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Nuclear Fusion for Dummies UNI
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Main Aim
Production of energy by means of
a fusion reaction

D + T → 4He + n

Plasma

High temperature and pressure are needed
Fully ionised gas 7→ Plasma
Magnetic field is needed to confine the plasma
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Plasma magnetic control UNI
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In tokamaks, magnetic control of the plasma is obtained by means of
magnetic fields produced by the external active coils

In order to obtain good performance, it is necessary to have a plasma with
vertically elongated cross section ⇒ vertically unstable plasmas

It is important to maintain adequate plasma-wall clearance during
operation
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The final objective
Build a control system
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Main (basic) assumptions UNI
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1 The plasma and the surrounding conductive structures are
assumed to be axisymmetric

2 The inertial effects can be neglected at the time scale of
interest, since plasma mass density is low

3 The magnetic permeability µ is homogeneous, and equal to µ0
everywhere

Mass vs Massless plasma
It has been proven that neglecting plasma mass may lead to erroneous conclusion on
closed-loop stability.

M. L. Walker, D. A. Humphreys
On feedback stabilization of the tokamak plasma vertical instability
Automatica, vol. 45, pp. 665–674, 2009.

J. W. Helton, K. J. McGown, M. L. Walker,
Conditions for stabilization of the tokamak plasma vertical instability using only a
massless plasma analysis
Automatica, vol. 46, pp. 1762.-1772, 2010.
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Plasma model UNI
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The input variables are:
The voltage applied to the active coils v
The plasma current Ip
The poloidal beta βp

The internal inductance li

Ip , βp and li

Ip , βp and li are used to specify the plasma internal profiles for
a given shape of these profiles (e.g., bell-shaped profiles)
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Model outputs UNI
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Different outputs can be chosen:
fluxes and fields where the
magnetic sensors are located
currents in the active and passive
structures
plasma radial and vertical position
(1st and 2nd moment of the
plasma current density)
geometrical descriptors describing
the plasma shape (gaps, x-point
and strike point positions)
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Lumped parameters approximation UNI
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Grad-Shafranov PDE can be solved by using finite-elements methods

From these numerical approximations it is possible retrieve a nonlinear lumped
parameters model

d
dt

[
M
(
y(t), βp(t), li (t)

)
I(t)
]
+ RI(t) = U(t) ,

y(t) = Y
(
I(t), βp(t), li (t)

)
.

where:

y(t) are the output to be controlled

I(t) =
[
ITPF (t) ITe (t) Ip(t)

]T is the currents vector, which includes the currents in the
active coils IPF (t), the eddy currents in the passive structures Ie(t), and the plasma
current Ip(t)

U(t) =
[
UT

PF (t) 0T 0
]T is the input voltages vector

M(·) is the mutual inductance nonlinear function

R is the resistance matrix

Y(·) is the output nonlinear function
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Plasma model UNI
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Starting from the nonlinear lumped parameters model, the following plasma linearized
state space model can be easily obtained:

δẋ(t) = Aδx(t) + Bδu(t) + Eδẇ(t), (1)

δy(t) = C δIPF (t) + Fδw(t), (2)

where:

A, B, E, C and F are the model matrices

δx(t) =
[
δITPF (t) δI

T
e (t) δIp(t)

]T is the state space vector

δu(t) =
[
δUT

PF (t) 0T 0
]T are the input voltages variations

δw(t) =
[
δβp(t) δli (t)

]T are the βp and li variations

δy(t) are the output variations

The model (1)–(2) relates the variations of the PF currents to the variations of the

outputs around a given equilibrium
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Dynamical Systems UNI
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State space model
A finite dimensional continuous-time
dynamical system can be described by the
following differential equations:

ẋ(t) = f
(
x(t) , u(t) , t , t0

)
, x(t0) = x0 (3a)

y(t) = h
(
x(t) , u(t) , t , t0

)
(3b)

where:

x(t) ∈ Rn is the system state
x(t0) ∈ Rn is the initial condition
u(t) ∈ Rm is the input vector

y(t) ∈ Rp is the output vector

n is the order of the system
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Linear time-invariant systems UNI
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The state space model for a linear time-invariant (LTI)
continuous-time system can written as

ẋ(t) = Ax(t) + Bu(t) , x(0) = x0 (4a)
y(t) = Cx(t) + Du(t) (4b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m.

