Discrete Event Systems, Languages and Automata

From observability to privacy and security in discrete event systems

Prof. Gianmaria DE TOMMASI Email: detommas@unina.it

December 2020

- 2 Formal languages
 - Definitions
 - Operations on languages
- 3 Languages and automataOperations on automata
- 4 Finite state automata and regular languages
- 5 A glimpse of Supervisory Control Theory
- 6 Software tools

- Study of dynamic systems modelled as Discrete Event Systems (DES)
 - nonlinear...
 -with discrete state space...
 - ...whose dynamic is driven by the occurrence of *asynchronous* events over time
- Uncertain DES, where the main source of uncertainty is due to the occurrence of unobservable events
- This framework can be used to study fault-detection and secrecy problems when the system of interest can be modelled as a logical DES

Formal languages

- A logical DES can be seen as a formal language generator
- The events that drive the system dynamic can be regarded as letters of an alphabet E
- The system trajectories become words (strings, sequences)
- The system itself can be regarded as a generator of words \rightarrow a generator (recognizer) of a formal language
- Different tools can be used to model DES at the logical level: queue systems, look-up-tables, automata, Petri nets
- Some of this tools can be also extended to study *timed* DES: timed automata and timed Petri nets, Markov chains, (max,+) algebra,...

Modelling logical DES

◆□ → ◆圖 → ◆ 国 →

Gianmaria De Tommasi - detommas@unina.it

Examples

There are analysis and synthesis tasks that cannot be practically performed when dealing with large scale/complex systems, if these are modelled using differential equations (ODEs)

$$\dot{x}(t) = f(x(t), u(t), t),$$

 $y(t) = g(x(t), u(t), t).$

- The DES framework permits to move to a higher level of abstraction, where (some) physical details can be neglected
- When this is not possible some hybrid approaches are possible (both for modelling and control)

Bestiarium of dynamical systems

▲□▶▲圖▶▲≣≯

Gianmaria De Tommasi - detommas@unina.it

Bestiarium of dynamical systems

< □ > < @ > < ≥ >

Gianmaria De Tommasi – detommas@unina.it

The DES research community

- Researchers in this field have different backgrounds: computer science, information theory, operations research, control & automation
- Most of the concepts originated in the computer science community (some date back to Turing!)
- These concepts have been brought in the control community in the 80's by Ramadge and Wonham (Supervisory Control Theory, SCT)
- Even earlier, in the mid 70's, Petri nets were used to derive the Grafcet programming language, which is used in PLCs (nowadays known as SFC)
- The jargon adopted in this course is the one usually adopted by the automation-oriented researchers, as well as most of the reported results have been published on control and automation journals

W. M. Wonham, K. Cai, K. Rudie

Supervisory control of discrete-event systems: A brief history Annual Reviews in Control, 2018

Course syllabus

- 1 Discrete Event Systems (DES), Languages and Automata (this lesson)
- 2 Petri nets (PNs) and their twofold representation to model DES
- 3 MILP and ILP formulations: logical conditions, binary variables "do everything", and variable connecting (prof. Claudio Sterle)
- 4 Adding uncertainty: unobservable events and observers for finite state automata and PNs
- Augmenting the observers: diagnosability of prefix-closed languages, diagnosers and the fault detection for finite state automata (prof. Francesco Basile)
- 6 Diagnosability and fault detection in PNs Part I: graph-based approaches (prof. Francesco Basile)
- 7 Diagnosability and fault detection in PNs Part II: algebraic approaches for bounded systems
- 8 Security issues in DES: non-interference and opacity
- 9 Non-interference and opacity enforcement
- 10 Open issues

- C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems Springer, 2008
- C. Seatzu, M. Silva, J. H. van Schuppen (eds.), Control of Discrete-Event Systems Springer, 2013
 - Some papers :)

Now we can start!

