
Associate Professor in Operations Research,

Department of Electrical Engineering and Information Technology (http://www.dieti.unina.it)

OPSLab, Optimization and Problem Solving Laboratory (http://opslab.dieti.unina.it)

University ‘Federico II’ of Naples (http://www.unina.it)

claudio.sterle@unina.it

Mathematical programming:

ILP/MILP modeling

by continuous, binary and integer variables

Claudio Sterle

ITEE PhD Course,

Lecture 3 – From observability to privacy and security in discrete event systems

September 15th, 2020

http://www.dieti.unina.it/
http://opslab.dieti.unina.it/
http://www.unina.it/
mailto:Claudio.sterle@unina.it

Outline of the lecture

Operations Research & Decision Problems & Mathematical Programming

1) Modeling with binary variables

- Do-don’t do decisions

- Logical conditions

- Products of binary variables

- Dichotomies

2) Binary variables do everything

- General integer

- Semi-continous

- Partial integer

- Semi-ordered set type

3) Connecting real variables to binary variables

- Modeling fixed costs

- Counting

- Partial integers again

- Price breaks and economies of scale

- The product of a binary and a real variable

4) ILP and MILP samples

- Production Planning

- Inventory Management

- Facility Location and Sizing

- Network Design and Management

- Project Planning

- Scheduling

- Routing

- Portfolio Optimization

- Data Science and Machine Learning techniques

- …..

Operations research (operational research) (OR)
Discipline dealing with the application of advanced analytical methods to help make better decisions and solve complex

decision problems. The terms management science and decision sciences are sometimes used as synonyms.

It is a mathematical and computer science based approach to deal with the solution of decision problems.

Decision problem:

One or more decision maker have to make a choice among different alternative solutions to optimize one or more objective

functions or performance criteria. In a decision problem, choices are not arbitrary. Constraints related to limited resources have

to be taken into account.

Operations research

Decision

Problems

Optimization

Problems

Game

theory

Multi-objective

optimization

Stochastic

Programming

Mathematical

Programmming

Mono-objective

optimization

of decision

makers

of obj.

functions
Data

Uncertainty

More than

one

One

One

More than

one

Stochastic

Data

Deterministic

Data

Some examples….game theory
Prisoner's dilemma

Two members of a criminal gang are arrested and imprisoned. Each prisoner is in solitary confinement with no means of

communicating with the other. The prosecutors lack sufficient evidence to convict the pair on the principal charge, but they

have enough to convict both on a lesser charge. Simultaneously, the prosecutors offer each prisoner a bargain. Each prisoner

is given the opportunity either to betray the other by testifying that the other committed the crime, or to cooperate with the

other by remaining silent. The possible outcomes are:

• If A and B each betrays the other, each of them serves 3 years in prison

• If A betrays B but B remains silent, A will be set free and B will serve six years in prison (and vice versa)

• If A and B both remain silent, both of them will serve only one year in prison (on the lesser charge)

()

()

()

()

3, 3 0, 6

6,0 1, 1

 − − −

− − −

Because defection always results in a better payoff than cooperation regardless of the other player's choice, it is a dominant

strategy. Mutual defection is the only strong Nash equilibrium in the game (i.e. the only outcome from which each player

could only do worse by unilaterally changing strategy). The dilemma, then, is that mutual cooperation yields a better outcome

than mutual defection but is not the rational outcome because the choice to cooperate, from a self-interested perspective, is

irrational.

https://en.wikipedia.org/wiki/Nash_equilibrium

In a production planning problem, the decision maker of a company has the following targets:

• F1 -> minimizing the number of unsatisfied clients (maximizing quality of service)

• F2 -> minimizing overall procution costs

F1

F2
Feasible Solutions

A

B

C

A dominates C

B and C are not comparable

A and B Pareto optimal solutions

Pareto frontier

More Pareto (non-dominated) optimal solutions exist.

Some examples….multi-objective optimization

Assignment problem (job-worker)

Let us consider 70 jobs and 70 workers

✓ i=1,...,70 → workes and j=1,...,70 → jobs

✓ If the i-th worker makes the j-th job a cost cij is paid

✓ Each worker can make just one job (constraint)

✓ Each job can be made by just one worker (constraint)

✓ We have to define the worker-job assignment to minimize the overall cost (objective)

How to solve it?...Brute Force:

✓ build all the possible worker-job assignments and compute the related cost

✓ choose the best alternative

The number of all possible assignments is 70! (the number of permutations of 70 numbers)

Some examples….mathematical programming

10070! 100

Two possible permutations

Worker 1 2 70

Job 1 2 70

Worker 1 2 70

Job 2 1 70

Let us suppos to have a computer able to evaluate 106 assignments per second

To “explore” 10100 assignments we need 1094 seconds = 1087 years!

