Discrete Event Systems, Languages and Automata

From observability to privacy and security in discrete event systems

Prof. Gianmaria De TOMMASI
Email: detommas@unina.it
December 2020

DIPARTIMENTO d INGEGNERIA ELEITRICA edelle TECNOLOGIE delu'INFORMAZIONE

Outline

1 Course overview

2 Formal languages
■ Definitions
■ Operations on languages
3 Languages and automata
■ Operations on automata
4 Finite state automata and regular languages
5 A glimpse of Supervisory Control Theory
6 Software tools

Context

■ Study of dynamic systems modelled as Discrete Event Systems (DES)

- nonlinear. . .
- . . .with discrete state space. . .
- ...whose dynamic is driven by the occurrence of asynchronous events over time
■ Uncertain DES, where the main source of uncertainty is due to the occurrence of unobservable events
■ This framework can be used to study fault-detection and secrecy problems when the system of interest can be modelled as a logical DES

Modelling logical DES

Formal languages

A logical DES can be seen as a formal language generator

- The events that drive the system dynamic can be regarded as letters of an alphabet E
- The system trajectories become words (strings, sequences)
- The system itself can be regarded as a generator of words \rightarrow a generator (recognizer) of a formal language
- Different tools can be used to model DES at the logical level: queue systems, look-up-tables, automata, Petri nets
- Some of this tools can be also extended to study timed DES: timed automata and timed Petri nets, Markov chains, $(\max ,+)$ algebra,...

Modelling logical DES

Petri nets

Automata

Examples

Different levels of abstraction when studying dynamical systems

■ There are analysis and synthesis tasks that cannot be practically performed when dealing with large scale/complex systems, if these are modelled using differential equations (ODEs)

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t), t) \\
& y(t)=g(x(t), u(t), t)
\end{aligned}
$$

■ The DES framework permits to move to a higher level of abstraction, where (some) physical details can be neglected
■ When this is not possible some hybrid approaches are possible (both for modelling and control)

Bestiarium of dynamical systems

Bestiarium of dynamical systems

The DES research community

－Researchers in this field have different backgrounds：computer science， information theory，operations research，control \＆automation
－Most of the concepts originated in the computer science community （some date back to Turing！）
－These concepts have been brought in the control community in the 80＇s by Ramadge and Wonham（Supervisory Control Theory，SCT）
－Even earlier，in the mid 70＇s，Petri nets were used to derive the Grafcet programming language，which is used in PLCs（nowadays known as SFC）
－The jargon adopted in this course is the one usually adopted by the automation－oriented researchers，as well as most of the reported results have been published on control and automation journals
\square W．M．Wonham，K．Cai，K．Rudie
Supervisory control of discrete－event systems：A brief history Annual Reviews in Control， 2018

Course syllabus

1 Discrete Event Systems (DES), Languages and Automata (this lesson)
2 Petri nets (PNs) and their twofold representation to model DES
3 MILP and ILP formulations: logical conditions, binary variables "do everything", and variable connecting (prof. Claudio Sterle)
4 Adding uncertainty: unobservable events and observers for finite state automata and PNs
5 Augmenting the observers: diagnosability of prefix-closed languages, diagnosers and the fault detection for finite state automata (prof. Francesco Basile)
6 Diagnosability and fault detection in PNs - Part I: graph-based approaches (prof. Francesco Basile)
7 Diagnosability and fault detection in PNs - Part II: algebraic approaches for bounded systems
8 Security issues in DES: non-interference and opacity
9 Non-interference and opacity enforcement
10 Open issues

References

© C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems Springer, 2008
\otimes C. Seatzu, M. Silva, J. H. van Schuppen (eds.), Control of Discrete-Event Systems Springer, 2013

圊 Some papers:)

Now we can start!

