Linearizzazione di sistemi non lineari

Esercizio 1. Dato il sistema non lineare:

$$\dot{x} = -\tan\frac{x}{2} + 2u$$
$$y = x^2$$

- determinare i punti d'equilibrio per l'ingresso costante $\bar{u} = \frac{\sqrt{3}}{2}$
- scegliere un punto d'equilibrio e determinare il modello linearizzato

Modellistica

Esercizio 2. Si consideri il sistema meccanico di Figura 1, nel quale il corpo materiale di massa m è collegato ad un'asta allungabile di massa trascurabile. Sia L la lunghezza dell'asta in assenza di sollecitazioni e si supponga che il comportamento dell'asta sia schematizzabile tramite una costante elastica k e un coefficiente di attrito viscoso b_1 . La cerniera che collega l'asta alla parete presenta un attrito torsionale di coefficiente b_2 . Assunto come ingresso la forza F(t) orizzontale e come uscita l'angolo $\theta(t)$ mostrato in figura, si determini una rappresentazione implicita i-s-u del sistema.

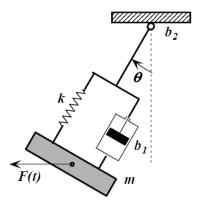


Figura 1: Sistema meccanico dell'Esercizio 1.

Una volta determinata la rappresentazione i-s-u per il sistema si determinino i punti d'equilibrio per $u(t) = \bar{u} = 2\sqrt{3}mg$ e si linearizzi il sistema intorno ad un punto d'equilibrio.

Esercizio 3. Si consideri il sistema meccanico di Figura 2, nel quale i due pendoli hanno lunghezza complessiva pari a $l_1 + l_2$, e l_1 è la distanza che separa la cerniera dal punto di applicazione della molla. Le due cerniere presentano un attrito torsionale di coefficienti b_1 e b_2 , mentre k è la costante elastica della molla che collega le due aste. Assumendo come ingresso la forza F(t) e come uscite i due angoli $a_1(t)$ e $a_2(t)$, si determini una rappresentazione implicita i-s-u nell'ipotesi di piccole oscillazioni.

Esercizio 4. Si consideri il sistema meccanico di Figura 3, e si assumano la forza $u_1(t)$ e l'inclinazione del piano $u_2(t)$ come ingressi. Se k è la costante elastica della molla che collega la massa m al vincolo posto sul piano inclinato, si determini una rappresentazione implicita i-s-u assumendo come uscita lo spostamento lungo la coordinata s(t).

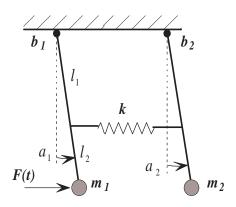


Figura 2: Sistema meccanico dell'Esercizio 2.



Figura 3: Sistema meccanico dell'Esercizio 3.

Esercizio 5. Si consideri il sistema meccanico di Figura 4, nel quale la molla S presenti una rigidezza proporzionale al valore assoluto della sua deformazione secondo un coefficiente k_2 . Considerato come ingresso lo spostamento z(t) e come uscita la posizione verticale della massa m rispetto ad un riferimento solidale con la scatola di massa M, si determini una rappresentazione implicita i-s-u.

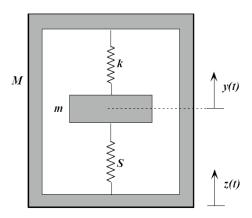


Figura 4: Sistema meccanico dell'Esercizio 4.

Esercizio 6. Si assuma u(t) = v(t) e si scriva un modello i-s-u del circuito in Figura 5.

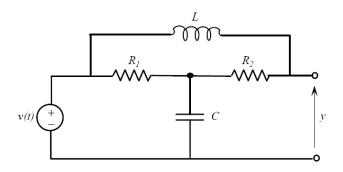


Figura 5: Circuito elettrico dell'Esercizio 5.

Esercizio 7. Si assuma u(t) = v(t) e si scrivano due modelli i-s-u per circuito in Figura 6, uno per $t < \bar{t}$ ed un altro per $t \ge \bar{t}$.

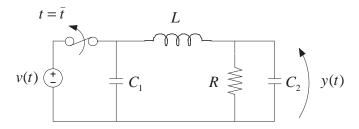


Figura 6: Circuito elettrico dell'Esercizio 6.

Esercizio 8. Si consideri il circuito in Figura 7 e si assuma u(t) = v(t) e $R(i) = ki^2$. si scriva il modello i-s-u.

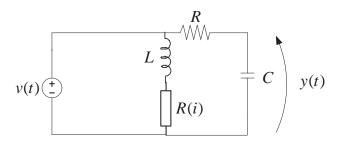


Figura 7: Circuito elettrico dell'Esercizio 7.

Una volta determinata la rappresentazione i-s-u, si ponga C=1 F, L=1 H, R=1 $\Omega,$ k=2 $\frac{\Omega}{A^2}$ e si determinino i punti d'equilibrio per $u(t)=\bar{u}=-54$ V. Si determini, infine, il sistema linearizzato intorno ad un punto d'equilibrio.