Big Bang (beginning of the Universe) was around 15x109 years ago!

Let us consider a computer which is 1000 times faster … we need 1084 years

Let us use 109 computers in parallel, we need 1075 years.

Operations Research main target is to solve these problems

by algoritghms which are able to find optimal or ‘good’ sub-optimal solutions

with a reasonable computation time and burden

Some examples….mathematical programming

One decision maker, one performance criterion, no uncertainty about data

min ()f x

x X

()1 2

:

, ,...,

n

n

n

f

X

x x x x

 →

=

Objective function

Set of feasible solutions

Decision variables

Mathematical programming

Linear programming (PL)

Non-Linear Programming

Integer Non-Linear and Linear Programming

1 1

min ()

()

................

()m m

f x

g x b

g x b

:

: i=1...m

n

n

i

f

g

 →

 →

Objective function

Constraints

Problem Description consists in analyzing the structure of the problem to identify logic and functional relationships and

targets

Model building or problem formulation, consists in describing the problem by mathematical relationships

Solution of the problem by ad-hoc exact or heuristic approaches

Model validation by experimentation and simulation

Modelling approach

Real

System

Problem

Description

Mathematical

Model

Solving

Approach
Results

Final

Decision

Let us consider:

✓ A knapsack characterized by a maximum capacity b

✓ A set of items i є {1,…,n} each of the characterized by a weight pi

and a value vi

We want to determine the subset of items to be put in the knapsack

with the aim of maximizing the overall value and satisfying capacity

constraints.

Formulation

A first basic example….knapsack problem

Modeling with binary variables

Choice among several possibilities

Let us consider a set of ‘do/dont’ do’ decisions/options/projects to be selected: A, B, C, …, H

Let us define the following set binary variable sassociated with each decision: a, b, c, …., h

a + b + c + d + e + f + g + h ≤ 1

Modelling with binary variables: logical conditions
Do / Dont’do decisions

Binary variables: variables assuming only values 0 and 1, expressing ‘do/don’t do decisions’, ‘yes/no’ choices

No more than one option

a + b + c + d + e + f + g + h ≥ 1 At least one option → OR (condition)

a + b + c + d + e + f + g + h = 1 A single option→ XOR (condition)

These conditions can be generalized as follows to a set of binary variables xi, i B:

𝑖 ∈𝐵

𝑥𝑖 ቐ
≤ 𝑘
≥ 𝑘
= 𝑘

a b a b a b

F F F F

F T T T

T F T T

T T T F

b ≥ a

- If we do A then we must do B, in other words: A→ B (implication)

Four possible conditions:

{do not do A, do not do B},

{do not do A, do B},

{do A, do not do B}, → RULED OUT

{do A, do B}

Modelling with binary variables: logical conditions
Simple Implications with two variables

a b a → b

F F T

F T T

T F F

T T T

- If we do A then we must not do B, ‘if A then not B’:

The property of notdoing B can be modeled very easily when we already have a binary variable b (representing doing B).

ത𝑏 = 1 − 𝑏 1 − 𝑏 ≥ 𝑎 𝑎 + 𝑏 ≤ 1

- If we do not do A then we must do B, ‘if not A then B’.

ത𝑎 = 1 − 𝑎 𝑏 ≥ 1 − 𝑎 𝑎 + 𝑏 ≥ 1

- If we do A we must do B, and if we do B we do project A: A→ B (double implication)

𝑎 ≥ 𝑏 𝑏 ≥ 𝑎 𝑎 = 𝑏

a b a → b

F F T

F T F

T F F

T T T

- If we do both B and C then we must do A. One way to think about it is to express it in the following way: ‘if we do both B

and C then we must not do not A

There is no effect on a when b and c are 0,

or when just one of b and c is 1, but a does have to be 1 when both b and c are 1.