1 Discrete Event Systems (DES), Languages and Automata
2 Petri nets (PNs) and their twofold representation to model DES
3 MILP and ILP formulations: logical conditions, binary variables "do everything", and variable connecting
4 Adding uncertainty: unobservable events and observers for finite state automata and PNs
5 Augmenting the observers: diagnosability of prefix-closed languages, diagnosers and the fault detection for finite state automata
6 Diagnosability and fault detection in PNs - Part I: graph-based approaches
7 Diagnosability and fault detection in PNs - Part II: algebraic approaches for bounded systems
8 Security issues in DES: non-interference and opacity
9 Non-interference and opacity enforcement
10 Open issues

Alphabet and words

■ Given a DES, the events that may occur can be seen as elements (symbols) of an alphabet E set

$$
E=\{a, b, c, \ldots\}
$$

where the symbols a, b, c, \ldots are used to denotes events
■ A word (string, trace) w is a sequence of event of finite length
Example: $w=e^{1} e^{2} e^{3}=a a b$
■ $|w|$ denotes the length of a word is denoted (some authors use $\|w\|$)
■ ε denotes the empty word or silent event, i.e. $|\varepsilon|=0$

Languages

■ A language L defined over an alphabet E is a set of words defined on the symbols of E
■ The cardinality of a language L can be either finite or infinite
■ Being $E=\{a, b, c\}$

- $L_{1}=\{\varepsilon, a, a b b\}$
- $L_{2}=\{$ all words that starts with the event $a\}$
- $L_{3}=\{\varepsilon, b, b, b a b\}$

Concatenation of strings

- The key operation among words is the concatenation
- The concatenation of two words w_{1} and w_{2} is the new string w consisting of the events in w_{1} immediately followed by the events in w_{2}, and it is denoted $w=w_{1} w_{2}$
■ In general, if $u=w_{1} w_{2}$ and $v=w_{2} w_{1}$ it does not necessarily follows that $u=v \rightarrow$ concatenation is not commutative
- The empty word ε is the identity element of concatenation, i.e. $w \varepsilon=\varepsilon W=W$
■ Given a word $w=$ tuv the following terminology is adopted
$\square t$ is called prefix of w
- u is called substring of w
- v is called suffix of w

Kleene closure of E

■ The Kleene closure of an alphabet E is the set of all the finite-length words defined on the elements of E and is denoted with E^{*}

- The empty word ε is always contained in E^{*}

■ Example:

- $E=\{\alpha, \beta\}$
- $E^{*}=\{\varepsilon, \alpha, \beta, \alpha \alpha, \alpha \beta, \beta \alpha, \beta \beta, \alpha \alpha \alpha, \ldots\}$

■ E^{*} contains every possible language L defined on the symbols of E

Set operations

■ Being sets, all the set operations are defined also on languages:
union $L_{1} \cup L_{2}$

- intersection $L_{1} \cap L_{2}$
difference $L_{1} \backslash L_{2}$
- complement with respect to $E^{*} E^{*} \backslash L$

■ Language specific operations are

- Concatenation (of languages)
- Prefix-closure
- Kleen-closure

Concatenation of languages

Given two languages $L_{a}, L_{b} \subseteq E^{*}$, the concatenation $L_{a} L_{b}$ is

$$
L_{a} L_{b}:=\left\{w \in E^{*}: w=w_{a} w_{b} \text { with } w_{a} \in L_{a}, w_{b} \in L_{b}\right\}
$$

Prefix-closure

■ Let $L \subseteq E^{*}$, its prefix-closure is

$$
\bar{L}:=\left\{w \in E^{*}: \exists t \in E^{*} \text { such that } w t \in L\right\}
$$

■ It is always $L \subseteq \bar{L}$
■ L is said to be prefix-closed if $L=\bar{L}$

Kleene-closure

■ Let $L \subseteq E^{*}$, its Kleene-closure is

$$
L^{*}:=\{\varepsilon\} \cup L \cup L L \cup L L L \cup \ldots
$$

■ The Kleene-closure is idempotent, i.e. $\left(L^{*}\right)^{*}=L^{*}$

Operator precedence

■ Closures comes first. . .
■ . . .then concatenations. . .
■ . . .finally set operators
■ unless there are brackets

