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1 Discrete Event Systems (DES), Languages and Automata

2 Petri nets (PNs) and their twofold representation to model DES

3 MILP and ILP formulations: logical conditions, binary variables “do
everything", and variable connecting

4 Adding uncertainty: unobservable events and observers for finite state
automata and PNs

5 Augmenting the observers: diagnosability of prefix-closed languages,
diagnosers and the fault detection for finite state automata

6 Diagnosability and fault detection in PNs - Part I: graph-based
approaches

7 Diagnosability and fault detection in PNs - Part II: algebraic approaches for
bounded systems

8 Security issues in DES: non-interference and opacity

9 Non-interference and opacity enforcement

10 Open issues
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Main PN approaches classification
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Minimal explanations
Minimal justifications
Basis marking
Fault diagnosis

3 Verifier Net

4 Net unfolding
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Basis Reachability Graph [CabasinoCEP2011];
Verifier net [CabasinoGiua:CDC2009b];
Net unfolding approach [Benveniste03];
Integer linear programming approaches
[DotoliAutomatica09,BasileAutomatica2012] (treated in detail in
Lesson 7).
Fault free model approach (not treated)
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Given an observed word of event w :

S(w) is the set containing all sequences of labeled transitions
that are consistent with w , i.e., the set of all possible occurring
sequences that produce observation w from the initial marking;
C(w) is the set of reachable markings that are consistent with
w , i.e., the set of all possible markings in which the system can
be after the firing of w from the initial marking.
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Consider the observation w = ab,
To = {t1, t2, t3, t4, t5, t6, t7}, Tu = {ε8, ε9, ε10, ε11, ε12, ε13}
S(w) = t1t2, t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10, t1t2ε8ε11
C(w) = {[0 0 1 0 0 0 0 1 0 0 0], [0 0 0 1 0 0 0 1 0 0 0], [0 0 0 0 1 0
0 1 0 0 0], [0 1 0 0 0 0 0 1 0 0 0], [0 0 0 0 0 1 0 1 0 0 0]}
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Given a marking m and an observable transitions t ∈ To, let

Σ(m, t) = {σ ∈ T ∗u | m
[
σ〉m′ s.t. m′ ≥ Pre(·, t)}

is the set of all the explanations of t at m, and let

Y (m, t) = π(Σ(m, t))

be the corresponding set of firing count vectors, called
e-vectors (explanation vectors).

Notice that σ = π(σ).
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Given a marking m and an observable transitions t ∈ To, let

Σmin(m, t) = {σ ∈ Σ(m, t) | 6 ∃σ′ ∈ Σ(m, t) : π(σ′) � π(σ)}

is the set of all the minimal explanations of t at m, and let

Y (m, t) = π(Σmin(m, t))

be the corresponding set of firing count vectors, called minimal
e-vectors.
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Σ(m0, t1) = {ε}, Σ(m0, t2) = {∅}
Let m = [0 0 1 0 0 0 0 1 0 0 0],
Σ(m, t5) = {ε, ε8, ε8ε9, ε8ε11, ε8ε9ε10}, Σmin(m, t5) = {ε},
Y (m, t5) = {[0 0 0 0 0 0]T , [1 0 0 0 0 0]T , [1 1 0 0 0 0]T ,
[1 0 0 1 0 0]T , [1 1 1 0 0 0]T ,
Ymin(m, t5) = [0 0 0 0 0 0]T .
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Given an observed word of event w :

