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1 Discrete Event Systems (DES), Languages and Automata

2 Petri nets (PNs) and their twofold representation to model DES

3 MILP and ILP formulations: logical conditions, binary variables “do
everything", and variable connecting

4 Adding uncertainty: unobservable events and observers for finite state
automata and PNs

5 Augmenting the observers: diagnosability of prefix-closed languages,
diagnosers and the fault detection for finite state automata

6 Diagnosability and fault detection in PNs - Part I: graph-based approaches

7 Diagnosability and fault detection in PNs - Part II: algebraic approaches for
bounded systems

8 Security issues in DES: non-interference and opacity

9 Non-interference and opacity enforcement

10 Open issues
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1 The automata case
Source of nondeterminism in DES modelled as logic
automata
Nondeterministic automata
Observer automata

2 The Petri nets case
Source of nondeterminism in DES modelled as Petri nets
Observer coverability graph
State estimation in labeled net systems
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Lack of sensors UNI
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The primary source of nondeterminism is the limitations of the
sensors attached to the system
This results in unobservable events that causes a change in the
state that cannot be directly measured
From the point of view of an external observer, the occurrence
of an unobservable event is equivalent to the occurrence of the
silent event ε
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Unknown initial state UNI
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Another way to model uncertainty about the system behaviour
can be the lack of knowledge about the initial state
Sometime it is assumed that the initial state of a DES is one
among a set of states
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Partial knowledge of the system dynamic UNI
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There can be also uncertainty on the effects due to the
occurrence of an event. . .
. . . or uncertainty due to undistinguishable events
Both sources of uncertainty can be modelled as an event that,
from a given state x , can cause transitions to more than one
state
In this case the state transition function becomes
nondeterministic

f : X × E 7→ 2X
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Unobservable events UNI
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When unobservable events are used to model the uncertain
system, we can assume that E = Eo ∪ Euo with

Eo the set of observable events
Euo the set of unobservable events
Eo ∩ Euo = ∅

For an external observer the occurrence of and event e ∈ Euo is
equivalent to the occurrence of ε
The projection function can be used to filter out the
unobservable events from the words generated by the system
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The projection on the Euo set UNI
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Projection

Pr : E∗ 7→ E∗
o

Pr(ε) := ε
Pr(e) := e if e ∈ Eo
Pr(e) := ε if e ∈ Euo
Pr(we) := Pr(w)Pr(e) w ∈ E∗ ,e ∈ E

Given a word w ∈ E∗ generated by the uncertain model, its
protection Pr(w) ∈ E∗

o represents what an external observer
can measure

Gianmaria De Tommasi – detommas@unina.it 8 of 43



Nondeterministic automata UNI
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Nondeterministic automata permit to take into account all the
sources of uncertainty that have been introduced so far
A nondeterministic automata (NDA) is defined a 6-ple

Gnd = (X ,E ∪ {ε} , fnd , Γ , x0 ,Xm)

The silent event ε is included in the set of events that drive the
systems dynamic
The transition function is defined as

fnd : X × E ∪ {ε} 7→ 2X

that is fnd (x ,e) ⊆ X , when defined (uncertainty on the
conseguences of a given event)
The initial state may be itself a set of states, that is x0 ⊆ X
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Extending the transition function
to the nondeterministic case
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For (logic) deterministic automata it is f (x , ε) = x (in the deterministic case ε
is used as empty string, rather than silent event)

ε-reach of a state x

εR(x) = {all the states that can be reached from x following a silent transition}

By definition it is x ∈ εR(x)

If B ∈ X , then
εR(B) =

⋃
x∈B

εR(x)

It is then possible to extend fnd as
f ext
nd (x , ε) := εR(x)
f ext
nd (x ,we) := εR