1 Discrete Event Systems (DES), Languages and Automata

- 2 Petri nets (PNs) and their twofold representation to model DES
- 3 MILP and ILP formulations: logical conditions, binary variables "do everything", and variable connecting
- 4 Adding uncertainty: unobservable events and observers for finite state automata and PNs
- 5 Augmenting the observers: diagnosability of prefix-closed languages, diagnosers and the fault detection for finite state automata
- 6 Diagnosability and fault detection in PNs Part I: graph-based approaches
- 7 Diagnosability and fault detection in PNs Part II: algebraic approaches for bounded systems
- 8 Security issues in DES: non-interference and opacity
- 9 Non-interference and opacity enforcement
- 10 Open issues

Given a DES, the events that may occur can be seen as elements (*symbols*) of an **alphabet** *E* set

$$E = \{a, b, c, \ldots\},\$$

where the symbols *a*, *b*, *c*, ... are used to denotes events

A word (string, trace) w is a sequence of event of finite length

Example: $w = e^1 e^2 e^3 = aab$

- |w| denotes the length of a word is denoted (some authors use ||w||)
- ε denotes the empty word or silent event, i.e. $|\varepsilon| = 0$

- A language L defined over an alphabet E is a set of words defined on the symbols of E
- The cardinality of a language L can be either finite or infinite

- The key operation among words is the concatenation
- The concatenation of two words w_1 and w_2 is the new string w consisting of the events in w_1 immediately followed by the events in w_2 , and it is denoted $w = w_1 w_2$
- In general, if $u = w_1 w_2$ and $v = w_2 w_1$ it does not necessarily follows that $u = v \rightarrow$ concatenation is not commutative
- The empty word ε is the identity element of concatenation, i.e. wε = εw = w
- Given a word w = tuv the following terminology is adopted
 - t is called prefix of w
 - *u* is called **substring** of *w*
 - v is called suffix of w

- The Kleene closure of an alphabet E is the set of all the finite-length words defined on the elements of E and is denoted with E*
- The empty word *ε* is always contained in *E**
- Example:

$$E = \{\alpha, \beta\}$$
$$E^* = \{\varepsilon, \alpha, \beta, \alpha\alpha, \alpha\beta, \beta\alpha, \beta\beta, \alpha\alpha\alpha, \ldots\}$$

E* contains every possible language L defined on the symbols of E

- Being sets, all the set operations are defined also on languages:
 - union $L_1 \cup L_2$
 - **intersection** $L_1 \cap L_2$
 - **difference** $L_1 \setminus L_2$
 - complement with respect to $E^* E^* \setminus L$
- Language specific operations are
 - Concatenation (of languages)
 - Prefix-closure
 - Kleen-closure

Given two languages L_a , $L_b \subseteq E^*$, the concatenation $L_a L_b$ is

$$L_a L_b := \{ w \in E^* : w = w_a w_b \text{ with } w_a \in L_a, w_b \in L_b \}$$

• Let $L \subseteq E^*$, its prefix-closure is

$$\overline{L} := \{ w \in E^* : \exists t \in E^* \text{ such that } wt \in L \}$$

- It is always $L \subseteq \overline{L}$
- *L* is said to be **prefix-closed** if $L = \overline{L}$

• Let $L \subseteq E^*$, its Kleene-closure is $L^* := \{\varepsilon\} \cup L \cup LL \cup LLL \cup \ldots$

■ The Kleene-closure is idempotent, i.e. $(L^*)^* = L^*$

- Closures comes first...
-then concatenations....
- ...finally set operators
- unless there are brackets

- If $L \neq \emptyset \Rightarrow \varepsilon \in \overline{L}$
- $\blacksquare \ \emptyset^* = \{\varepsilon\}$
- $\blacksquare \ \{\varepsilon\}^* = \{\varepsilon\}$

- (Some) Languages with finite cardinality may be specified by enumerating their words
- (Some) Languages with infinite cardinality may be specified in terms of *word features*, example

 $L = \{ all the words that start with \alpha \}$

- It would be better to have a formal tool to specify languages, in order to enable *quantitative* methods to solve analysis and synthesis problems
- Automata are one of these tools

