
Discrete Event Systems,
Languages and Automata

From observability to privacy and security in discrete event systems

Prof. Gianmaria DE TOMMASI
Email: detommas@unina.it

December 2020

UNI
NA

DIE
II I

DIPARTIMENTO DI INGEGNERIA ELETTRICA
E DELLE TECNOLOGIE DELL’INFORMAZIONE

VERSITA DEGLI STUDI DI

POLI FEDERICO II
,

Outline UNI
NA

DIE
II I

1 Course overview

2 Formal languages
Definitions
Operations on languages

3 Languages and automata
Operations on automata

4 Finite state automata and regular languages

5 A glimpse of Supervisory Control Theory

6 Software tools

Gianmaria De Tommasi – detommas@unina.it 2 of 65

Context UNI
NA

DIE
II I

Study of dynamic systems modelled as Discrete Event Systems
(DES)

nonlinear. . .
. . .with discrete state space. . .
. . .whose dynamic is driven by the occurrence of asynchronous
events over time

Uncertain DES, where the main source of uncertainty is due to
the occurrence of unobservable events
This framework can be used to study fault-detection and
secrecy problems when the system of interest can be modelled
as a logical DES

Gianmaria De Tommasi – detommas@unina.it 3 of 65

Modelling logical DES UNI
NA

DIE
II I

Formal languages

A logical DES can be seen as a formal language generator
The events that drive the system dynamic can be regarded
as letters of an alphabet E
The system trajectories become words (strings, sequences)
The system itself can be regarded as a generator of words→
a generator (recognizer) of a formal language
Different tools can be used to model DES at the logical level:
queue systems, look-up-tables, automata, Petri nets
Some of this tools can be also extended to study timed DES:
timed automata and timed Petri nets, Markov chains,
(max ,+) algebra,. . .

Gianmaria De Tommasi – detommas@unina.it 4 of 65

Modelling logical DES UNI
NA

DIE
II I

Automata

Petri nets

Gianmaria De Tommasi – detommas@unina.it 5 of 65

Examples UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 6 of 65

Different levels of abstraction when
studying dynamical systems

UNI
NA

DIE
II I

There are analysis and synthesis tasks that cannot be
practically performed when dealing with large scale/complex
systems, if these are modelled using differential equations
(ODEs)

ẋ(t) = f (x(t) ,u(t) , t) ,
y(t) = g (x(t) ,u(t) , t) .

The DES framework permits to move to a higher level of
abstraction, where (some) physical details can be neglected
When this is not possible some hybrid approaches are possible
(both for modelling and control)

Gianmaria De Tommasi – detommas@unina.it 7 of 65

Bestiarium of dynamical systems UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 8 of 65

Bestiarium of dynamical systems UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 9 of 65

The DES research community UNI
NA

DIE
II I

Researchers in this field have different backgrounds: computer science,
information theory, operations research, control & automation

Most of the concepts originated in the computer science community
(some date back to Turing!)
These concepts have been brought in the control community in the 80’s by
Ramadge and Wonham (Supervisory Control Theory, SCT)

Even earlier, in the mid 70’s, Petri nets were used to derive the Grafcet
programming language, which is used in PLCs (nowadays known as SFC)

The jargon adopted in this course is the one usually adopted by the
automation-oriented researchers, as well as most of the reported results
have been published on control and automation journals

W. M. Wonham, K. Cai, K. Rudie
Supervisory control of discrete-event systems: A brief history
Annual Reviews in Control, 2018

Gianmaria De Tommasi – detommas@unina.it 10 of 65

Course syllabus UNI
NA

DIE
II I

1 Discrete Event Systems (DES), Languages and Automata (this lesson)

2 Petri nets (PNs) and their twofold representation to model DES

3 MILP and ILP formulations: logical conditions, binary variables “do
everything", and variable connecting (prof. Claudio Sterle)

4 Adding uncertainty: unobservable events and observers for finite state
automata and PNs

5 Augmenting the observers: diagnosability of prefix-closed languages,
diagnosers and the fault detection for finite state automata (prof. Francesco
Basile)