A dynamical system with single-input (m = 1) and single-output
(p = 1) is called SISO, otherwise it is called MIMO.

Matlab commands
sys = ss(A,B,C,D) creates a state space model object.
y = lsim(sys,u,t) simulates the time response of the LTI system
sys.
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Equilibria of nonlinear systems UNI
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Consider a nonlinear and time-invariant system

ẋ(t) = f
(
x(t) ,u(t)

)
, x(0) = x0 (5a)

y(t) = h
(
x(t) ,u(t)

)
(5b)

If the input is constant, i.e. u(t) = ū, then the equilibrium states
xe1 , xe2 , . . . , xeq of such a system can be computed as solutions of
the homogeneous equation

f
(
xe , ū) = 0 ,

Given an equilibrium state xei the correspondent output is given by

yei = h
(
xei , ū

)
.
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Linearization around a given equilibrium UNI
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If x0 = xe + δx0 and u(t) = ū + δu(t), with δx0 , δu(t)
sufficiently small, then the behaviour of (5) around a given
equilibrium point

(
ū , xe

)
is well described by the linear system

δẋ(t) =
∂f
∂x

∣∣∣∣∣∣ x = xe
u = ū

δx(t) +
∂f
∂u

∣∣∣∣∣∣ x = xe
u = ū

δu(t) , δx(0) = δx0

(6a)

δy(t) =
∂h
∂x

∣∣∣∣∣∣ x = xe
u = ū

δx(t) +
∂h
∂u

∣∣∣∣∣∣ x = xe
u = ū

δu(t) (6b)

The total output can be computed as

y(t) = h
(
xe , ū

)
+ δy(t) .
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Example - Pendulum UNI
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Mass m
Length L
Friction coefficient b
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Example - Pendulum UNI
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Nonlinear model

Let

x(t) =

(
θ(t)
θ̇(t)

)
u(t) = F (t) y(t) = θ(t)

then

ẋ1(t) = x2(t)

ẋ2(t) = −g
L

sin x1(t)− b
mL2 x2(t) +

1
mL

cos x1(t)u(t)

y(t) = x1(t)
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Example - Pendulum UNI
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Equilibria

If ū = mg, solving f
(
xe, ū

)
= 0 we get

xek =

(
π
4 + kπ

0

)
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Example - Pendulum UNI
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Around the equilibria xe =
(
π
4 0
)T the behaviour of the

pendulum is well described by the linear system

δẋ1(t) = δx2(t)

δẋ2(t) = −
√

2g
L

δx1(t)− b
mL2 δx2(t) +

1√
2mL

δu(t)

δy(t) = δx1(t)
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The script pendulum.m - 1 UNI
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% System parameters
m = 10;
b = 15;
g = 9.81;
L = 1;
% Equilibria
xbar = [pi/4 0];
ubar = m*g;
% Output at the equilibria
ybar = xbar(1);
% Variation of the initial conditions
dx0 = [0.3 3];
% Input variation: Am*sin(t)
Am = 10;
% Simulation time interval
tfin = 15;
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The script pendulum.m - 2 UNI
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% Linearized model matrices
A = [ 0 1 ; -sqrt(2)*g/L -b/(m*L 2̂) ];
B = [ 0 ; 1/(sqrt(2)*m*L) ];
C = [ 1 0 ];
D = 0;
% Linearized model
sys_l = ss(A,B,C,D);
% Time vector
tlin = 0:.001:tfin;
% Linear simulation
du = Am*sin(tlin);
ylin= lsim(sys_l,du,tlin,dx0);
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The script pendulum.m - 3 UNI
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% Nonlinear simulation
[ t,x_nl ]=ode45(’p_nl’,[0
tfin],xbar+dx0,[],m,b,g,L,ubar,Am);
y_nl = x_nl(:,1);
% Plots
figure(1)
plot(t,y_nl*180/pi,’-’,tlin,(ylin+ybar)*180/pi,’-’)
grid on
ylabel(’[deg]’)
xlabel(’tempo [s]’)
title(’theta’)
legend(’NL’,’L’)
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The function p_nl.m UNI
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function xdot = p_nl(t,x,flag,m,b,g,L,ubar,Am)
%
% Returns the state derivative
%
u = ubar + Am*sin(t);
xdot = [x(2); -g/L*sin(x(1)) - b/(m*L 2̂)*x(2) +...
u/(m*L)*cos(x(1))];