A (logic deterministic) automaton *G* is the 6-tuple

$$G = (X, E, f, \Gamma, x_0 X_m)$$

where

- X is the *discrete* state space. If the cardinality of X is finite, then G is also referred to as *finite state machine (FSM)* or *finite state automaton*
- E is the set of events associated with the transitions in G
- $f(\cdot, \cdot) : X \times E \mapsto X$ is the *transition function*
- Γ(·) : X → 2^E is the active event function. Γ(·) is implicitly defined by f(·, ·)
- x₀ is the initial state
- X_m ⊆ X is the the set of marked or final states (used in the SCT context to deal with non-blocking requirements)

Gianmaria De Tommasi - detommas@unina.it

- It is common to recursively extend the transition function $f(\cdot, \cdot)$ from the $X \times E$ domain to the $X \times E^*$ one as follows
- $f(x,\varepsilon) := x$ for all $x \in X$
- f(x, we) := f(f(x, w), e) with $w \in E^*$ and $e \in E$

Languages & automata

Let $G = (X, E, f, \Gamma, x_0, X_m)$

Language generated by $G - \mathcal{L}(G)$

 $\mathcal{L}(G) := \{w \in E^* : f(x_0, w) \text{ is defined}\}$

Language marked by $G - \mathcal{L}_m(G)$

$$\mathcal{L}_{m}\left(G
ight) :=\left\{ w\in\mathcal{L}\left(G
ight) \ : \ f(x_{0}\,,w)\in X_{m}
ight\}$$

By definition

- $\mathcal{L}(G)$ is always prefix-closed, i.e. $\overline{\mathcal{L}(G)} = \mathcal{L}(G)$
- If $\overline{\mathcal{L}_m(G)} \subset \mathcal{L}(G)$, then there are *deadlock* and/or *livelock* in *G*
- If $\overline{\mathcal{L}_m(G)} = \mathcal{L}(G)$, then G is said to be *non-blocking*

Examples of blocking automata

Automata G_1 and G_2 are said to be equivalent if $\mathcal{L}(G_1) = \mathcal{L}(G_2)$ $\mathcal{L}_m(G_1) = \mathcal{L}_m(G_2)$

Equivalence of automata - Example

Removes all the states that are unreachable from x_0 (and the related transitions) Given $G = (X, E, f, x_0, X_m)$ the **accessible** part of **G** Ac(G) is

$$Ac(G) := (X_{ac}, E, f_{ac}, x_0, X_{ac,m})$$

where

■ $X_{ac} = \{x \in X \mid \exists w \in E^* \text{ s.t. } f(x_0, w) = x\}$

$$X_{ac,m} = X_m \cap X_{ac}$$

 $\bullet f_{ac} = f_{|X_{ac} \times E \mapsto X_{ac}}$

The accessible part does not affect nor L(G) neither L_m(G)
If G = Ac(G), then G is said to be accessible

Coaccessible part

Removes all the states that do not lead to a marked state (and the related transitions) Given $G = (X, E, f, x_0, X_m)$ the **coaccessible part of G** CoAc(G) is

$$CoAc(G) := (X_{coac}, E, f_{coac}, x_{0_{coac}}, X_m)$$

where

$$X_{coac} = \{x \in X \mid \exists w \in E^* \text{ s.t, } f(x, w) \in X_m\}$$

• $x_{0_{coac}} = x_0$ if $x_0 \in X_{coac}$, otherwise x_0 is left undefined • $f_{coac} = f_{|X_{coac} \times E \mapsto X_{coac}}$

By definition CoAC(G) is always non-blocking, i.e. the generated language is modified in such a way that

$$\mathcal{L}(CoAc(G)) = \overline{\mathcal{L}_m(CoAc(G))} = \overline{\mathcal{L}_m(G)}$$