Modelling with binary variables: logical conditions

- If we do A then we must do B and C:

Simple Implications with three variables

𝑏 ≥ 𝑎 𝑐 ≥ 𝑎

- If we do A then we must do B or C:

𝑏 + 𝑐 ≥ 𝑎

- If we do B or C then we must do A:

𝑎 ≥ 𝑏 𝑎 ≥ 𝑐

𝑏 + 𝑐 + 1 − 𝑎 ≤ 2

𝑏 + 𝑐 − 𝑎 ≤ 1

𝑎 ≥ 𝑏 + 𝑐 − 1

Modelling with binary variables: logical conditions

- If we do two or more of B, C, D or E then we must do A:

Generalized Implications with more variables

𝑎 ≥ 𝑏 + 𝑐 + 𝑑 + 𝑒 − 1

𝑎 ≥
1

3
(𝑏 + 𝑐 + 𝑑 + 𝑒 − 1)

- If we do M or more of N projects (B, C, D, ...) then we must do A’ by the constraint:

𝑎 ≥
𝑏 + 𝑐 + 𝑑 + …−𝑀 + 1

𝑁 −𝑀 + 1

𝑎 ≥
𝑏 + 𝑐 − 1 + 1

2 − 1 + 1

𝑎 ≥
1

2
(𝑏 + 𝑐)

If we do B or C then we must do A

Modelling with binary variables: products
Products of binary variables

𝑐 = 𝑎 ∗ 𝑏

𝑐 ≤ 𝑎

𝑐 ≤ 𝑏

𝑐 ≥ 𝑎 + 𝑏 − 1

a b c 𝑐 = 𝑎 ∗ 𝑏 𝑐 ≤ 𝑎 𝑐 ≤ 𝑏 𝑐 ≥ 𝑎 + 𝑏 − 1

0 0 0 Yes Yes Yes Yes

0 0 1 No No No Yes

0 1 0 Yes Yes Yes Yes

0 1 1 No No Yes Yes

1 0 0 Yes Yes Yes Yes

1 0 1 No Yes No Yes

1 1 0 No Yes Yes No

1 1 1 Yes Yes Yes Yes

𝑑 = 𝑎 ∗ 𝑏 ∗ 𝑐

𝑑 ≤ 𝑎

𝑑 ≤ 𝑏

𝑑 ≥ 𝑎 + 𝑏 + 𝑐 − 2

𝑑 ≤ 𝑐

Modelling with binary variables: dichotomies

Dichotomies: either/or constraints

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝑥1 + 𝑥2

𝑥1 ≥ 0, 𝑥2 ≥ 0 𝑎𝑛𝑑

𝐸𝑖𝑡ℎ𝑒𝑟 2 ∗ 𝑥1 + 𝑥2 ≥ 6 𝑐𝑜𝑛𝑠𝑡𝑟 1 𝑜𝑟 𝑥1 + 2 ∗ 𝑥2 ≥ 7 (𝑐𝑜𝑛𝑠𝑡𝑟 2)

2 ∗ 𝑥1 + 𝑥2 ≥ 6 ∗ 𝑏
𝑥1 + 2 ∗ 𝑥2 ≥ 7 ∗ (1 − 𝑏)

Binary variables do everything

Binary variables do everything
General integer variables

Consider an integer variable v which must take a value between 0 and 10: We could replace this integer variable with four

binary variables b1, b2, b3, and b4 everywhere in the model using the expression

v = b1 + 2 · b2 + 4 · b3 + 8 · b4

remembering that we also have to have the constraint

b1 + 2 · b2 + 4 · b3 + 8 · b4 = 10

Semi-continuous variables

Suppose we have a semi-continuous variable s which can take on either the value 0 or any value between some lower limit L

and some upper limit U. If we introduce a binary variable b then we can represent the semi-continuity of s by the following

pair of constraints

L · b ≤ s

s ≤ U · b

- Either b = 0, in which case s is constrained to be 0,

- or b = 1, in which case s is constrained to lie between L and U.

Partial integer and Special ordered sets variables…next slides

Connecting real variables to binary variables

We want to model fixed costs, that is, where we incur a fixed cost K if a

particular real variable x is strictly greater than 0 (e.g. cost of setting up a

piece of machinery.

We do not incur the fixed cost if we do not set up the piece of machinery

but if the output level x of the machine is anything different from zero then

we have to incur the fixed cost.

Cost:

- If the throughput is zero then the cost is zero

- else-if throughput takes a value which is different from 0 then the cost is Cost = K + C · x, where C is the per

unit cost of output x.

Let us introduce a binary variable b which is equal to zero if x is equal to zero and equal to 1 if x is strictly greater than zero.