Special cases

■ Always remember that $\varepsilon \neq \emptyset$

- If $L=\emptyset \Rightarrow \bar{L}=\emptyset$

■ If $L \neq \emptyset \Rightarrow \varepsilon \in \bar{L}$
■ $\emptyset^{*}=\{\varepsilon\}$
■ $\{\varepsilon\}^{*}=\{\varepsilon\}$

■ (Some) Languages with finite cardinality may be specified by enumerating their words
■ (Some) Languages with infinite cardinality may be specified in terms of word features, example

$$
L=\{\text { all the words that start with } \alpha\}
$$

■ It would be better to have a formal tool to specify languages, in order to enable quantitative methods to solve analysis and synthesis problems

- Automata are one of these tools

Definition of automaton

A (logic deterministic) automaton G is the 6 -tuple

$$
G=\left(X, E, f, \Gamma, x_{0} X_{m}\right)
$$

where

- X is the discrete state space. If the cardinality of X is finite, then G is also referred to as finite state machine (FSM) or finite state automaton
- E is the set of events associated with the transitions in G
- $f(\cdot, \cdot): X \times E \mapsto X$ is the transition function
$\square \Gamma(\cdot): X \mapsto 2^{E}$ is the active event function. $\Gamma(\cdot)$ is implicitly defined by $f(\cdot, \cdot)$
- x_{0} is the initial state
- $X_{m} \subseteq X$ is the the set of marked or final states (used in the SCT context to deal with non-blocking requirements)

Graphical representation

It is common to recursively extend the transition function $f(\cdot, \cdot)$ from the $X \times E$ domain to the $X \times E^{*}$ one as follows
■ $f(x, \varepsilon):=x$ for all $x \in X$
$\square f(x, w e):=f(f(x, w), e)$ with $w \in E^{*}$ and $e \in E$

Languages \& automata

Let $G=\left(X, E, f, \Gamma, x_{0}, X_{m}\right)$

Language generated by $G-\mathcal{L}(G)$

$$
\mathcal{L}(G):=\left\{w \in E^{*}: f\left(x_{0}, w\right) \text { is defined }\right\}
$$

Language marked by $\mathrm{G}-\mathcal{L}_{m}(\mathrm{G})$

$$
\mathcal{L}_{m}(G):=\left\{w \in \mathcal{L}(G): f\left(x_{0}, w\right) \in X_{m}\right\}
$$

By definition

- $\mathcal{L}(G)$ is always prefix-closed, i.e. $\overline{\mathcal{L}(G)}=\mathcal{L}(G)$
- $\mathcal{L}_{m}(G) \subseteq \overline{\mathcal{L}_{m}(G)} \subseteq \mathcal{L}(G)$
- If $\overline{\mathcal{L}_{m}(G)} \subset \mathcal{L}(G)$, then there are deadlock and/or livelock in G

■ If $\overline{\mathcal{L}_{m}(G)}=\mathcal{L}(G)$, then G is said to be non-blocking

Examples of blocking automata

Equivalence of automata

Automata G_{1} and G_{2} are said to be equivalent if

- $\mathcal{L}\left(G_{1}\right)=\mathcal{L}\left(G_{2}\right)$
- $\mathcal{L}_{m}\left(G_{1}\right)=\mathcal{L}_{m}\left(G_{2}\right)$

Equivalence of automata - Example

Accessible part of G

Removes all the states that are unreachable from x_{0} (and the related transitions) Given $G=\left(X, E, f, x_{0}, X_{m}\right)$ the accessible part of $\mathrm{G} A c(G)$ is

$$
A c(G):=\left(X_{a c}, E, f_{a c}, X_{0}, X_{a c, m}\right)
$$

where

- $X_{a c}=\left\{x \in X \mid \exists w \in E^{*}\right.$ s.t. $\left.f\left(x_{0}, w\right)=x\right\}$
- $X_{a c, m}=X_{m} \cap X_{a c}$
- $f_{a c}=f_{\mid X_{a c} \times E \mapsto X_{a c}}$
- The accessible part does not affect nor $\mathcal{L}(G)$ neither $\mathcal{L}_{m}(G)$
- If $G=A c(G)$, then G is said to be accessible