If G = CoAc(G), then G is said to be *coaccessible*

- $\blacksquare Trim(G) := CoAc(Ac(G)) = Ac(CoAc(G))$
- If G = Trim(G), then G is said to be trimmed
- A trimmed automaton is both accessible and coaccessible

Let G be a trimmed automaton with

- $\mathcal{L}_m(G) = L$ $\mathcal{L}(G) = \overline{L}$
- The **complement automaton** *G*^{comp} is such that

$$\mathcal{L}(G^{comp}) = E^* \setminus L$$

1 Complete the transition function $f(\cdot, \cdot)$ as follows

$$f_{tot}(x, e) := \begin{cases} f(x, e) & \text{if } e \in \Gamma(x) \\ x_d & \text{otherwise} \end{cases}$$

with $x_d \notin X_m$ and $f_{tot}(x_d, e) = x_d \forall e \in E$

2 Let

$$G^{comp} = (X \cup \{x_d\}, E, f_{tot}, x_0, X_m^{new})$$

with $X_m^{new} = (X \cup \{x_d\}) \setminus X_m$

Clearly it is

$$\blacksquare \mathcal{L}(G^{comp}) = E^*$$

$$\blacksquare \mathcal{L}_m(G^{comp}) = E^* \setminus \mathcal{L}_m(G)$$

Example of complement automaton

Automaton G

Trimmed automaton

Figure: Cross product $G_1 \times G_2$ and parallel composition (or concurrent product) $G_1 || G_2$

Given G_1 and G_2 the **product** $G_1 \times G_2$ automaton is

$$G_{1} \times G_{2} := Ac(X_{1} \times X_{2}, E_{1} \cap E_{2}, f, \Gamma_{1 \times 2}, (x_{0_{1}}, x_{0_{2}}), X_{m_{1}} \times X_{m_{2}})$$

with

$$f((x_1, x_2), e) := \begin{cases} (f_1(x_1, e), f_2(x_2, e)) & \text{if } e \in \Gamma_1(x_1) \cap \Gamma_2(x_2) \\ \text{undefined} & \text{otherwise} \end{cases}$$

and $\Gamma_{1\times 2}(x_1, x_2) = \Gamma_1(x_1) \cap \Gamma_2(x_2)$

NOTE: an event occurs in $G_1 \times G_2$ if and only if it occurs in both automata G_1 and G_2 . It follows that

$$\blacksquare \mathcal{L}(G_1 \times G_2) = \mathcal{L}(G_1) \cap \mathcal{L}(G_2)$$

$$\blacksquare \mathcal{L}_m(G_1 \times G_2) = \mathcal{L}_m(G_1) \cap \mathcal{L}_m(G_2)$$

Example of cross product

Given G_1 and G_2 the **parallel composition** $G_1 || G_2$ automaton is

$$G_1 \| G_2 := Ac \left(X_1 \times X_2, E_1 \cup E_2, f, \Gamma_1 \|_2, (x_{0_1}, x_{0_2}), X_{m_1} \times X_{m_2} \right)$$
 with

$$f((x_1, x_2), e) := \begin{cases} (f_1(x_1, e), f_2(x_2, e)) & \text{if } e \in \Gamma_1(x_1) \cap \Gamma_2(x_2) \\ (f_1(x_1, e), x_2) & \text{if } e \in \Gamma_1(x_1) \setminus E_2 \\ (x_1, f_2(x_2, e), x_2) & \text{if } e \in \Gamma_2(x_2) \setminus E_1 \\ \text{undefined} & \text{otherwise} \end{cases}$$

and

 $\Gamma_{1||2}(x_{1}, x_{2}) = [\Gamma_{1}(x_{1}) \cap \Gamma_{2}(x_{2})] \cup [\Gamma_{1}(x_{1}) \setminus E_{2}] \cup [\Gamma_{2}(x_{2}) \setminus E_{1}]$

Example - Simple FMS

12 . O (W1.F.W2

12 0 (A1.F.W2)

e)