6 Diagnosability and fault detection in PNs - Part I: graph-based approaches
(prof. Francesco Basile)

7 Diagnosability and fault detection in PNs - Part II: algebraic approaches for
bounded systems

8 Security issues in DES: non-interference and opacity

9 Non-interference and opacity enforcement

10 Open issues

Gianmaria De Tommasi – detommas@unina.it 11 of 65

References UNI
NA

DIE
II I

C. G. Cassandras and S. Lafortune,
Introduction to Discrete Event Systems
Springer, 2008

C. Seatzu, M. Silva, J. H. van Schuppen (eds.),
Control of Discrete-Event Systems
Springer, 2013

Some papers :)

Gianmaria De Tommasi – detommas@unina.it 12 of 65

Now we can start! UNI
NA

DIE
II I

1 Discrete Event Systems (DES), Languages and Automata
2 Petri nets (PNs) and their twofold representation to model DES

3 MILP and ILP formulations: logical conditions, binary variables “do
everything", and variable connecting

4 Adding uncertainty: unobservable events and observers for finite state
automata and PNs

5 Augmenting the observers: diagnosability of prefix-closed languages,
diagnosers and the fault detection for finite state automata

6 Diagnosability and fault detection in PNs - Part I: graph-based approaches

7 Diagnosability and fault detection in PNs - Part II: algebraic approaches for
bounded systems

8 Security issues in DES: non-interference and opacity

9 Non-interference and opacity enforcement

10 Open issues

Gianmaria De Tommasi – detommas@unina.it 13 of 65

Alphabet and words UNI
NA

DIE
II I

Given a DES, the events that may occur can be seen as
elements (symbols) of an alphabet E set

E = {a ,b , c , . . .} ,

where the symbols a ,b , c , . . . are used to denotes events
A word (string, trace) w is a sequence of event of finite
length
Example: w = e1e2e3 = aab
|w | denotes the length of a word is denoted (some authors
use ‖w‖)
ε denotes the empty word or silent event, i.e. |ε| = 0

Gianmaria De Tommasi – detommas@unina.it 14 of 65

Languages UNI
NA

DIE
II I

A language L defined over an alphabet E is a set of words
defined on the symbols of E
The cardinality of a language L can be either finite or
infinite
Being E = {a,b, c}

L1 = {ε ,a ,abb}
L2 = {all words that starts with the event a}
L3 = {ε ,b ,b ,bab}

Gianmaria De Tommasi – detommas@unina.it 15 of 65

Concatenation of strings UNI
NA

DIE
II I

The key operation among words is the concatenation
The concatenation of two words w1 and w2 is the new string w
consisting of the events in w1 immediately followed by the
events in w2, and it is denoted w = w1w2

In general, if u = w1w2 and v = w2w1 it does not necessarily
follows that u = v → concatenation is not commutative
The empty word ε is the identity element of concatenation, i.e.
wε = εw = w
Given a word w = tuv the following terminology is adopted

t is called prefix of w
u is called substring of w
v is called suffix of w

Gianmaria De Tommasi – detommas@unina.it 16 of 65

Kleene closure of E UNI
NA

DIE
II I

The Kleene closure of an alphabet E is the set of all the
finite-length words defined on the elements of E and is denoted
with E∗

The empty word ε is always contained in E∗

Example:
E = {α, β}
E∗ = {ε , α , β , αα , αβ , βα , ββ , ααα , . . .}

E∗ contains every possible language L defined on the symbols
of E

Gianmaria De Tommasi – detommas@unina.it 17 of 65

Set operations UNI
NA

DIE
II I

Being sets, all the set operations are defined also on
languages:

union L1 ∪ L2
intersection L1 ∩ L2
difference L1 \ L2
complement with respect to E∗ E∗ \ L

Language specific operations are
Concatenation (of languages)
Prefix-closure
Kleen-closure

Gianmaria De Tommasi – detommas@unina.it 18 of 65

Concatenation of languages UNI
NA

DIE
II I

Given two languages La ,Lb ⊆ E∗, the concatenation LaLb is

LaLb := {w ∈ E∗ : w = wawb with wa ∈ La ,wb ∈ Lb}

Gianmaria De Tommasi – detommas@unina.it 19 of 65

Prefix-closure UNI
NA

DIE
II I

Let L ⊆ E∗, its prefix-closure is

L̄ := {w ∈ E∗ : ∃ t ∈ E∗ such that wt ∈ L}

It is always L ⊆ L̄
L is said to be prefix-closed if L = L̄

Gianmaria De Tommasi – detommas@unina.it 20 of 65

Kleene-closure UNI
NA

DIE
II I

Let L ⊆ E∗, its Kleene-closure is

L∗ := {ε} ∪ L ∪ LL ∪ LLL ∪ . . .