Coaccessible part

Removes all the states that do not lead to a marked state (and the related transitions) Given $G=\left(X, E, f, x_{0}, X_{m}\right)$ the coaccessible part of $\operatorname{GoAc}(G)$ is

$$
\operatorname{CoAc}(G):=\left(X_{\text {coac }}, E, f_{\text {coac }}, x_{0_{\text {coac }}}, X_{m}\right)
$$

where
■ $X_{\text {coac }}=\left\{x \in X \mid \exists w \in E^{*}\right.$ s.t, $\left.f(x, w) \in X_{m}\right\}$
■ $x_{0_{\text {coac }}}=x_{0}$ if $x_{0} \in X_{\text {coac }}$, otherwise x_{0} is left undefined

- $f_{\text {coac }}=f_{X_{\text {coac }} \times E \mapsto X_{\text {coac }}}$
- By definition $\operatorname{CoAC}(G)$ is always non-blocking, i.e. the generated language is modified in such a way that

$$
\mathcal{L}(\operatorname{CoAc}(G))=\overline{\mathcal{L}_{m}(\operatorname{CoAc}(G))}=\overline{\mathcal{L}_{m}(G)}
$$

■ If $G=\operatorname{CoAc}(G)$, then G is said to be coaccessible

Trim operation

■ $\operatorname{Trim}(G):=\operatorname{CoAc}(\operatorname{Ac}(G))=\operatorname{Ac}(\operatorname{CoAc}(G))$
■ If $G=\operatorname{Trim}(G)$, then G is said to be trimmed
■ A trimmed automaton is both accessible and coaccessible

Complement wrt to E^{*}

■ Let G be a trimmed automaton with

- $\mathcal{L}_{m}(G)=L$
- $\mathcal{L}(G)=\bar{L}$

■ The complement automaton $G^{c o m p}$ is such that

$$
\mathcal{L}\left(G^{\text {comp }}\right)=E^{*} \backslash L
$$

How to build G ${ }^{\text {comp }}$

1 Complete the transition function $f(\cdot, \cdot)$ as follows

$$
f_{\text {tot }}(x, e):= \begin{cases}f(x, e) & \text { if } e \in \Gamma(x) \\ x_{d} & \text { otherwise }\end{cases}
$$

with $x_{d} \notin X_{m}$ and $f_{\text {tot }}\left(x_{d}, e\right)=x_{d} \forall e \in E$
2 Let

$$
G^{\text {comp }}=\left(X \cup\left\{x_{d}\right\}, E, f_{\text {tot }}, x_{0}, X_{m}^{\text {new }}\right)
$$

with $X_{m}^{\text {new }}=\left(X \cup\left\{x_{d}\right\}\right) \backslash X_{m}$
Clearly it is
■ $\mathcal{L}\left(G^{\text {comp }}\right)=E^{*}$

- $\mathcal{L}_{m}\left(G^{\text {comp }}\right)=E^{*} \backslash \mathcal{L}_{m}(G)$

Example of complement automaton

Automaton G

Complement automaton

Trimmed automaton

Composition operations

Figure: Cross product $G_{1} \times G_{2}$ and parallel composition (or concurrent product) $G_{1} \| G_{2}$