({
z ∈ X | z ∈ fnd(y , e) for some y ∈ f ext

nd (x ,w)
})

with w ∈ E∗ and e ∈ E

In general it is fnd(x , e) ⊆ f ext
nd (x , e) with e ∈ E ∪ {ε}
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Example UNI
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fnd(1 , ε) = {3} ; f ext
nd (1 , ε) = {1 , 3}

fnd(3 , a) = {1} ; f ext
nd (3 , a) = {1 , 3}

fnd(3 , a) = {1} ; f ext
nd (3 , a) = {1 , 3}

fnd(2 , a) = f ext
nd (2 , a) = {2 , 3}

fnd(2 , b) = f ext
nd (2 , b) = {3}

fnd(1 , bba) = {1} ; f ext
nd (1 , bba) = {1 , 3}
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Languages of a NDA UNI
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Given the notion of extended transition function f ext
nd , it is

possible to define the languages generated and marked by a
NDA

Language generated by Gnd – L(Gnd)

L(Gnd ) =
{

w ∈ E∗ | ∃ x ∈ x0 s.t. f ext
nd (x ,w) is defined

}

Language marked by Gnd – Lm(Gnd)

Lm(Gnd ) =
{

w ∈ L(Gnd ) | ∃ x ∈ x0 s.t. f ext
nd (x ,w) ∩ Xm 6= ∅

}
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Logic nondeterminism
vs stochastic nondeterminism
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Here we are dealing with nondeterminism in the context of logic
automata
Nondeterminism can be associated also to the timing of event
occurrences
The inclusion of this further source of nondeterminism calls for
the use of stochastic models. . .

Stochastic automata
Generalized Semi-Markov Process
Markov chains
. . .

. . .which are out of the scope of these lectures :)
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The observer UNI
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The observer is a deterministic automaton that is equivalent to
a given NDA

Equivalence in terms of languages

If the NDA has finite state space, then also the observer will be
a FSM
The observer allows us to estimate the state of a NDA
First results for fault detection have been obtained by extending
the concept of observer

Be patient and wait for Lecture #5 by Prof. Basile

M. Sampath et al.
Diagnosability of Discrete-Event Systems
IEEE Transactions on Automatic Control, 1995
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Building the observer UNI
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Let Gnd = (X ,E ∪ {ε} , fnd , x0 ,Xm) be a NDA. Its observer is
the deterministic automaton

Obs(Gnd ) =
(
Xobs ,E , fobs , x0 ,obs ,Xm ,obs

)
where
x0 ,obs := εR(x0)

For each B ∈ Xobs and e ∈ E , the transition function of the
observer is defined as

fobs(B ,e) := εR ({x ∈ X | ∃ xe ∈ B s.t. x ∈ f (xe ,e)})

therefore the state fobs(B ,e) is included in Xobs

Xm ,obs := {B ∈ Xobs | B ∩ Xm 6= ∅}
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Let’s try to build the observer for these NDA!
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NDA and regular languages UNI
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Given a NDA Gnd with finite state space, its observer Obs(Gnd )

has finite state space as well
is equivalent to Gnd

Indeed, by definition it is
L(Gnd ) = L (Obs(Gnd ))
Lm(Gnd ) = Lm (Obs(Gnd ))

Finite-state NDA speaks regular languages as
deterministic FSM
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Observer of deterministic automata
with unobservable events
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The observer can be used to estimate the state of a partially
observed deterministic automaton, i.e. a deterministic
automaton with E = Eo ∪ Euo

It is sufficient to replace the unobservable events with the silent
transition→ a NDA is derived from the deterministic automaton
with unobservable events
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Set of unobservable events Euo = ed ,u , v
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Nondeterminism in Petri nets UNI
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1 Unknown initial marking (state) – it applies also to unlabeled
PNs

2 ε–free (λ–free) PNs→ partial knowledge of the system
dynamic or undistinguishable events

3 Unlabeled PNs with unobservable transitions→ the
unobservable transitions are mapped on the silent event ε→
lack of sensors

4 Arbitrarily labeled PNs→ both 2 and 3
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Bounded PNs UNI
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For bounded PNs with relatively small reachability
set R (N ,m0), state estimation can be achieved by building the
observer of the nondeterministic reachability graph

However, specific approaches have been developed for PNs
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Marking estimation in P/T nets UNI
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The observer coverability graph (OCG) can be built to
estimate the marking m of an unlabeled PNs under the
following. . .

