead and quasi-live
transitions. The two nets in Fig. 10.11 are both live.
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Another important concept related to the notion of liveness is deadlock that de-
notes an anomalous state from which no further evolution is possible.

Definition 10.21. Given a marked net 〈N,mmm0〉 let mmm ∈ R(N,mmm0) be a reachable
marking. We say that mmm is a dead marking if no transition is enabled at mmm, i.e., if
〈N,mmm〉 is dead. A marked net 〈N,mmm0〉 is deadlocking if there exists a dead reachable
marking.

The net in Fig. 10.7 is deadlocking: marking [0 0 2]T is dead.
Once again the reachability graph provides necessary and sufficient conditions

for the verification of liveness and deadlock.

Proposition 10.13. Consider a bounded marked net 〈N,mmm0〉 and its reachability
graph.

• Transition t is dead⇐⇒ no arc labeled t belongs the graph.
• Transition t is quasi-live⇐⇒ an arc labeled t belongs the graph.
• Transition t is live ⇐⇒ an arc labeled t belongs to each ergodic component of

the graph.
• Reachable marking mmm is dead⇐⇒ node mmm in the graph has no output arc.

The coverability graph provides necessary and sufficient conditions for the analysis
of quasi-liveness, but only necessary conditions for the analysis of liveness.

Proposition 10.14. Consider a marked net 〈N,mmm0〉 and its coverability graph.

• Transition t is dead⇐⇒ no arc labeled t belongs the graph.
• Transition t is quasi-live⇐⇒ an arc labeled t belongs to the graph.
• Transition t is live =⇒ an arc labeled t belongs each ergodic component of the

graph.
• Reachable marking mmm is dead⇐= node mmmω in the graph has no output arc and

mmmω ≥ω mmm.

Note, finally, that even if the coverability graph does not provide necessary and suffi-
cient conditions for checking liveness, such a property is decidable. In fact checking
for liveness can be reduced to a reachability problem [13]. Thus liveness of a net is
a decidable property.

10.5 Further Reading

Further details on the proposed topics can be found in the survey paper by Murata
[12] and on the books of Peterson [13] and David and Alla [1].

Finally, we address to the book of Girault and Valk [8] for a discussion on the
effectiveness of model checking in the verification of the properties introduced in
Section 10.4.
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