Cross product $G_{1} \times G_{2}$

Given G_{1} and G_{2} the product $G_{1} \times G_{2}$ automaton is
$G_{1} \times G_{2}:=A c\left(X_{1} \times X_{2}, E_{1} \cap E_{2}, f, \Gamma_{1 \times 2},\left(x_{0_{1}}, x_{0_{2}}\right), X_{m_{1}} \times X_{m_{2}}\right)$
with
$f\left(\left(x_{1}, x_{2}\right), e\right):= \begin{cases}\left(f_{1}\left(x_{1}, e\right), f_{2}\left(x_{2}, e\right)\right) & \text { if } e \in \Gamma_{1}\left(x_{1}\right) \cap \Gamma_{2}\left(x_{2}\right) \\ \text { undefined } & \text { otherwise }\end{cases}$
and $\Gamma_{1 \times 2}\left(x_{1}, x_{2}\right)=\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{2}\left(x_{2}\right)$
NOTE: an event occurs in $G_{1} \times G_{2}$ if and only if it occurs in both automata G_{1} and G_{2}. It follows that
■ $\mathcal{L}\left(G_{1} \times G_{2}\right)=\mathcal{L}\left(G_{1}\right) \cap \mathcal{L}\left(G_{2}\right)$

- $\mathcal{L}_{m}\left(G_{1} \times G_{2}\right)=\mathcal{L}_{m}\left(G_{1}\right) \cap \mathcal{L}_{m}\left(G_{2}\right)$

Example of cross product

Parallel composition $G_{1} \| G_{2}$

Given G_{1} and G_{2} the parallel composition $G_{1} \| G_{2}$ automaton is
$G_{1} \| G_{2}:=A c\left(X_{1} \times X_{2}, E_{1} \cup E_{2}, f, \Gamma_{1 \| 2},\left(X_{0_{1}}, x_{0_{2}}\right), X_{m_{1}} \times X_{m_{2}}\right)$
with
$f\left(\left(x_{1}, x_{2}\right), e\right):= \begin{cases}\left(f_{1}\left(x_{1}, e\right), f_{2}\left(x_{2}, e\right)\right) & \text { if } e \in \Gamma_{1}\left(x_{1}\right) \cap \Gamma_{2}\left(x_{2}\right) \\ \left(f_{1}\left(x_{1}, e\right), x_{2}\right) & \text { if } e \in \Gamma_{1}\left(x_{1}\right) \backslash E_{2} \\ \left(x_{1}, f_{2}\left(x_{2}, e\right), x_{2}\right) & \text { if } e \in \Gamma_{2}\left(x_{2}\right) \backslash E_{1} \\ \text { undefined } & \text { otherwise }\end{cases}$
and
$\Gamma_{1 \mid 2}\left(x_{1}, x_{2}\right)=\left[\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{2}\left(x_{2}\right)\right] \cup\left[\Gamma_{1}\left(x_{1}\right) \backslash E_{2}\right] \cup\left[\Gamma_{2}\left(x_{2}\right) \backslash E_{1}\right]$

Example - Simple FMS

Dijkstra's dining philosophers problem and the curse of dimensionality

Dijkstra's dining philosophers problem (1965)
Deadlock due to shared resources (the forks)

TWO DINING PHILOSOPHERS

Modelling philosophers and forks

The curse of dimensionality

■ 2 philosophers 2 forks \rightarrow overall model with 9 states
■ 3 philosophers 3 forks \rightarrow overall model with 504 states
■ 4 philosophers 4 forks \rightarrow overall model with 4.080 states
■ 5 philosophers 5 forks \rightarrow overall model with 32.736 states
■ 6 philosophers 6 forks \rightarrow overall model with 262.080 states \rightarrow about 1 minute to compute the parallel composition on this laptop
■ 7 philosophers 7 forks \rightarrow overall model with 2.097.024 states \rightarrow more than 1 hour to compute the parallel composition on this laptop
■ 8 philosophers 8 forks \rightarrow GOD KNOWS :)

Projection function

■ Given the two sets of events E_{1} and E_{2}, we need to introduce the projection functions $P_{i}(\cdot)$ and their inverse in order to derive a compact expression for both the generated and marked languages of $G_{1} \| G_{2}$

$$
P_{i}:\left(E_{1} \cup E_{2}\right)^{*} \mapsto E_{i}^{*}
$$

$$
\begin{cases}P_{i}(\varepsilon):=\varepsilon & \\ P_{i}(e):=e & \text { if } e \in E_{i} \\ P_{i}(e):=\varepsilon & \text { if } e \notin E_{i} \\ P_{i}(w e):=P_{i}(w) P_{i}(e) & w \in\left(E_{1} \cup E_{2}\right)^{*}, e \in\left(E_{1} \cup E_{2}\right)\end{cases}
$$