▲口 ▶ ▲圖 ▶ ▲ ≧ ▶

Gianmaria De Tommasi – detommas@unina.it

42 of 65

Dijkstra's dining philosophers problem and the curse of dimensionality

Dijkstra's dining philosophers problem (1965) Deadlock due to shared resources (the forks)

Modelling philosophers and forks

The overall system F1||F2||P1||P2

F1 || F2 || P1 || P2 -> 9 STATES

- **2** philosophers 2 forks \rightarrow overall model with 9 states
- **3** philosophers 3 forks \rightarrow overall model with 504 states
- 4 philosophers 4 forks \rightarrow overall model with 4.080 states
- **5** philosophers 5 forks \rightarrow overall model with 32.736 states
- 6 philosophers 6 forks → overall model with 262.080 states → about 1 minute to compute the parallel composition on this laptop
- 7 philosophers 7 forks → overall model with 2.097.024 states → more than 1 hour to compute the parallel composition on this laptop
- **8** philosophers 8 forks \rightarrow **GOD KNOWS :)**

■ Given the two sets of events *E*₁ and *E*₂, we need to introduce the projection functions *P_i(·)* and their inverse in order to derive a compact expression for both the generated and marked languages of *G*₁ || *G*₂

$$P_i:(E_1\cup E_2)^*\mapsto E_i^*$$

$$\begin{cases} P_i(\varepsilon) := \varepsilon \\ P_i(e) := e & \text{if } e \in E_i \\ P_i(e) := \varepsilon & \text{if } e \notin E_i \\ P_i(we) := P_i(w)P_i(e) & w \in (E_1 \cup E_2)^* \ , e \in (E_1 \cup E_2) \end{cases}$$

The projection function will be used also when uncertainty in terms of presence of unobservable events will be considered

The inverse projection $P_i^{-1}(\cdot)$ is defined as

$$P_i^{-1}: E_i^* \mapsto 2^{(E_1 \cup E_2)^*}$$

$$P_i^{-1}(t) := \{ w \in (E_1 \cup E_2)^* : P_i(w) = t \}$$

While the projection of a word is a (possibly empty) word, the inverse projection of a word is a language

■ Given a language *L* defined over *E*₁ ∪ *E*₂, the extensions of the projection functions to *L* are

$$P_i(L) := \{t \in E_i^* : \exists w \in L, P_i(w) = t\}$$

Given a language $L_i \subseteq E_i^*$ defined over E_i (i = 1, 2), the extension of the inverse projection to L_i is

$$P_i^{-1}(L_i) := \{ w \in (E_1 \cup E_2)^* : \exists t \in L_i, , P_i(w) = t \}$$

Note that

$$P_{i}\left(P_{i}^{-1}\left(L\right)\right)=L$$

and that

 $L\subseteq P_{i}^{-1}\left(P_{i}\left(L\right)\right)$

Let
$$E_1 = \{a, b\}$$
 and $E_2 = \{b, c\}$ and

 $L = \{c, ccb, abc, cacb, cabcbbca\}$

Then

P₁ (L) = {
$$\varepsilon$$
, b, ab, abbba}
P₂ (L) = { c , ccb, bc, cbcbbc}
P₁⁻¹ ({ ε }) = { c }*
P₁⁻¹ ({ ab }) = { c }* { a } { c }* { b } { c }*
P₁⁻¹ ({ ab }) = { c }* { a } { c }* { b } { c }*

Language generated by $G_1 || G_2$

$$\mathcal{L}(G_1 \| G_2) = P_1^{-1} (\mathcal{L}(G_1)) \cap P_2^{-1} (\mathcal{L}(G_2))$$

Language marked by $G_1 || G_2$

$$\mathcal{L}_m(G_1 || G_2) = P_1^{-1} \left(\mathcal{L}_m(G_1) \right) \cap P_2^{-1} \left(\mathcal{L}_m(G_2) \right)$$

Why?