J (w) the set of justifications, i.e., the set of all minimal
sequences of unobservable transitions interleaved with w and
whose occurrence enables w ;
Ĵ (w) is the set of pairs whose first element is the sequence
σo ∈ T ∗o labeled w and whose second element is the
corresponding justification (sequence of unobservable
transitions interleaved with σo whose firing enables σo and
whose firing vector is minimal); y are the firing vectors of these
justification sequences, they are called j-vectors.
Ŷmin(m0,w) is the set of pairs whose first element is the
sequence σo ∈ T ∗o labeled w and the second is the
corresponding j-vector.
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Consider the observation w = ab,
Ĵ (w) = {(t1t2, ε)}, Ŷmin(m0,w) = {(t1t2,0)}
Consider the observation w = acd ,
Ĵ (w) = {(t1t5t6, ε), (t1t5t7, ε12ε13)},
Ŷmin(m0,w) = {(t1t5t6,0), (t1t5t7, [0 0 0 0 1 1]T )}
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Any marking reached from m0 firing σo labeled w and
interleaved with its justification σu is called basis marking and
the j-vector corresponding to σo is called j-vector of the basis
marking and denoted by mb.
More than one justification exists for a word w - the set Ĵ (w) is
not a singleton - the basis marking is not unique.
The set of couples (mb,y), i.e. (basis marking, j-vector),
consistent with w is denotedM(w).

M(w) only keep track of the basis markings that are reached
and of the firing vector (not the sequences) relative to
sequences of unobservable transitions that have fired to reach
them.
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Minimal explanations are function of a generic marking m,
justifications are function of the initial marking m0.

Justifications are function of the initial marking, but in case of acyclic
unobservable subnets they can be recursively computed summing up
minimal explanations.

M(w) computation

After a certain word w ′ has been observed, a new observable t fires
and its label l = L(t) is observed.

Consider all basis markings at the observation wt and select among
them those that may have allowed at least the firing of one transition
labelled by t, also taking into account that this may have required the
firing of the minimal explanations and thus the correspnding minimal
e-vectors.

UpdateM(w ′t) including all pairs of new basis markings and
j-vectors, taking into account that for each basis marking at wt it may
correspond more than one j-vector.
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Ĵ (w) andM(w) UNI
NA

DIE
II I

 

Consider the observation w = ab,
Ĵ (w) = {(t1t2, ε)}
mb = [0 0 1 0 0 0 0 1 0 0 0]T , andM(w) = {(mb,0)}.

Francesco Basile – fbasile@unisa.it 14 of 40
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Consider the observation w = acd ,
Ĵ (w) = {(t1t5t6, ε), (t1t5t7, ε12ε13)}
m′b = [0 1 0 0 0 0 0 1 0 0 0]T

M(w) = {(m′b,0), (m′b, [0 0 0 0 1 1]T )} since all the above
j-vectors lead to the same basis marking.
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If the unobservable net is acyclic,
Mbasis(w) = {m | ∃y and (m,y) ∈M(w)}
C(w) = {m ∈ Nm |m = mb+Cu ·y : y ≥ 0 and mb ∈Mbasis(w)}
The set C(w) can be characterized in linear algebraic terms
given the setMbasis(w), thus not requiring exhaustive
enumeration. This is the main advantage of the approach.
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Assume that the set of fault transitions is partitioned into r
subsets, T i

f , i = 1...r , each one corresponding to a fault class.
The following four cases can be distinguished, each one
corresponding to an increasing level of alarm (the diagnosis
state varies from 0 to 3).
∆(w ,T f

i ) = 0 - No sequence in J (w) contains a transition in
T f

i , thus no fault in the i-th class has occurred.
∆(w ,T f

i ) = 1 - Some transitions in T f
i may have occurred but

none of them was contained in a justification of w .
∆(w ,T f

i ) = 2 - Some transitions in T f
i may have occurred and

are contained in some of the justifications of w . However, not all
justifications of w contain transitions in T f

i

∆(w ,T f
i ) = 3 - All justifications of w contain transitions in T f

i ,
thus a fault must have occurred.
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Let T 1
f = {ε11}, T 2

f = {ε12}.
Consider the observation w = a,
∆(w ,T 1

f ) = ∆(w ,T 2
f ) = 0 since Ĵ (w) = {(t1, ε)} and

S(w) = {t1}
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Let T 1
f = {ε11}, T 2

f = {ε12}.
Consider the observation w = ab,
∆(w ,T 1

f ) = 1 and ∆(w ,T 2
f ) = 0 since Ĵ (w) = {(t1t2, ε)} and

S(w) = {t1t2, t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10, t1t2ε8ε11}
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Let T 1
f = {ε11}, T 2

