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1 Discrete Event Systems (DES), Languages and Automata

2 Petri nets (PNs) and their twofold representation to model DES

3 MILP and ILP formulations: logical conditions, binary variables “do
everything", and variable connecting

4 Adding uncertainty: unobservable events and observers for finite state
automata and PNs

5 Augmenting the observers: diagnosability of prefix-closed languages,
diagnosers and the fault detection for finite state automata

6 Diagnosability and fault detection in PNs - Part I: graph-based approaches

7 Diagnosability and fault detection in PNs - Part II: algebraic approaches for
bounded systems

8 Security issues in DES: non-interference and opacity

9 Non-interference and opacity enforcement

10 Open issues
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To implement a fault detection algorithm an agent which gives,
after each observed event, a set of faults that could have
happened, or a set of fault states that the system could have
reached, must be obtained. Such an agent is called diagnoser.
A standard approach is to build a DES, called compiled
diagnoser. At each state transition this system provides the set
of faults that could have happened (SampathLafortune95), or a
set of fault states that the system could have
reached (ZadKwongWonham03).
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In general, the compiled diagnoser building is very computation
demanding, even if it can be performed offline, and its state
space results to be big. However, the computational effort to
run a diagnoser is very low.
The compiled diagnoser provides a fast on-line diagnosis at a
price of excessive memory requirements since all the
diagnoser state space must be available, and hence, it may be
applied only when the state spate is bounded. This is the usual
approach when the plant is modeled as finite state automata.
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Another approach is to write an algorithm, called interpreted
diagnoser, which online, after each observed event, computes
the set of faults that could have happened, or a set of fault
states that the system could have reached.
In this case, the computational effort to run the diagnoser is
bigger than in the case of the compiled diagnoser and it is
difficult to derive a diagnosability test, while the memory
requirement is much less since there is no need to precompute
any state space. This approach is used in particular when the
plant is modeled by Petri nets, since their mathematical
representation mitigates the effort of the online computation.
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A mixed approach is to write an algorithm, which online, after
each observed event, computes the set of faults that could have
happened, or a set of fault states that the system could have
reached, on the basis of a system/graph computed offline.
In this case, a trade-off between offline and online computation
is pursued. However, memory requirements are most
significant with respect to the interpreted diagnosed case.

Francesco Basile – fbasile@unisa.it 7 of 42



The assumptions UNI
NA

DIE
II I

The system to be diagnosed is modeled as a finite state
automaton G.
The model G includes both the normal and the faulty behavior.
The set of events E is partitioned as E = Eo ∪ Eu in two disjoint
subsets, where Eo is the set of observable events and Eu is the
set of unobservable events.
Let Ef ⊆ E denote the set of failure events which are to be
diagnosed. Let us assume that Ef ⊆ Eu, since it is
straightforward diagnose an observable failure event.

Two main assumptions are usually done:
(A1) The language L generated by G is live. This means that there

not exists a state x ∈ X from which no event is possible.
(A2) There does not exist in G any cycle of unobservable events.
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The set of observable events is Eo = {a,b, c} and the set of
unobservable events, that is equal to the set of fault events, is
Eu = Ef = {f}.
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(a) G and (b) its observer

The initial state of the observer is x0,obs = {1,2}. It means that if no
event is observed the system G can be either in state 1 or in state 2...
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After observing string t = a, we do not know if the system has the
fault f is occurred or not, but, after observing w = ac, we know with
certainty that f must have occurred.
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Diagnosis problem is the problem of associate to each
observed string of events a diagnosis state, such as “normal” or
“faulty” or “uncertain”.
The uncertainty can be reduced continuing to make
observations.
We can automate this kind of inferencing about the past
constructing an automaton that is similar to the observer, but
that contains additional information regarding the occurrence of
fault transitions. We call this modified observer a diagnoser
automaton.
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(a) an automaton G, (b) its observer and (c) its diagnoser

Label N means that “f has not occurred yet” while Y means that “yes,
f has occurred”.
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The key modifications to the construction of Obs(G) for the
purpose of building Diag(G):
M1. When building the unobservable reach of the initial state x0
of G:

(a) Attach the label N to states that can be reached
from x0 by unobservable strings in [Eu \ f ]∗;

(b) Attach the label Y to states that can be reached
from x0 by unobservable strings that contain at
least one occurrence of f ;

(c) If state z can be reached both with and without
executing f , then create two entries in the initial
state set of Diag(G): zN and zY .
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An algorithm to compute the diagnoser UNI
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M2. When building subsequent reachable states of Diag(G):

(a) Follow the rules for the transition function of
Obs(G), but with the above modified way to build
unobservable reaches with state labels;

(b) Propagate the label Y . Namely, any state
reachable from state zY should get the label Y to
indicate that f has occurred in the process of
reaching z and thus in the process of reaching the
new state.