The Kleene-closure is idempotent, i.e. (L∗)∗ = L∗

Gianmaria De Tommasi – detommas@unina.it 21 of 65

Operator precedence UNI
NA

DIE
II I

Closures comes first. . .
. . .then concatenations. . .
. . .finally set operators
unless there are brackets

Gianmaria De Tommasi – detommas@unina.it 22 of 65

Special cases UNI
NA

DIE
II I

Always remember that ε 6= ∅
If L = ∅ ⇒ L̄ = ∅
If L 6= ∅ ⇒ ε ∈ L̄
∅∗ = {ε}
{ε}∗ = {ε}

Gianmaria De Tommasi – detommas@unina.it 23 of 65

(Some) Languages with finite cardinality may be specified by
enumerating their words
(Some) Languages with infinite cardinality may be specified in
terms of word features, example

L = {all the words that start with α}

It would be better to have a formal tool to specify
languages, in order to enable quantitative methods to
solve analysis and synthesis problems
Automata are one of these tools

Gianmaria De Tommasi – detommas@unina.it 24 of 65

Definition of automaton UNI
NA

DIE
II I

A (logic deterministic) automaton G is the 6-tuple

G = (X ,E , f , Γ , x0 Xm)

where
X is the discrete state space. If the cardinality of X is finite,
then G is also referred to as finite state machine (FSM) or finite
state automaton
E is the set of events associated with the transitions in G
f (· , ·) : X × E 7→ X is the transition function
Γ(·) : X 7→ 2E is the active event function. Γ(·) is implicitly
defined by f (· , ·)
x0 is the initial state
Xm ⊆ X is the the set of marked or final states (used in the SCT
context to deal with non-blocking requirements)

Gianmaria De Tommasi – detommas@unina.it 25 of 65

Graphical representation UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 26 of 65

Recursive extension of the transition
function f

UNI
NA

DIE
II I

It is common to recursively extend the transition function f (· , ·)
from the X × E domain to the X × E∗ one as follows
f (x , ε) := x for all x ∈ X
f (x ,we) := f (f (x ,w) ,e) with w ∈ E∗ and e ∈ E

Gianmaria De Tommasi – detommas@unina.it 27 of 65

Languages & automata UNI
NA

DIE
II I

Let G = (X ,E , f , Γ , x0 ,Xm)

Language generated by G – L(G)

L (G) := {w ∈ E∗ : f (x0 ,w) is defined}

Language marked by G – Lm(G)

Lm (G) := {w ∈ L (G) : f (x0 ,w) ∈ Xm}

By definition

L(G) is always prefix-closed, i.e. L(G) = L(G)

Lm (G) ⊆ Lm (G) ⊆ L (G)

If Lm (G) ⊂ L (G), then there are deadlock and/or livelock in G

If Lm (G) = L (G), then G is said to be non-blocking

Gianmaria De Tommasi – detommas@unina.it 28 of 65

Examples of blocking automata UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 29 of 65

Equivalence of automata UNI
NA

DIE
II I

Automata G1 and G2 are said to be equivalent if
L (G1) = L (G2)

Lm (G1) = Lm (G2)

Gianmaria De Tommasi – detommas@unina.it 30 of 65

Equivalence of automata - Example UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 31 of 65

Accessible part of G UNI
NA

DIE
II I

Removes all the states that are unreachable from x0 (and the
related transitions) Given G = (X ,E , f , x0 ,Xm) the accessible
part of G Ac(G) is

Ac (G) := (Xac ,E , fac , x0 ,Xac ,m)

where
Xac = {x ∈ X | ∃ w ∈ E∗ s.t. f (x0 ,w) = x}
Xac ,m = Xm ∩ Xac

fac = f|Xac×E 7→Xac

The accessible part does not affect nor L(G) neither Lm(G)