Regular expressions over an alphabet E - RE(E)

Given the alphabet E, the regular expressions defined over E are defined as follows

- 1 \emptyset and e, for all $e \in E$ are regular expressions
- 2 if $a, b \in RE(E)$ then the following are regular expressions
 - *a* ∪ *b* (union)
 - *ab* and *ba* (concatenation)
 - a* and b* (Kleene closure)
- 3 There are no other regular expressions than the ones defined by rules 1 and 2

Regular languages – Reg(E)

In words, the class of **regular languages** defined over E - Reg(E) – is the class of languages that can be *built* by using regular expressions

Let us denote with Rec(E) the class of recognizable languages, i.e. the languages that can be marked by finite state automata.

Kleene Theorem (1936)

Rec(E) = Reg(E)

S. Haar, T. Masopust Languages, decidability, and complexity in *Control of Discrete-Event Systems* Springer, 2013

Clearly, the answer is NO!

A glimpse of SCT

A nice tutorial lecture can be found here

https://www.control.utoronto.ca/~wonham/Research.html

Proposed (1982): Supervisory Control Theory (Peter Ramadge & WMW)

- Automaton representation
 - internal state descriptions for concrete modeling and computation
- · Language representation
 - external i/o descriptions for implementation-independent concept formulation
- Simple control 'technology'

Community Response

Anonymous Referees (1983-87)

• [Leading control journal] "Automata have no place in control engineering."

Reject!

[Leading computer journal] "Finite automata and regular languages are nothing new at best and trivial at worst."

Reject!

• SIAM J. Control & Optimization "So this is optimal control? Well..." Accept

Software tools

- Many tools Most of them developed by academic groups
 - TCT (Wonham's group @ University of Toronto)
 - https://www.control.utoronto.ca/~wonham/Research.html
 - **UMDES-DESUMA** (Lafortune's group @ University of Michigan)
 - https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
 - Supremica (Chalmers University)
 - https://supremica.org/
 - **...**
- Some tools includes automatic code generation for industrial devices (IEC-61131 compliant)
- For those who are interested a nice (and not too old) overview can be found here
 - L. Preischadt Pinheiro et al.

Nadzoru: A Software Tool for Supervisory Control of Discrete Event Systems

5th IFAC Int. Workshop on Dependable Control of Discrete Systems, 2015

(日)

UMDES allows to specify automata as .fsm text files

Example

- 4 ← number of states
- I 1 1 (state name, marked state flag, number of output transitions)
- s W c o (output event, new state, controllability flag, observability flag)

W 0 1 f A uc o A 0 1 t T c o T 0 1 ft I uc o

- $acc \rightarrow accessible part Ac(G)$
- $co_acc \rightarrow coaccessible part CoAc(G)$
- trim \rightarrow trim automaton Trim(G)
- $comp_fsm \rightarrow complement automaton G^{comp}$
- product \rightarrow cross product $G_1 \times G_2$
- par_comp \rightarrow parallel composition $G_1 || G_2$

For those of you who like GUI, there is DESUMA (or Supremica or \ldots)

View UMDES			
			1
			۳
	Automata Pro	perties	
	Name Ne	e1	
	Editable true		
	States 15		
(a)	Transitions 4		
	V STATES		
trans1	State Name	Marked	Initial
	s0		2
\sim	\$1		
(50)	s10		
\sim	\$11		
	\$12	2	
/ trans4 \ trans2	\$13		
	\$14		
	\$2		
(s5) [[s12]]) trans3	\$3	×	
	\$4		
	\$5		
	\$6		
	\$7	×	
	\$8		
	\$9	×	
	▼ EVENTS		
	Name	Obrene	Control
	trace1	2	(F)
	trans2		
	trans2		~
	trans4	2	~

Chapter 2 (up to section 2.3.2) in

C. G. Cassandras and S. Lafortune Introduction to Discrete Event Systems Springer, 2008

Discrete Event Systems, Languages and Automata

From observability to privacy and security in discrete event systems

Prof. Gianmaria DE TOMMASI Email: detommas@unina.it

December 2020