M3. No set of marked states is defined for Diag(G).
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Diagnoser Diag(G) is a deterministic automaton, whose set of
events is E = Eo and that generates a language
L(Diag(G)) = P[L(G)].
Each state of Diag(G) is a subset of X × {N,Y}.
Modification M1(c) implies that if a state can be reached by two
paths having the same observable projection and such that one
path contains the fault f and the other one does not in a node of
Diag(G) will exist two pairs xN and xF . It means that the
cardinality of Diag(G) is always greater than or equal to the
cardinality of Obs(G).
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An alternative way to build the diagnoser is to consider the
following label automation Alab

 

f 

f 

N F 

and to compute G ‖ Alab. The diagnoser can be obtained as
Obs(G ‖ Alab). Indeed, it is equivalent to the observer of
G ‖ Alab.
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We can perform diagnosis by examination of the diagnoser
states. In Diag(G) we can distinguish three different kind of
states:

negative state: if in the node of Diag(G) for all pairs (x , l) ,
l = N. Thus reaching this node we are sure that fault f has not
occurred yet;
positive state: if in the node of Diag(G) for all pairs (x , l) ,
l = Y . Thus reaching this node we are sure that fault f has
occurred;
uncertain state: if in the node of Diag(G) there exists at least
one pair (x , l) such that l = N and at least one pair (x , l), such
that l = Y . Thus, we cannot say nothing about the occurrence
of fault f .
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Consider a DES system G and event set E = Eu ∪ Eo, where Eo
denotes the observable events and Eu denotes the unobservable
ones, and a fault event f ⊆ Eu.

Let L be the live and prefix-closed language generated by G.

L/σ is the post-language of L after the sequence of transitions σ, i.e.
L/σ =

{
v ∈ T ∗ s.t. σv ∈ L

}
.

A sequence v ∈ L/σ is called continuation of σ.

Let Pr : T ∗ 7→ T ∗o be the usual projection, which erases the
unobservable transitions in a sequence u. The inverse projection
operator Pr−1

L is defined as

Pr−1
L (r) =

{
σ ∈ L s.t. Pr(u) = r

}
.
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Definition (Lafortune95)

A fault event f is said to be diagnosable if

∃ h ∈ N such that ∀ σ = uf with f /∈ u, and ∀ v ∈ L/σ with |v | ≥ h ,

it is
r ∈ P−1

L

(
P(σv)

)
⇒ f ∈ r .

A fault f is diagnosable if for every trace s ending with f , there exists a
sufficiently long continuation v such that any other trace
indistinguishable from σv (producing the same record of observable
events) contains f (are also faulty).

Assumption (A1) allows us to state that when the property of
diagnosability is satisfied, we are sure that if f occurs, then Diag(G)
will enter a positive state in a bounded number of events after the
occurrence of f .
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Definition (Lafortune95)

Let us consider a system G and its diagnoser Diag(G). We say that a
cycle in Diag(G) is an indeterminate cycle if it is composed
exclusively of uncertain states for which there exist:

a corresponding cycle (of observable events) in G involving only
states that carry Y in their labels in the cycle in Diag(G) and
a corresponding cycle (of observable events) in G involving only
states that carry N in their labels in the cycle in Diag(G). �

The notion of indeterminate cycles is very important because their
analysis gives us necessary and sufficient conditions for
diagnosability and gives a method to test the property.
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In the general case, the set of fault events is partitioned into m
disjoint subsets that represent the set of fault classes:

Ef = Ef1,Ef2, . . . ,Efm.

The aim is that of identifying the occurrence, if any, of failure
events, given the set of generated words containing only
observable events.

Proposition (Lafortune95)

A language L without multiple failures of the same type is
diagnosable if and only if its diagnoser Diag(G) has no
indeterminate cycles for all failure types Efi .
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The diagnoser has a potential indeterminate cycle. Let us verify if
conditions of Definition 2 are satisfied. In G there exists the cycle
“ 1→ 2→ 3→ 1” involving only states that carry Y in their labels and
there exists another cycle “ 1→ 5→ 1” involving only states that
carry N in their labels. Thus, this cycle is indeterminate thus the fault
is not diagnosable.