■ The projection function will be used also when uncertainty in terms of presence of unobservable events will be considered

Inverse projection

- The inverse projection $P_{i}^{-1}(\cdot)$ is defined as

$$
\begin{gathered}
P_{i}^{-1}: E_{i}^{*} \mapsto 2^{\left(E_{1} \cup E_{2}\right)^{*}} \\
P_{i}^{-1}(t):=\left\{w \in\left(E_{1} \cup E_{2}\right)^{*}: P_{i}(w)=t\right\}
\end{gathered}
$$

- While the projection of a word is a (possibly empty) word, the inverse projection of a word is a language

Extend projection to languages

■ Given a language L defined over $E_{1} \cup E_{2}$, the extensions of the projection functions to L are

$$
P_{i}(L):=\left\{t \in E_{i}^{*}: \exists w \in L, P_{i}(w)=t\right\}
$$

■ Given a language $L_{i} \subseteq E_{i}^{*}$ defined over $E_{i}(i=1,2)$, the extension of the inverse projection to L_{i} is

$$
P_{i}^{-1}\left(L_{i}\right):=\left\{w \in\left(E_{1} \cup E_{2}\right)^{*}: \exists t \in L_{i},, P_{i}(w)=t\right\}
$$

- Note that

$$
P_{i}\left(P_{i}^{-1}(L)\right)=L
$$

and that

$$
L \subseteq P_{i}^{-1}\left(P_{i}(L)\right)
$$

Examples of projection

Let $E_{1}=\{a, b\}$ and $E_{2}=\{b, c\}$ and

$$
L=\{c, c c b, a b c, c a c b, c a b c b b c a\}
$$

Then
■ $P_{1}(L)=\{\varepsilon, b, a b, a b b b a\}$
■ $P_{2}(L)=\{c, c c b, b c, c b c b b c\}$
■ $P_{1}^{-1}(\{\varepsilon\})=\{c\}^{*}$
■ $P_{1}^{-1}(\{a b\})=\{c\}^{*}\{a\}\{c\}^{*}\{b\}\{c\}^{*}$

- $P_{1}^{-1}\left(P_{1}(\{a b c\})\right)=P_{1}^{-1}(\{a b\})$

$G_{1}| | G_{2}$ languages

Language generated by $G_{1} \| G_{2}$

$$
\mathcal{L}\left(G_{1} \| G_{2}\right)=P_{1}^{-1}\left(\mathcal{L}\left(G_{1}\right)\right) \cap P_{2}^{-1}\left(\mathcal{L}\left(G_{2}\right)\right)
$$

Language marked by $G_{1} \| G_{2}$

$$
\mathcal{L}_{m}\left(G_{1} \| G_{2}\right)=P_{1}^{-1}\left(\mathcal{L}_{m}\left(G_{1}\right)\right) \cap P_{2}^{-1}\left(\mathcal{L}_{m}\left(G_{2}\right)\right)
$$

$$
E_{1}=\{a, c\} \subset E=\{a, b, c\}
$$

G

$$
\begin{aligned}
& \alpha(b) \subseteq E_{1}^{x} \\
& P_{1}^{-1}(\alpha(G))=\left\{t \in E^{*} \mid \quad P_{1}(t)=s \text { with } s \in \alpha(G)\right\}
\end{aligned}
$$

Regular expressions

Regular expressions over an alphabet $E-R E(E)$
Given the alphabet E, the regular expressions defined over E are defined as follows
$1 \emptyset$ and e, for all $e \in E$ are regular expressions
2 if $a, b \in R E(E)$ then the following are regular expressions $a \cup b$ (union) - ab and ba (concatenation) a* and b^{*} (Kleene closure)
3 There are no other regular expressions than the ones defined by rules 1 and 2

Regular languages

Regular languages - Reg(E)

In words, the class of regular languages defined over E $\operatorname{Reg}(E)$ - is the class of languages that can be built by using regular expressions

Let us denote with $\operatorname{Rec}(E)$ the class of recognizable languages, i.e. the languages that can be marked by finite state automata.