If G = Ac(G), then G is said to be accessible

Gianmaria De Tommasi – detommas@unina.it 32 of 65

Coaccessible part UNI
NA

DIE
II I

Removes all the states that do not lead to a marked state (and
the related transitions) Given G = (X ,E , f , x0 ,Xm) the
coaccessible part of G CoAc(G) is

CoAc (G) := (Xcoac ,E , fcoac , x0coac ,Xm)

where
Xcoac = {x ∈ X | ∃ w ∈ E∗ s.t, f (x ,w) ∈ Xm}
x0coac = x0 if x0 ∈ Xcoac , otherwise x0 is left undefined
fcoac = f|Xcoac×E 7→Xcoac

By definition CoAC(G) is always non-blocking, i.e. the
generated language is modified in such a way that

L (CoAc(G)) = Lm (CoAc(G)) = Lm (G)

If G = CoAc(G), then G is said to be coaccessible

Gianmaria De Tommasi – detommas@unina.it 33 of 65

Trim operation UNI
NA

DIE
II I

Trim(G) := CoAc (Ac(G)) = Ac (CoAc(G))

If G = Trim(G), then G is said to be trimmed
A trimmed automaton is both accessible and coaccessible

Gianmaria De Tommasi – detommas@unina.it 34 of 65

Complement wrt to E∗ UNI
NA

DIE
II I

Let G be a trimmed automaton with
Lm (G) = L
L (G) = L̄

The complement automaton Gcomp is such that

L (Gcomp) = E∗ \ L

Gianmaria De Tommasi – detommas@unina.it 35 of 65

How to build Gcomp UNI
NA

DIE
II I

1 Complete the transition function f (· , ·) as follows

ftot (x ,e) :=

{
f (x ,e) if e ∈ Γ(x)
xd otherwise

with xd /∈ Xm and ftot (xd ,e) = xd ∀ e ∈ E
2 Let

Gcomp = (X ∪ {xd} ,E , ftot , x0 ,X new
m)

with X new
m = (X ∪ {xd}) \ Xm

Clearly it is
L (Gcomp) = E∗

Lm (Gcomp) = E∗ \ Lm (G)

Gianmaria De Tommasi – detommas@unina.it 36 of 65

Example of complement automaton UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 37 of 65

Composition operations UNI
NA

DIE
II I

Figure: Cross product G1 ×G2 and parallel composition (or
concurrent product) G1‖G2

Gianmaria De Tommasi – detommas@unina.it 38 of 65

Cross product G1 ×G2
UNI
NA

DIE
II I

Given G1 and G2 the product G1 ×G2 automaton is

G1×G2 := Ac
(
X1 × X2 ,E1 ∩ E2 , f , Γ1×2 , (x01 , x02) ,Xm1 × Xm2

)
with

f ((x1 , x2) ,e) :=

{
(f1(x1 ,e) , f2(x2 ,e)) if e ∈ Γ1(x1) ∩ Γ2(x2)
undefined otherwise

and Γ1×2(x1 , x2) = Γ1(x1) ∩ Γ2(x2)

NOTE: an event occurs in G1 ×G2 if and only if it occurs in both
automata G1 and G2. It follows that
L (G1 ×G2) = L (G1) ∩ L (G2)

Lm (G1 ×G2) = Lm (G1) ∩ Lm (G2)

Gianmaria De Tommasi – detommas@unina.it 39 of 65

Example of cross product UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 40 of 65

Parallel composition G1‖G2
UNI
NA

DIE
II I

Given G1 and G2 the parallel composition G1‖G2 automaton
is

G1‖G2 := Ac
(
X1 × X2 ,E1 ∪ E2 , f , Γ1‖2 , (x01 , x02) ,Xm1 × Xm2

)
with

f ((x1 , x2) ,e) :=


(f1(x1 ,e) , f2(x2 ,e)) if e ∈ Γ1(x1) ∩ Γ2(x2)
(f1(x1 ,e) , x2) if e ∈ Γ1(x1) \ E2
(x1 , f2(x2 ,e) , x2) if e ∈ Γ2(x2) \ E1
undefined otherwise

and
Γ1‖2(x1 , x2) = [Γ1(x1) ∩ Γ2(x2)] ∪ [Γ1(x1) \ E2] ∪ [Γ2(x2) \ E1]