Assumptions

1 The initial marking m0 of the system is completely unknown
(the only considered source of nondeterminism)

2 The structure of the net N = (P ,T ,Pre ,Post) is known
3 All the transition occurrences can be observed→ the system

is unlabeled and Tuo = ∅

The OCG has been proposed in

A. Giua and C. Seatzu
Observability of Place/Transition Nets
IEEE Transactions on Automatic Control, 2002
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Marking estimation UNI
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If σ = t1t2 . . . is a sequence enabled under the (unknown) initial marking,
i.e. m0

[
σ〉, then the following algorithm can be used to estimate the marking

Marking estimation by using the observation of the
transition occurrences

1 Let the initial estimate be µ0 = 0
2 Let i = 1

3 Wait until t i fires

4 Set µ′i equal to

µ′i (p) = max
(
µi−1(p) ,Pre(p , t i)

)
, ∀ p ∈ P

5 Let µi = µ′i + C(· , t i)

6 Let i = i + 1

7 Goto step 3
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Example of marking estimation UNI
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Marking complete sequences UNI
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Given a sequence σ ∈ L(N ,m0) with m0
[
σ〉m and let µ be the

marking estimate built by means of the proposed algorithm
after the occurrence of σ, then the following two definitions can
be given

p-complete sequence

Given p ∈ P, the sequence σ is said to be p-complete
if µ(p) = m(p)

Marking complete sequence

The sequence σ is said to marking complete if it is p-complete
for all p ∈ P
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Observability of a net system UNI
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Marking observability

A system S = 〈N ,m0〉 is said to be Marking Observable (MO) if there exists
a marking complete sequence σ ∈ L(N ,m0)

Strong marking observability

A system S = 〈N ,m0〉 is said to be Strongly Marking Observable (SMO) in k
steps, if

∀ σ ∈ L(N ,m0) such that |σ| ≥ k , σ is marking complete (every sufficiently
long sequence is marking complete)

∀ σ ∈ L(N ,m0) such that |σ| < k , either σ is marking complete or ∃ t ∈ T
such that m0

[
σt〉 (short and non marking complete sequences can be

always extended to marking complete ones)
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Uniform observability of a net system UNI
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Uniform marking observability

A system S = 〈N ,m0〉 is said to be Uniformly Marking Observable (uMO) if
∀ m ∈ R (N ,m0) the system 〈N ,m〉 is MO

Uniform strong marking observability

A system S = 〈N ,m0〉 is said to be Uniformly Strongly Marking
Observable (uSMO) in k steps, if ∀ m ∈ R (N ,m0) the system 〈N ,m〉 is
SMO in k steps
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Structural observability of a net UNI
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Structural marking observability

A net N is said to be Structurally Marking Observable (sMO) if 〈N ,m0〉 is MO
∀ m0 ∈ Nm

Structural strong marking observability

A net N is said to be Structurally Strongly Marking Observable (sSMO) in k
steps, if 〈N ,m0〉 is SMO in k steps ∀ m0 ∈ Nm (with k dependent on m0)
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Relationship between observabilities
in PNs
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The observer coverability graph UNI
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The Observer coverability graph (OCG) permits to represent both the set of reachable markings of a net system
(also unbounded), and an upper bound for the estimation error computed in accordance with the proposed algorithm

Similarly to the coverability graph, the construction of the OCG is based the observer coverability tree

Observer coverability tree (taken from Giua & Seatzu, IEEE TAC 2002
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Use the OCG to check observability UNI
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1 A net system S = 〈N ,m0〉 is MO if there exists a node in its
OCG such that u = 0