Then the cost equals b · K + C · x, but we have to ensure that if b is zero then x is zero.

We can do this by introducing the constraint

x ≤ Xmax · b

where Xmax is the largest value that x can take.

Connecting real and binary variables: fixed cost

Often we want to have a constraint that only a certain number of real variables are strictly greater than 0.

An example might be where we have a whole variety of different ingredients that could go into a blend and we have a

constraint that perhaps at most 10 of these ingredients can actually go into the blend.

If the quantity of item i going into the blend is xi and we require no more than 10 of these to be non zero, for each item i we

introduce a binary variable bi and have constraints of the form

xi ≤ VOL · bi

where VOL is the volume of the blend to be made.

These constraints ensure that if a particular xi is greater than zero then the corresponding bi must be equal to 1.

Then the constraint that says that no more than 10 of the ingredients must be non zero could be expressed as:

𝑖=1

10

𝑏𝑖 ≤ 10

Connecting real and binary variables: counting

A partial integer is a variable which has to be integral in any acceptable solution if the value is less than some bound, and

otherwise can be real.

The natural way to express a partial integer p is:

p = v + x

where variable v is an integer that must be less than or equal to U (i.e. 0 v ≤ U) and x is a real variable.

We have already seen that the integer variable v can be expressed in terms of several binary variables using the binary

expansion.

Now we have to express the fact that if v is strictly less than U then x must be zero. Suppose that we know some value Xmax

which x is guaranteed not to exceed, i.e. an upper bound for x. Then we can introduce a new binary variable b and the

following constraints

To show that this formulation is valid, consider the two possible values of b.

First, if b = 0 then x = 0, i.e. x is equal to 0 and v ≥ 0.

If b = 1 then x ≤ Xmax and v ≥ U, which combined with the fact that v ≤ U means v = U. So if b = 1, v is at its maximum, and we

can then start having non-zero amounts of x.

Connecting real and binary variables: partial integer

𝑥 ≤ 𝑋𝑚𝑎𝑥 ∙ 𝑏

𝑏 ≤ ൗ𝑣 𝑈 𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦 𝑣 ≥ 𝑈 ∙ 𝑏

Basic Idea – All item discount pricing:

If we buy a number of items between 0 and B1 then for each item we pay an

amount COST1, whereas if the quantity we buy lies between B1 and B2 we pay an

amount COST2 for each item. Finally if we buy an amount between B2 and B3 then

we pay an amount COST3 for each item.

For the sake of concreteness we assume that if we order exactly B1 items then we

get the unit price COST2, whereas if we order just a little less than B1 then we

would get the unit price COST1, and similarly for all the other price breaks.

Connecting real and binary variables: price breaks

To model these item price breaks we use:

- binary variables b1, b2 and b3, where bi is 1 if we have bought any items at a unit cost of COSTi

- real decision variables x1, x2 and x3 which represent the number of items bought at price COST1, COST2 and COST3

Note that we cannot buy any items at price COST2 until we have bought the maximum number of items at the higher price

COST1, otherwise the solution would be easy as we buy all items at the least expensive unit price!

The total amount x that we buy is given by

x = x1 + x2 + x3

First relation imposes that if we have bought any in the second price range (b1 = b2 = 1) then x1 is fixed to B1.

Second relation ensures that if b2 = 0, then x2 = 0, whereas if b2 = 1 then x2 is only constrained by the maximum amount that can

be bought at the price COST2.

Third relation ensures that x3 = 0 if b3 = 0, and that if b3 = 1 then we cannot buy more than the maximum number at price

COST3. Equations

Forth relation ensures that we can only buy at a lower price if we have bought at all the higher prices.

𝐵1 ∙ 𝑏2 ≤ 𝑥1 ≤ 𝐵1 ∙ 𝑏1
𝐵2 − 𝐵1 ∙ 𝑏3 ≤ 𝑥2 ≤ 𝐵2 − 𝐵1 ∙ 𝑏2

𝑥3 ≤ 𝐵3 − 𝐵2 ∙ 𝑏3
𝑏1 ≥ 𝑏2 ≥ 𝑏3

Connecting real and binary variables: price breaks

We are buying a certain number of items and we get discounts incrementally.

The unit cost for items between 0 and B1 is C1, whereas items between B1 and B2 cost C2

each, and items between B2 and B3 cost C3 each.