Gianmaria De Tommasi – detommas@unina.it 41 of 65

Example - Simple FMS UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 42 of 65

Dijkstra’s dining philosophers problem
and the curse of dimensionality

UNI
NA

DIE
II I

Dijkstra’s dining philosophers problem (1965)
Deadlock due to shared resources (the forks)

Gianmaria De Tommasi – detommas@unina.it 43 of 65

Two dining philopophers UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 44 of 65

Modelling philosophers and forks UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 45 of 65

The overall system F1‖F2‖P1‖P2 UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 46 of 65

The curse of dimensionality UNI
NA

DIE
II I

2 philosophers 2 forks→ overall model with 9 states
3 philosophers 3 forks→ overall model with 504 states
4 philosophers 4 forks→ overall model with 4.080 states
5 philosophers 5 forks→ overall model with 32.736 states
6 philosophers 6 forks→ overall model with 262.080 states→
about 1 minute to compute the parallel composition on this
laptop
7 philosophers 7 forks→ overall model with 2.097.024 states
→ more than 1 hour to compute the parallel composition on
this laptop
8 philosophers 8 forks→ GOD KNOWS :)

Gianmaria De Tommasi – detommas@unina.it 47 of 65

Projection function UNI
NA

DIE
II I

Given the two sets of events E1 and E2, we need to introduce
the projection functions Pi(·) and their inverse in order to
derive a compact expression for both the generated and
marked languages of G1‖G2

Pi : (E1 ∪ E2)∗ 7→ E∗i
Pi(ε) := ε
Pi(e) := e if e ∈ Ei
Pi(e) := ε if e /∈ Ei
Pi(we) := Pi(w)Pi(e) w ∈ (E1 ∪ E2)∗ ,e ∈ (E1 ∪ E2)

The projection function will be used also when uncertainty in
terms of presence of unobservable events will be considered

Gianmaria De Tommasi – detommas@unina.it 48 of 65

Inverse projection UNI
NA

DIE
II I

The inverse projection P−1
i (·) is defined as

P−1
i : E∗i 7→ 2(E1∪E2)

∗

P−1
i (t) := {w ∈ (E1 ∪ E2)∗ : Pi(w) = t}

While the projection of a word is a (possibly empty) word, the
inverse projection of a word is a language

Gianmaria De Tommasi – detommas@unina.it 49 of 65

Extend projection to languages UNI
NA

DIE
II I

Given a language L defined over E1 ∪ E2, the extensions of the
projection functions to L are

Pi (L) := {t ∈ E∗i : ∃ w ∈ L ,Pi(w) = t}

Given a language Li ⊆ E∗i defined over Ei(i = 1 ,2), the
extension of the inverse projection to Li is

P−1
i (Li) := {w ∈ (E1 ∪ E2)∗ : ∃ t ∈ Li , ,Pi(w) = t}

Note that
Pi

(
P−1

i (L)
)

= L

and that
L ⊆ P−1

i (Pi (L))

Gianmaria De Tommasi – detommas@unina.it 50 of 65

Examples of projection UNI
NA

DIE
II I

Let E1 = {a ,b} and E2 = {b , c} and

L = {c , ccb ,abc , cacb , cabcbbca}

Then
P1 (L) = {ε ,b ,ab ,abbba}
P2 (L) = {c , ccb ,bc , cbcbbc}
P−1

1 ({ε}) = {c}∗

P−1
1 ({ab}) = {c}∗ {a} {c}∗ {b} {c}∗

P−1
1 (P1 ({abc})) = P−1

1 ({ab})

Gianmaria De Tommasi – detommas@unina.it 51 of 65

G1‖G2 languages UNI
NA

DIE
II I

Language generated by G1‖G2

L (G1‖G2) = P−1
1 (L (G1)) ∩ P−1

2 (L (G2))

Language marked by G1‖G2

Lm (G1‖G2) = P−1
1 (Lm (G1)) ∩ P−1

2 (Lm (G2))