Kleene Theorem (1936)

$$
\operatorname{Rec}(E)=\operatorname{Reg}(E)
$$

Q S. Haar, T. Masopust
Languages, decidability, and complexity
in Control of Discrete-Event Systems
Springer, 2013

Are all the languages regular?
Clearly, the answer is NO!

$$
\begin{aligned}
& L=\left\{w \in E^{*} \text { set. } w=a^{n} b^{n}, n>0\right\} \quad E=\{a, b\} \\
& a^{n}=\underbrace{a a \ldots a}_{n}
\end{aligned}
$$

THE SUEIPNSOR \rightarrow TRIES TO FJRCE A REQURED BEHAVIIVR $L_{R} \subseteq \alpha(G)$

BY DISABLING EVENTS
$\alpha(G)$
is THE OPEN-LUP BEHPVIOVR

A nice tutorial lecture can be found here
https://www.control.utoronto.ca/~wonham/Research.html

Proposed (1982):

Supervisory Control Theory
(Peter Ramadge \& WMW)

- Automaton representation
- internal state descriptions for concrete modeling and computation
- Language representation
- external i/o descriptions for implementation-independent concept formulation
- Simple control 'technology'

Community Response

Anonymous Referees (1983-87)

- [Leading control journal]
"Automata have no place in control engineering."
- [Leading computer journal]
"Finite automata and regular languages are nothing new at best and trivial at worst."

Reject!

- SIAM J. Control \& Optimization
"So this is optimal control? Well..."
Accept

Software tools

■ Many tools - Most of them developed by academic groups

- TCT (Wonham's group @ University of Toronto)
\square https://www. control.utoronto.ca/~wonham/Research.html
- UMDES-DESUMA (Lafortune’s group @ University of Michigan)

■ https://wiki.eecs.umich.edu/desuma/index.php/DESUMA

- Supremica (Chalmers University)

■ https://supremica.org/

- Some tools includes automatic code generation for industrial devices (IEC-61131 compliant)
- For those who are interested a nice (and not too old) overview can be found here

嘈
L. Preischadt Pinheiro et al.

Nadzoru: A Software Tool for Supervisory Control of Discrete Event
Systems
5th IFAC Int. Workshop on Dependable Control of Discrete Systems, 2015

UMDES .fsm file

UMDES allows to specify automata as .fsm text files
Example
$4 \leftarrow$ number of states

I 11 (state name, marked state flag, number of output transitions)
s W c o (output event, new state, controllability flag, observability flag)

W 01
f A uc o

A 01
t Tco

T $0 \quad 1$
ft I uc o

Some UMDES commands

- acc \rightarrow accessible part $A c(G)$

■ co_acc \rightarrow coaccessible part $\operatorname{CoAc}(G)$
■ trim \rightarrow trim automaton $\operatorname{Trim}(G)$
■ comp_fsm \rightarrow complement automaton $G^{\text {comp }}$
■ product \rightarrow cross product $G_{1} \times G_{2}$
■ par_comp \rightarrow parallel composition $G_{1} \| G_{2}$

For those of you who like GUI, there is DESUMA (or Supremica or ...)

References

Chapter 2 (up to section 2.3.2) in
C. G. Cassandras and S. Lafortune Introduction to Discrete Event Systems Springer, 2008

Discrete Event Systems, Languages and Automata

From observability to privacy and security in discrete event systems

Prof. Gianmaria De Tommasi
Email: detommas@unina.it
December 2020

DIPARTIMENTO d INGEGNERIA ELEITRICA edelle TECNOLOGIE delu'INFORMAZIONE