At the points 0, B1, B2 and B3 we introduce real valued decision variables wi (i = 0, 1, 2, 3)

and 3 binary variables bi. We also define cost break points CBPi that correspond to the

total cost of buying quantities 0, B1, B2 and B3.

For a solution to be valid, at most two of the wi can be non-zero, and if there are two

non-zero they must be contiguous, thus defining one of the line segments

Connecting real and binary variables: economies of scale

𝐶𝐵𝑃0 = 0
𝐶𝐵𝑃1 = 𝐶1 ∙ 𝐵1

𝐶𝐵𝑃2 = 𝐶𝐵𝑃1 + 𝐶2 ∙ (𝐵2 − 𝐵1)
𝐶𝐵𝑃3 = 𝐶𝐵𝑃2 + 𝐶3 (𝐵3 − 𝐵2)

𝑤0 + 𝑤1 + 𝑤2 + 𝑤3 = 1

𝐶𝑜𝑠𝑡 = 0 ∙ 𝑤0 + 𝐶𝐵𝑃1 ∙ 𝑤1 + 𝐶𝐵𝑃2 ∙ 𝑤2 + 𝐶𝐵𝑃3 ∙ 𝑤3

𝑥 = 0 ∙ 𝑤0 + 𝐵1 ∙ 𝑤1 + 𝐵2 ∙ 𝑤2 + 𝐵3 ∙ 𝑤3

An ordered set of variables, of which at most two can be non-zero, and if two are

non-zero these must be consecutive in their ordering

𝑤0 ≤ 𝑏1 𝑤1 ≤ 𝑏1 + 𝑏2 𝑤2 ≤ 𝑏2 + 𝑏3 𝑤3 ≤ 𝑏3

𝑏1 + 𝑏2 + 𝑏3 = 1

Let us consider:

y = b · x

where x and y are real variables, and b is binary.

Suppose we have some upper bound U on the value of x. Then consider the following constraints:

If b = 0, then third inequality means that y = 0.

If b = 1, then third inequality is harmless, and we have y ≤ x from

first inequality and y ≥ x from second inequality, i.e. y = x, which is

what is desired.

Connecting real and binary variables: product of binary and real variable

ቐ

𝑦 ≤ 𝑥
𝑦 ≥ 𝑥 − 𝑈 ∙ (1 − 𝑏)

𝑦 ≤ 𝑈 ∙ 𝑏

More generally:

𝑦 = 𝑓 𝑥 ∙ 𝑏

Then, being U and L an upper and a lower bound respectively of f(x):

𝑦 ≤ 𝑓 𝑥 − 𝐿 ∙ (1 − 𝑏)
𝑦 ≥ 𝑥 − 𝑈 ∙ (1 − 𝑏)

𝑦 ≤ 𝑈 ∙ 𝑏
𝑦 ≥ 𝐿 ∙ 𝑏

ILP and MILP samples

➢ Let us consider a generic mathematical programming model with linear constraints and the following objective function:

m𝑎𝑥min 𝑒1 𝒙 , 𝑒2 𝒙 ,… , 𝑒𝑞 𝒙

where 𝑒1 𝒙 , 𝑒2 𝒙 ,… , 𝑒𝑞 𝒙 are linear functions.

It is always possible to transform a ‘max-min’ (or ‘min-max’) model in an equivalent linear model in the

following way:

✓ Introducing a new variable 𝑦 = min 𝑒1 𝒙 , 𝑒2 𝒙 ,… , 𝑒𝑞 𝒙 and the objective function is substituted

by: m𝑎𝑥 𝑦

✓ Adding the following constraints: 𝑦 ≤ 𝑒𝑖(𝑥), ∀𝑖 ∈ 1,… 𝑞

Max-min and min-max problem

A product is realized by composing 3 parts which have to be processed by four different production lines. The table reports

the capacity of each line and the production rate (#pieces/h) of each part on each line.

We want to determine the number of hours that each part has to be processed on each line with the aim of maximizing the

number of realized complete products.

Line Capacity

Production Rate

(# pieces/ h)

Part 1 Part 2 Part 3

1 100 10 15 5

2 150 15 10 5

3 80 20 5 10

4 200 10 15 20

Max-min and min-max problem: sample problem

❑ Decision Variables:

─ 𝑥𝑖𝑗 number of hours each part j is processed on line i

❑ Formulation:

𝑚𝑎𝑥 𝑚𝑖𝑛

10𝑥11 + 15𝑥21 + 20𝑥31 + 10𝑥41 ;

15𝑥12 + 10𝑥22 + 5𝑥32 + 15𝑥42 ;

5𝑥13 + 5𝑥23 + 10𝑥33 + 20𝑥43
𝑠. 𝑡.