Gianmaria De Tommasi – detommas@unina.it 52 of 65

Why? UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 53 of 65

Regular expressions UNI
NA

DIE
II I

Regular expressions over an alphabet E – RE(E)

Given the alphabet E , the regular expressions defined over E
are defined as follows
1 ∅ and e, for all e ∈ E are regular expressions
2 if a ,b ∈ RE(E) then the following are regular expressions

a ∪ b (union)
ab and ba (concatenation)
a∗ and b∗ (Kleene closure)

3 There are no other regular expressions than the ones defined
by rules 1 and 2

Gianmaria De Tommasi – detommas@unina.it 54 of 65

Regular languages UNI
NA

DIE
II I

Regular languages – Reg(E)

In words, the class of regular languages defined over E –
Reg(E) – is the class of languages that can be built by using
regular expressions

Gianmaria De Tommasi – detommas@unina.it 55 of 65

Finite state automata
and regular languages

UNI
NA

DIE
II I

Let us denote with Rec(E) the class of recognizable languages,
i.e. the languages that can be marked by finite state automata.

Kleene Theorem (1936)

Rec(E) = Reg(E)

S. Haar, T. Masopust
Languages, decidability, and complexity
in Control of Discrete-Event Systems
Springer, 2013

Gianmaria De Tommasi – detommas@unina.it 56 of 65

Are all the languages regular? UNI
NA

DIE
II I

Clearly, the answer is NO!

Gianmaria De Tommasi – detommas@unina.it 57 of 65

A glimpse of SCT UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 58 of 65

Ramadge & Wonham
Supervisory Control Theory

UNI
NA

DIE
II I

A nice tutorial lecture can be found here
https://www.control.utoronto.ca/∼wonham/Research.html

Gianmaria De Tommasi – detommas@unina.it 59 of 65

https://www.control.utoronto.ca/~wonham/Research.html

Software tools UNI
NA

DIE
II I

Many tools – Most of them developed by academic groups

TCT (Wonham’s group @ University of Toronto)
https://www.control.utoronto.ca/∼wonham/Research.html

UMDES-DESUMA (Lafortune’s group @ University of Michigan)
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA

Supremica (Chalmers University)
https://supremica.org/

. . .

Some tools includes automatic code generation for industrial devices
(IEC-61131 compliant)

For those who are interested a nice (and not too old) overview can be found
here

L. Preischadt Pinheiro et al.
Nadzoru: A Software Tool for Supervisory Control of Discrete Event
Systems
5th IFAC Int. Workshop on Dependable Control of Discrete Systems,
2015

Gianmaria De Tommasi – detommas@unina.it 60 of 65

https://www.control.utoronto.ca/~wonham/Research.html
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://supremica.org/

UMDES .fsm file UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 61 of 65

Some UMDES commands UNI
NA

DIE
II I

acc→ accessible part Ac(G)

co_acc→ coaccessible part CoAc(G)

trim→ trim automaton Trim(G)

comp_fsm→ complement automaton Gcomp

product→ cross product G1 ×G2

par_comp→ parallel composition G1‖G2

Gianmaria De Tommasi – detommas@unina.it 62 of 65

For those of you who like GUI, there is DESUMA (or
Supremica or . . .)

Gianmaria De Tommasi – detommas@unina.it 63 of 65

References UNI
NA

DIE
II I

Chapter 2 (up to section 2.3.2) in

C. G. Cassandras and S. Lafortune
Introduction to Discrete Event Systems
Springer, 2008

Gianmaria De Tommasi – detommas@unina.it 64 of 65

Discrete Event Systems,
Languages and Automata

From observability to privacy and security in discrete event systems

Prof. Gianmaria DE TOMMASI
Email: detommas@unina.it

December 2020

UNI
NA

DIE
II I

DIPARTIMENTO DI INGEGNERIA ELETTRICA
E DELLE TECNOLOGIE DELL’INFORMAZIONE

VERSITA DEGLI STUDI DI

POLI FEDERICO II
,

	Course overview
	Formal languages
	Definitions
	Operations on languages

	Languages and automata
	Operations on automata

	Finite state automata and regular languages
	A glimpse of Supervisory Control Theory
	Software tools