Francesco Basile – fbasile@unisa.it 24 of 42



Indeterminate cycles UNI
NA

DIE
II I 

1N, 4Y 
 

2N, 5Y 3N, 6Y 

a 

c b 1N, 4Y, 7Y 7Y c 

c 

a 

a 

b 

f 

c 

c 

a 

x1 

x2 x3 

x4 x7 x5 b 
x6 

The diagnoser has a potential indeterminate cycle. However the only
cycle that can cause the diagnoser to remain in its cycle of uncertain
states is the cycle “ 1→ 2→ 3→ 1”, and these states all have the N
label in the corresponding diagnoser states. The cycle of uncertain
states in the diagnoser is therefore not indeterminate.
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The construction of the entire diagnoser may be very
computation demanding.
Its size is exponential in the number of states of G, as well as in
the number of faults if a single diagnoser is desired. This
second limitation can be addressed by building separate
diagnosers for each fault type.
The first limitation can be addressed by using the “twin
machine” technique.
The idea behind this technique is that a fault f is diagnosable if
and only if there is no pair of arbitrarily long traces having the
same observable projection, such that f occurs in the first trace
but not in the second.
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G G0 G0 × G0 

First, a nondeterministic observer of G, denoted by G0, whose states
can be reached by taking only the observable transitions is computed:
a label fi in its state indicates that fault fi occurs along a certain path
from the initial state to this state; otherwise, the state label is “N”.
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G G0 G0 × G0 

The next step is to compute the parallel composition of G0 with itself.
The system is not diagnosable if G0 ×G0 contains a cycle where the
left labels and the right labels differ by fault type fi in every state along
the cycle (they may differ in other ways as well).
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G G0 G0 × G0 

In G0 ×G0 there is a self-loop at the state ((3, f2), (3, f1, f2)) or at the
state ((3, f1, f2), (3, f2)). In each case, the cycle indicates that fault f1
is not diagnosable in G, as the presence of each cycle implies the
existence of two arbitrarily long traces with the same projection,
where f1 is contained in one trace but not in the other.
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In the context of continuous time systems, diagnosis in consists
in the determination of the time of detection, kind, size and
location of a fault. Diagnosis in a wide sense includes fault
detection, isolation and identification.
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In the context of discrete event systems, kind and size has not
sense, and the diagnosis task may be considered to be
completed after fault detection and localization.

Francesco Basile – fbasile@unisa.it 32 of 42



The concept of residual UNI
NA

DIE
II I

 

A residual is a fault indicator, based on a deviation between
measurements and model-based computation.
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Denote by

ES(u(i),u(k)) the set of rising and falling edges between two I/O
vector sets u(i) and u(k), called evolution set;

λ(x̃) the I/O vector set generated by the fault free model of the
extended process at state x̃ ;

f (x̃) the transition function of the fault free model of the extended
process at state x̃ .

An example of residual is

Res1(x̃ ,u(t)) = ES(λ(x̃),u(t)) \
⋃

∀x ′∈f (x̃)

ES(λ(x̃), λ(x ′))

⋃
∀x ′∈f (x̃) ES(λ(x̃), λ(x ′)) is the union of the sets of rising and falling

edges when the last estimated current state and each of its direct
successor states are considered, it is the overall expected behavior of
the system. Hence Res1(x̃ ,u(t)) represents an unexpected behavior
of the system.
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Let x̃ = x1,
Res1(x̃ ,u(t)) =
{IO3_0, IO4_0}\({IO1_0, IO2_1, IO4_0}

⋃
{IO1_0, IO2_1}) = {IO3_0}.

This result that implies that the system operator should check the
sensor or actuator that is connected with IO3.
If the fault is not located at the sensor/actuator connected with IO3,
one may consider a stricter formulation of the expected behavior.
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Res2(x̃ ,u(t)) = ES(λ(x̃),u(t)) \
⋂

∀x ′∈f (x̃)

ES(λ(x̃), λ(x ′))

The intersection delivers the I/O edges that must be observed
no matter which following state in the model is taken, obviously
Res1(x̃ ,u(t)) ⊆ Res2(x̃ ,u(t)).
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Res2(x̃ ,u(t)) = {IO3_0, IO4_0} \
({IO1_0, IO2_1, IO4_0}

⋂
{IO1_0, IO2_1}) = {IO3_0, IO4_0}.

This result that implies implies that the occurrence of a change in
value of IO4 is not always expected and thus it is another possible
fault localization.
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Res3(x̃ ,u(t)) =
⋂

∀x ′∈f (x̃)

ES(λ(x̃), λ(x ′)) \ ES(λ(x̃),u(t)).

Res3 is the set difference of the I/O edges that are expected no
matter which following state is taken and the I/O edges that
have been observed. It characterizes a missed behavior, a less
restrictive version is

Res4(x̃ ,u(t)) =
⋃

∀x ′∈f (x̃)

ES(λ(x̃), λ(x ′)) \ ES(λ(x̃),u(t)).

Francesco Basile – fbasile@unisa.it 38 of 42



Missed event UNI
NA

DIE
II I

 

Let x̃ = x1,
Res3(x̃ ,u(t)) = {IO1_0}, Res4(x̃ ,u(t)) = {IO1_0, IO2_1}.

First, the component connected with IO1 should be checked. If a fault
is not found at this component, the component connected with IO2
must be checked.
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