Download Matlab example
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Asymptotic stability of LTI systems UNI
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Asymptotic stability

This property roughly asserts that every solution of
ẋ(t) = Ax(t) tends to zero as t →∞.

Note that for LTI systems the stability property is related to
the system and not to a specific equilibrium.

Theorem - System (4) is asymptotically stable iff A is
Hurwitz, that is if every eigenvalue λi of A has strictly negative
real part

<
(
λi
)
< 0 ,∀ λi .

Theorem - System (4) is unstable if A has at least one
eigenvalue λ̄ with strictly positive real part, that is

∃ λ̄ s.t. <
(
λ̄
)
> 0 .
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Equilibrium stability for nonlinear systems UNI
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For nonlinear system the stability property is related to the
specific equilibrium

Theorem - The equilibrium state xe corresponding to the
constant input ū a nonlinear system (5) is asymptotically
stable if all the eigenvalues of the correspondent linearized
system (6) have strictly negative real part.

Theorem - The equilibrium state xe corresponding to the
constant input ū a nonlinear system (5) is unstable if there
exists at least one eigenvalue of the correspondent linearized
system (6) which has strictly positive real part.
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constant input ū a nonlinear system (5) is unstable if there
exists at least one eigenvalue of the correspondent linearized
system (6) which has strictly positive real part.

Gianmaria De Tommasi – detommas@unina.it 24 of 81



Transfer function of LTI systems UNI
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Given a LTI system (4) the corresponding transfer matrix from u
to y is defined as

G(s) = C
(
sI − A

)−1B + D , (7)

where s ∈ C. If we denote with U(s) and Y (s) the Laplace
transforms of u(t) and y(t), then it is

Y (s) = G(s)U(s) ,

when the initial condition of system (4) is x(0) = 0.
For SISO system (7) is called transfer function and it is equal to
the Laplace transform of the impulsive response of system (4)
with zero initial condition.

Matlab commands
sys = tf(num,den) creates a transfer function object.
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Transfer function UNI
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Given the transfer function G(s) and the Laplace transform of
the input U(s) the time response of the system can be
computed as the inverse transform of G(s)U(s), without solving
differential equations.

As an example, the step response of a system can be
computed as:

y(t) = L−1
[
G(s)

1
s

]
.

Matlab commands
[y,t] = step(sys) computes the step response of the LTI
system sys.
[y,t] = impulse(sys) computes the impulse response of
the LTI system sys.
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Poles and zeros of SISO systems UNI
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Given a SISO LTI system , its transfer function is a rational
function of s

G(s) =
N(s)

D(s)
= ρ

Πi(s − zi)

Πj(s − pj)
,

where N(s) and D(s) are polynomial in s, with
deg
(
N(s)

)
≤ deg

(
D(s)

)
.