𝑥11 + 𝑥12 + 𝑥13 ≤ 100

𝑥21 + 𝑥22 + 𝑥23 ≤ 150

𝑥31 + 𝑥32 + 𝑥33 ≤ 80

𝑥41 + 𝑥42 + 𝑥43 ≤ 200

Capacity Constraints

𝑥𝑖𝑗 ≥ 0 intero ∀𝑖, ∀𝑗

Max-min and min-max problem: sample problem

max 𝑦

𝑠. 𝑡.

𝑥11 + 𝑥12 + 𝑥13 ≤ 100

𝑥21 + 𝑥22 + 𝑥23 ≤ 150

𝑥31 + 𝑥32 + 𝑥33 ≤ 80

𝑥41 + 𝑥42 + 𝑥43 ≤ 200

Capacity Constraints

𝑥𝑖𝑗 ≥ 0 intero ∀𝑖, ∀𝑗

𝑦 ≤ 10𝑥11 + 15𝑥21 + 20𝑥31 + 10𝑥41

𝑦 ≤ 15𝑥12 + 10𝑥22 + 5𝑥32 + 15𝑥42

𝑦 ≤ 5𝑥13 + 5𝑥23 + 10𝑥33 + 20𝑥43

Additional Constraints

❑ Linear formulation:

Max-min and min-max problem: sample problem

➢ Let us consider a generic mathematical model with linear constaints and the following objective function:

m𝑖𝑛 𝑒 𝒙

where e x is linear

Remembering that 𝑒 𝒙 = 𝑚𝑎𝑥 𝑒 𝒙 ;−𝑒 𝒙 the model min-abs can be transformed in equivalent linear one

in the following way:

✓ Introducing a new variable 𝑦 = max 𝑒 𝒙 , −𝑒 𝒙 and the objective function becomes: m𝑖𝑛 𝑦

✓ Adding the following inequalities: 𝑦 ≥ 𝑒(𝑥), 𝑦 ≥ −𝑒(𝑥)

min-abs problem

A supervisor has to plan the processing of 5 lots on a single machine. Each of them requires the following processing times

5 minutes, 7 minutes, 4 minutes, 7 minutes and 10 minutes.

The processing sequence is fixed a-priori: 1-2-3-4-5. No overlapping can be made by the lots.

The first lot has a desired delivery at 10.32, the second at 10.38, the third at 10.42, the fourth at 10.52 and the fifth at

10.57.

Let us define the ‘lot error’ has the absolute value of the difference between the processing time and the delivery time. We

want to determine the processing initial time in order to minimize the sum of the lot errors, assuming that the process starts

at 8.30.

min-abs problem: just-in-time scheduling sample problem

❑ Decision variable:

─ 𝑖𝑗 tempo di inizio lavorazione del lotto 𝑗

❑ Formulation:

min 𝑖1 + 5 − 122 + 𝑖2 + 7 − 128 + 𝑖3 + 4 − 132
+ 𝑖4 + 7 − 142 + 𝑖5 + 10 − 147

𝑠. 𝑡.

𝑖2 ≥ 𝑖1 + 5

𝑖3 ≥ 𝑖2 + 7

𝑖4 ≥ 𝑖3 + 4

𝑖5 ≥ 𝑖4 + 7

Precedence

constaints

𝑖𝑗 ≥ 0 ∀𝑗

min-abs problem: just-in-time scheduling sample problem

❑ Linear formulation:

min 𝑦1 +𝑦2 + 𝑦3 + 𝑦4 + 𝑦5

𝑠. 𝑡.