2 A net system S = 〈N ,mo〉 is SMO in k steps iff u = 0 for each
node (m ,u) in the OCG such that

the node belongs to a cycle
the node is dead

3 Conditions to check uMO, uSMO, sMO and sSMO require
additional tools (see Giua & Seatzu, IEEE TAC, 2002, for more
details)
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OCG – Examples UNI
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OCG – Examples UNI
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OCG – Examples UNI
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State estimation for ε-free PNs UNI
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In ε-free labeled systems, an event can map on more than one transition,
to model undistinguishable events or uncertain dynamic

The concept of consistent markings with a given observer word w ∈ E∗ can
be used to build a state observer that does not require the construction of the
reachability graph, and thus works for both bounded and unbounded
systems

Assumptions

1 The structure of the net N = (P ,N ,Pre ,Post) is known

2 The initial marking m0 is known

3 The labeling function is ε-free and the events associated to transition
firings can be observed

A. Giua, D. Corona, C. Seatzu
State estimation of λ-free labeled Petri nets with contact-free
nondeterministic transitions
Discrete Event Dynamic Systems: Theory and Applications, 2005
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Consistent markings set UNI
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Set of w-consistent markings C(w)

Given an observed word w , the set of w-consistent markings C(w) is

C(w) =
{

m ∈ Nm | ∃ a sequence σ ∈ T ∗ such that m0
[
σ〉 and `(σ) = w

}

Algorithm to compute C(w)

1 Let w0 = ε and C(w0) = m0

2 Let i = 0

3 Wait until a new event e is observed

4 Let i = i + 1

5 Let wi = wi−1e and C(wi) = ∅
6 For all m ∈ C(wi−1) do

For all t such that m
[
t〉 and `(t) = e

compute m′ = m + C(· , t) and let C(wi) = C(wi) ∪m′

7 Goto step 3
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Curse of dimensionality UNI
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To compute the set of markings that are consistent with an
observed word w with |w | = k , requires to compute the set of
markings that are consistent with all prefixes of w
Therefore, given a word w , each set C(w̃) with w̃ ∈ {w} must
be explicitly enumerated
However, note that the cardinality of the set of consistent
markings may either increase or decrease as the length of the
observed word increases
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Linear algebraic characterization of C(w) UNI
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A linear algebraic characterization of C(w) can be given, with a fixed
number of constraints, when the following additional assumption is made

Nondeterministic transitions are contact-free, i.e., being ti and tj non
deterministic, it is

•t•i ∩ •t•j = ∅ and •ti ∩ t•i = ∅

The nondeterministic transition are those ones that share the event with other
transitions

A linear characterization permits to avoid the enumeration of elements
in C(w)

In some applications enumeration is not needed, while an algebraic
characterization is sufficient (see also the diagnosability case in
Lecture #7)

The details can be found in A. Giua, D. Corona, C. Seatzu, Discrete Event
Dynamic Systems: Theory and Applications, 2005

Gianmaria De Tommasi – detommas@unina.it 40 of 43



State estimation for system
with silent events
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A linear algebraic characterization of C(w) has been given also in the case
of labeled system whose transitions map on the silent event ε

Assumptions

1 The structure of the net N = (P ,N ,Pre ,Post) is known

2 The initial marking m0 is known

3 The labels associated to the firing of transitions that do not map on ε can
be observed, and a different label is associated to each of these transitions

4 The subnet induced by the silent transitions is acyclic

5 The subnet induced by the silent transitions is backward conflict-free, i.e.,
any two distinct silent transitions have no common output place

Assumption 3 prevent to model undistinguishable events and some
uncertainty on the dynamic
The details can be found in

A. Giua, C. Seatzu, D. Corona
Marking Estimation of Petri Nets With Silent Transitions
IEEE Transactions on Automatic Control, 2007
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