We call
pj poles of G(s)→ roots of D(s)

zi zeros of G(s)→ roots of N(s)

Matlab commands
sys = zpk(z,p,k) creates a zeros-poles-gain object.
p = eig(sys) or p = pole(sys) return the poles of the LTI
system sys.
z = zero(sys) returns the zeros of the LTI system sys.
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Poles and eigenvalues of a LTI system UNI
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Each pole of G(s) is an eigenvalue of the system matrix A,
while the converse is not necessarily true

If all the poles of G(s) have strictly negative real part – i.e. they
are located in the left half of the s-plane (LHP) – the SISO
system is said to be Bounded–Input Bounded–Output stable
(BIBO)

A system is BIBO stable if bounded input to the system results
in a bounded output over the time interval [0,+∞)
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Time constants, natural frequencies
and damping factors
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A transfer function can be also specified in terms of
time constants (τ ,T )
natural frequencies (ωn,αn)
damping factors (ξ,ζ)
gain (µ)
system type (i.e. number of poles/zeros in 0, g)

G(s) = µ
Πi(1 + Tis)Πj

(
1 + 2 ζj

αnj
s + s2

αnj

)
sgΠk (1 + τks)Πl

(
1 + 2 ξl

ωnl
s + s2

ωnl

) .
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Block diagrams UNI
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When dealing with transfer functions, it is usual to resort to
block diagrams which permit to graphically represent the
interconnections between systems in a convenient way
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Series connection UNI
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Matlab commands
sys = series(sys1,sys2) or sys = sys2*sys1 make
the series interconnection between sys1 and sys2.
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Parallel connection UNI
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Matlab commands
sys = parallel(sys1,sys2) or sys = sys1+sys2
make the parallel interconnection between sys1 and sys2.
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Feedback connection UNI
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Matlab commands
sys = feedback(sys1,sys2,[+1]) makes the feedback
interconnection between sys1 and sys2. Negative feedback is the
default. If the third parameter is equal to +1 positive feedback is
applied.
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Stability of interconnected systems UNI
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Given two asymptotically stable LTI systems G1(s) and G2(s)

the series connection G2(s)G1(s) is asymptotically stable
the parallel connection G1(s) + G2(s) is asymptotically stable

the feedback connection G1(s)
1±G1(s)G2(s)

is not necessarily stable

THE CURSE OF FEEDBACK!
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Frequency response UNI
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Given a LTI system the complex function

G(jω) = C
(
jωI − A

)−1B + D ,

with ω ∈ R+ is called frequency response of the system.

G(jω) permits to evaluate the system steady-state response to
a sinusoidal input. In particular if

u(t) = A sin(ω̄t + ϕ) ,

then the steady-state response of a LTI system is given by

y(t) =
∣∣G(jω̄)

∣∣A sin
(
ω̄t + ϕ+ ∠G(jω̄)

)
.
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Bode plot UNI
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Given a LTI system G(s) the Bode diagrams plot
the magnitude of G(jω) (in dB,

∣∣G(jω)
∣∣
dB = 20 log10

∣∣G(jω)
∣∣)

and the phase of G(jω) (in degree)
as a function of ω (in rad/s) in a semi-log scale (base 10).

Bode plots are used for both analysis and synthesis of
control systems.

Matlab commands
bode(sys) plots the the Bode diagrams of the LTI system
sys.
bodemag(sys) plots the Bode magnitude diagram of the LTI
system sys.
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Let consider

G(s) = 10
1 + s

s
(

s2

400 + 20.3
20 s + 1

) = 10
1 + s

s(0.0025s2 + 0.03s + 1)

Matlab commands
s = tf(’s’);
sys = 10*(1+s)/(s*(sˆ2/400+0.6*s/20+1));
bode(sys);
grid
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A stable system is said to be a minimum phase system if it
has not time delays or right-half plane (RHP) zeros.

For minimum phase systems there is a unique relationship
between the gain and phase of the frequency response G(jω).
This may be quantified by the Bode’s gain-phase relationship

∠G(jω̄) =
1
π

∫ +∞

−∞

d ln |G(jω)|
d lnω

ln

∣∣∣∣ω + ω̄

ω − ω̄

∣∣∣∣dωω .

The name minimum phase refers to the fact that such a system
has the minimum possible phase lag for the given magnitude
response |G(jω)|.
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The Nyquist plot is a polar plot of the frequency response G(jω)
on the complex plane.

This plot combines the two Bode plots - magnitude and phase -
on a single graph, with frequency ω, which ranges in
(−∞ ,+∞), as a parameter along the curve.