𝑖2 ≥ 𝑖1 + 5

𝑖3 ≥ 𝑖2 + 7

𝑖4 ≥ 𝑖3 + 4

𝑖5 ≥ 𝑖4 + 7

𝑖𝑗 ≥ 0 ∀𝑗

𝑦1 ≥ 𝑖1 + 5 − 122

𝑦1 ≥ 122 −5 − 𝑖1

𝑦2 ≥ 𝑖2 + 7 − 128

𝑦2 ≥ 128 −7 − 𝑖2

𝑦3 ≥ 𝑖3 + 4 − 132

𝑦3 ≥ 132 −4 − 𝑖3

𝑦4 ≥ 𝑖4 + 7 − 142

𝑦4 ≥ 142 −7 − 𝑖4

𝑦5 ≥ 𝑖5 + 10 − 147

𝑦5 ≥ 147 −10 − 𝑖5

min-abs problem: just-in-time scheduling sample problem

What about max-abs problem
➢ Let us consider a generic mathematical model with linear constaints and the following objective function:

m𝑎𝑥 𝑒 𝒙

where e x is linear

Remembering that 𝑒 𝒙 = 𝑚𝑎𝑥 𝑒 𝒙 ;−𝑒 𝒙 the model max-abs can be transformed in the following way:

✓ Introducing a new variable k = min 𝑒 𝒙 , −𝑒 𝒙 and the objective function becomes: m𝑎𝑥 𝑘

✓ Adding the following inequalities: 𝑘 ≤ 𝑒 𝑥 if e(x) ≥ 0

𝑘 ≤ −𝑒(𝑥) if e(x) ≤ 0

𝑘 ≤ 𝑒 𝑥 + My

𝑦 ≤ −𝑒(𝑥) + M (1-y)

M (1-y)≥ e(x)

M y ≥ - e(x)

Sudoku and linear programming

✓ Given an inital matrix where several elements (𝑖, 𝑗) are defined, and let 𝑅𝑄ℎ, ℎ = 1,… , 9, be the h-th square in

tables.

❑ Decision Variable:

─ 𝑥𝑖,𝑗,𝑘 𝑖, 𝑗, 𝑘 ∈ 1, … , 9 𝑥𝑖,𝑗,𝑘 = 1 if the element (𝑖, 𝑗) takes value 𝑘, 0 otherwise.

❑ Objective function:

No real objective fucntion, since we are only looking for a feasible solution. When we use an optimization

software, we can define a dummy objective function (eg. min z , z ≥ 0)

Sudoku and linear programming

❑ Constraints:

Each element has to assume a value

between 1 and 9

𝑘=1

9

𝑥𝑖,𝑗,𝑘 = 1 ∀𝑖, 𝑗

In each row all the numbers between 1

and 9 have to be present

𝑗=1

9

𝑥𝑖,𝑗,𝑘 = 1 ∀𝑖, 𝑘

In each column all the numbers between 1

and 9 have to be present

𝑖=1

9

𝑥𝑖,𝑗,𝑘 = 1 ∀𝑗, 𝑘

In each square, all the numbers between 1

and 9 have to be presente

(𝑖,𝑗)∈𝑅𝑄ℎ

9

𝑥𝑖,𝑗,𝑘 = 1 ∀ℎ, 𝑘

∀ element (𝑖, 𝑗) in the starting matrix containing number k𝑥𝑖,𝑗,𝑘 = 1

Sudoku and linear programming

❑ A travelling salesman has to visit a given number of cities, leaving from its city and coming back to the same city at the

end of the tour.

The TSP is a combinatorial optimization problem and is the most known and studied problem in literature. Its ‘success’ is due

to the fact that: :

➢ It is very easy to define

➢ It is very difficult to solve, even with few cities

❑ The travelling salesman wants to minimize the run distance.

Travelling salesman problem (TSP) → Hamiltonian Cycle

Hamiltonian Cycle:

Given a graph G(V,E), the Hamiltonian cycle is the cycle traversing all the nodes only once.

If we associate a positive weight duv to each arc of the graph G(V,E) each hamiltonian cycle is associated with a cost given

by the sums of all the arcs composing the cycle

The TSP consists in determining the hamiltonian cycle with the minimum cost

Cost of Hamiltonian Cycle

Travelling salesman problem (TSP) → Hamiltonian Cycle

Formulation:

❑ Decision variables:

─ xij = 1 if arc (i,j) є A belongs to the hamiltonian cycle,

─ xij = 0 otherwise

❑ Objective function:

(,)

min ij ij

i j A

d x

❑ Constraints:

:(,)

:(,)

1

1

0,1

ij

i i j A

ji

i j i A

ij

x j V

x j V

vincoli di asenza di sottogiri

x ij A

=

=

In each node j an arc has

to enter

From each node j an arc

has to leave

Travelling salesman problem (TSP) → Hamiltonian Cycle

, :
(,)

-1 S V: 2 S 1ij

i S j S
i j A

x S V

 −

Subtour elimination constraints

1

3

2

4

5

6

7