Nyquist plots are useful to check stability of closed-loop
systems (see Nyquist stability criterion ).

Matlab commands
nyquist(sys) plots the Nyquist plot of the LTI system sys.
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It is similar to the Nyquist plot, since it plots both the magnitude
and the phase of G(jω) on a single chart, with frequency ω as a
parameter along the curve.

As for the Bode plot the magnitude |G(jω)| is expressed in dB
and the phase ∠G(jω) in degree.

Nichols charts are useful for the design of control
systems, in particular for the design of lead, lag, lead-lag
compensators.

Matlab commands
nichols(sys) plots the Nichols chart of the LTI system sys.
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The objective of a control system is to make the output of a plant y(t)
behave in a desired way by manipulating the plant input u(t)

A good controller should manipulate u(t) so as to

counteract the effect of a disturbance d(t) (regulator problem)

keep the output close to a given reference input r(t) (servo problem)

In both cases we want the control error e(t) = y(t)− r(t) to be
small
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The main sources of difficulty in achieving the control objectives are that

1 the plant model G(s) and the disturbance model Gd (s) may be affected by uncertainty
and/or may change with time

2 the disturbance is not always measurable

3 the plant can be unstable

It turns out that open-loop and/or feed-forward approaches are not robust
enough and/or are not always viable solutions

A feedback approach can guarantee the desired degree of robustness. However design

a feedback control system is not straightforward: instability is around the corner!
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A good controller must guarantee:
Nominal stability - The closed loop system is stable when the
nominal (without uncertainty) model is considered
Nominal Performance - The closed loop system satisfies the
performance specifications when the nominal model is
considered
Robust stability - The closed loop system is stable for all
perturbed plants (i.e., taking account uncertainty)
Robust performance - The closed loop system satisfies the
performance specifications for all perturbed plants

Gianmaria De Tommasi – detommas@unina.it 46 of 81



One degree-of-freedom controller UNI
NA

DIE
II I

The input to the plant is given by

U(s) = K (s)
(
R(s)− Y (s)− N(s)

)
.

The objective of control is to design a controller K (s) such that
the control error e(t) = r(t)− y(t) remains small in spite of the
disturbance d(t).
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L(s) = G(s)K (s) is called loop transfer function

S(s) =
(
I + L(s)

)−1 is called sensitivity function

T (s) =
(
I + L(s)

)−1L(s) is called complementary sensitivity
function

It is straightforward to note that

T (s) + S(s) = I .
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Exploiting the composition rules for block diagrams, it turns out
that

Y (s) = T · R(s) + SGd · D(s)− T · N(s) (8a)
E(s) = −S · R(s) + SGd · D(s)− T · N(s) (8b)
U(s) = KS · R(s)− K (s)S(s)Gd · D(s)− KS · N(s) (8c)
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Remark - S(s) is called sensitivity because it gives the relative
sensitivity of the closed-loop transfer function T (s) to the
relative plant model error. In particular, at a given frequency ω
we have for a SISO plant that

dT
T

dG
G

= S .

Remark - Equations (8) are written in matrix form because they
apply to MIMO systems. For SISO systems we may write

S(s) =
1

1 + L(s)
,

T (s) =
L(s)

1 + L(s)
.
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Let consider

Y (s) = T · R(s) + SGd · D(s)− T · N(s) .

In order to reduce the effect of the disturbance d(t) on the
output y(t), the sensitivity function S(s) should be made small
(particularly in the low frequency range)
In order to reduce the effect of the measurement noise n(t) on
the output y(t), the complementary sensitivity function T (s)
should be made small (particularly in the high frequency range)
However, for all frequencies it is

T + S = I .

Thus a trade-off solution must be achieved.
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One of the main issues in designing feedback controllers is stability.

If the feedback gain is too large then the controller may overreact and the closed-loop

system becomes unstable.

Download Simulink example
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Usually the frequency response of loop transfer function |L(jω)| has a low-pass
behaviour.

The crossover frequency ωc is the frequency such that |L(jωc)| = 1.

In most of the cases the crossover frequency is a good estimation of the

closed-loop bandwidth
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The frequency response of the loop transfer function L(jω) can be
used to estimate the stability margins.

Gain margin (GM)

1/|L(jω180| ,

where ω180 is the phase crossover frequency.

Phase margin (PM)

∠L(jωc) + 180deg ,

where ωc is the crossover frequency.
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The GM is the factor by which the loop gain |L(jω)| may be
increased before the closed-loop system becomes unstable.

The GM is thus a direct safeguard against steady-state gain
uncertainty.
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The phase margin tells how much phase lag can added to L(s)
at frequency ωc before the phase at this frequency
becomes 180 deg which corresponds to closed-loop instability
(see Nyquist stability criterion ).

The PM is a direct safeguard against time delay uncertainty.
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The Nyquist Criterion permits to check the stability of a closed
loop system by using the Nyquist plot of the loop frequency
response L(jω).

The criterion is based on the fact the the close-loop poles are
equal to the zeros of the transfer function

D(s) = 1 + L(s) .

Hence, if D(s) has at least one zero z̄ such that <(z̄) > 0 the
closed-loop system is unstable.
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Consider a loop frequency response L(jω) and let
P be the number of poles of L(s) with strictly positive real part
Z be the number of zeros of L(s) with strictly positive real part
The Nyquist plot of L(jω) makes a number of encirclements N
(clockwise) about the point (−1 , j0) equal to

N = Z − P .

It turns out that the closed-loop system is asymptotically stable
if and only if the Nyquist plot of L(jω) encircles (counter
clockwise) the point (−1 , j0) a number of times equal to P.

The criterion is valid if the Nyquist plot of L(jω) do not
intersect the point (−1 , j0).
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1 If the loop transfer function L(s) has a zero pole of multiplicity l ,
then the Nyquist plot has a discontinuity at ω = 0. Further
analysis indicates that the zero poles should be neglected,
hence if there are no other unstable poles, then the loop
transfer function L(s) should be considered stable, i.e. P = 0.

2 If the loop transfer function L(s) is stable, then the closed-loop
system is unstable for any encirclement (clockwise) of the point
-1.

3 If the loop transfer function L(s) is unstable, then there must be
one counter clockwise encirclement of -1 for each pole of L(s)
in the right-half of the complex plane.

4 If the Nyquist plot of L(jω) intersect the point (−1 , j0), then
deciding upon even the marginal stability of the system
becomes difficult and the only conclusion that can be drawn
from the graph is that there exist poles on the imaginary axis.
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The time behaviour of a closed-loop system is strictly related to
the position of its poles on the complex plane.

For example, for a second order closed-loop system it is
possible to relate the features of the step response such as
rise time
overshoot
settling time
to the location of its poles.

The Root Locus design method permits to evaluate how
changes in the loop transfer function L(s) affect the position of
the closed-loop poles.
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The closed-loop poles are given by the roots of

1 + L(s) . (9)

Assuming that L(s) = ρL′(s) the Root Locus plots the locus of
all possible roots of (9) as ρ varies in the range [0 ,∞).

The Root Locus can be used to study the effect of additional
poles and zeros in L′(s), i.e. in the controller K (s).

The Root Locus can be effectively used to design SISO
controllers.

Matlab commands
rlocus(sys) plots the root locus for the loop transfer function
specified by sys.
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L′(s) =
1 + s

s
·

1
s3 + 3s2 + 3s + 1

=
1

s(s + 1)2
.
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Consider the unstable loop transfer function

L′(s) =
1

(s − 2)2

It is not possible to stabilize the system with a simple proportional controller.
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Add a pole in 0 to have zero steady-state error

L′(s) =
1

s(s − 2)2

It is still not possible to stabilize the system with a simple proportional controller.
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Add two zeros to draw the poles in the LHP

L′(s) =
(s + 10)2

s(s − 2)2

The controller K (s) = ρ
(s+10)2

s can stabilize the plant but is not causal.
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Add an high frequency pole to have a proper controller

L′(s) =
(s + 10)2

s(s + 100)(s − 2)2

The controller K (s) = ρ
(s+10)2

s(s+100) can stabilize.
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A linear time-invariant digital controller can be specified in the
discrete-time domain by means of difference equations

x(k + 1) = Ax(k) + Be(k)

u(k) = Cx(k) + De(k)

or by the transfer-function in the Z domain

K (z) = C
(
zI − A

)−1B + D .
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Given a sampled signal
{

u(k)
}

with sampling period T = 1/ωs,
one possible way to reconstruct the signal is

u(t) =
+∞∑

k=−∞
u(k)sinc

π(t − kT )

T
. (10)

Equation (10) is noncausal.

In many communications problems the noncausality can be
overcome by adding a phase lag, which adds a delay to the
reconstructed signal.

In feedback control systems, delays are disastrous for
stability! Therefore the simpler polynomial reconstruction is
used. In particular a Zero-Order Hold (ZOH) is usually adopted.
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The frequency response of a ZOH is

ZOH(jω) = e−
ωT
2 Tsinc

(
ωT
2

)
.

The scaling factor T is absorbed by the sampler.

If the bandwidth of the closed-loop system is smaller than the
Nyquist frequency ωN = ωs

2 (it is usual to work with ωB < ωN/8),
then
the distortion in amplitude can be neglected

BUT a phase lag equal to e−j ωT
2 MUST BE considered
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Design in the L domain (continuous-time) and digitization the
controller
Synthesis in the Z domain (discrete-time)
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The sampling frequency has to be choose in the proper way, so
as to avoid aliasing, hidden oscillation, ringing of the controller,
etc.
The controller K (s) is designed in the L domain taking explicitly
into account the delay due to the phase lag e−j ωT

2 of the ZOH.
Digitization of the controller K (s) so as to attain a discrete-time
approximation K (z)
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Taking into account that

∫ (k+1)T

kT
f (τ)dτ ∼= Tx(kT ) , Forward method

∫ (k+1)T

kT
f (τ)dτ ∼= Tx

(
(k + 1)T

)
, Backward method

∫ (k+1)T

kT
f (τ)dτ ∼=

T
2

(
x(kT ) + x

(
(k + 1)T

))
, Trapezoidal method

A discrete-time approximation K (z) is obtained be simply replacing the argument s
in K (s) by s′, where

s′ =
z − 1

T
, Forward method

s′ =
z − 1

zT
, Backward method

s′ =
2
T

z − 1
z + 1

, Trapezoidal method
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Matlab commands
sys_d = c2d(sys_c,T_s,method) - produces a
continuous-time model sys_c that is equivalent to the
discrete-time LTI model sys_d. method is a string that selects
the conversion method (example ’Tustin’).
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Given the discrete-time plant P(z), the controller K (z) can be
designed in the Z domain by
pole-placement techniques based on

root locus
state space approach
polynomial approach (Ragazzini’s method, Diophantine
equations)

optimal control approaches (LQG, MPC,. . .)
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Given the LTI plant

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

a sampled equivalent is computed

x(k + 1) = Asx(k) + Bsu(k)

y(k) = Csx(k) + Dsu(k)

with

As = eAT , Bs =

∫ T

0
eAσdσB ,

and Cs = C, Ds = D.
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F. M. Callier and C. A. Desoer
Linear System Theory
Springer-Verlag, 1991

G. F. Franklin, J. D. Powell and A. Emami-Naeini
Feedback Control of Dynamic Systems
Pearson Prentice Hall, 2008

S. Skogestad and I. Postlethwaite
Multivariable Feedback Control - Analysis and Design
John Wiley and Sons, 2006

K. Zhou and J. C. Doyle
Essentials of Robust Control
Prentice Hall, 1998
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K. J. Åström and B. Wittenmark
Computer-Controlled Systems - Theory and Design
Prentice Hall, 1997

G. F. Franklin, J. D. Powell and M. Workman
Digital Control of Dynamic Systems
Addison-Wesley, 1998
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