f = {ε12}.
Consider the observation w = abb,
∆(w ,T 1

f ) = 2 and ∆(w ,T 2
f ) = 0 since

Ĵ (w) = {(t1t2t2, ε8ε9ε10)(t1t2t3, ε8ε11)} and
S(w) = {t1t2ε8ε9ε10t2, t1t2ε8ε9ε10t2ε8, t1t2ε8ε9ε10t2ε8ε9,
t1t2ε8ε9ε10t2ε8ε9ε10, t1t2ε8ε9ε10t2ε8ε11, t1t2ε8ε11t3}
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From the analysis ofM(w) it is possible to determine the state
2 and 3, while to distinguish between state 0 and 1, for a PN
whose unobservable subnet is acyclic, an integer linear
programming problem can be used.
In particular, let w be an observed word such that for all
(m,y) ∈M(w) it holds y(tf ) = 0, ∀tf ∈ T i

f . Consider the
constraint set

T (m,T i
f ) =


m + Cu · z ≥ 0∑

tf∈T i
f
z(tf ) > 0

z ∈ Nnu

If T (m,T i
f ) is not feasible ∀(m,y) ∈M(w), a fault in the class

T i
f cannot have occurred (∆(w ,T f

i ) = 0), otherwise if
∃(m,y) ∈M(w) such that T (m,T i

f ) is feasible, a fault in the
class T i

f may have occurred (∆(w ,T f
i ) = 1).
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Let T 1
f = {ε11}, T 2

f = {ε12}.
Consider the observation w = a,
M(w) = {(m1,0)}, where m1 = [0 1 1 0 0 0 0 1 0 0 0]T

T (m1,T i
f ) is not feasible for both fault classes, ∆(w ,T f

1) = 0
and ∆(w ,T f

2) = 0.
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Let T 1
f = {ε11}, T 2

f = {ε12}.
Consider the observation w = ab,
M(w) = {(m2,0)}, where m2 = [0 0 1 0 0 0 0 1 0 0 0]T

T (m2,T i
f ) is feasible only for i = 1, ∆(w ,T f

1) = 1 and
∆(w ,T f

2) = 0.
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Let T 1
f = {ε11}, T 2

f = {ε12}.
Consider the observation w = abb,
M(w) = {(m2, [1 1 1 0 0 0]), (m3, [1 0 0 1 0 0])}, where
m3 = [0 0 0 0 0 0 1 1 0 0 0]T , ∆(w ,T f

1) = 2 and, being T (m2,T 2
f )

and T (m3,T 2
f ) both not feasible ∆(w ,T f

2) = 0.
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Using the concept of basis marking and e-vector, a graph that
collects all the information needed to perform fault diagnosis as
well as to study the diagnosability for bounded net systems can
be built, and so a mixed (quite compiled) diagnoser is obtained.
This graph is called Basis Reachability Graph (BRG) and its
nodes form a strict subset of the reachability space of the
system.
The net marking is assumed not observable.
The net system is assumed to be bounded.
Graphs derived from BRG have been proposed to study
diagnosability of bounded PN systems.
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The BRG is a deterministic graph that has as many nodes as the
number of possible basis markings.

To each node is associated a different basis marking m and a row
vector with as many entries as the number of fault classes. The
entries of this vector may only take binary values: 1 if T (m,T i

f ) is
feasible, 0 if T (m,T i

f ) otherwise.

Arcs are labeled with observable events in L and e-vectors: an arc
exists from a node containing the basis marking m to a node
containing the basis marking m′ if and only if there exists a transition
t for which an explanation exists at m and the firing of t and one of its
minimal explanations leads to m′. The arc going from m to m′ is
labeled (L(t),e), where e ∈ Ymin(m, t) and m′ = m + Cue + C(·, t).
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m0 = [1 0 0 0 0 0 0 0 0 0 0]T , m1 = [0 1 0 0 0 0 0 1 0 0 0]T ,
m2 = [0 0 1 0 0 0 0 1 0 0 0]T , m3 = [0 0 0 0 0 0 1 1 0 0 0]T ,
m4 = [0 0 0 0 0 0 1 0 1 0 0]T , m5 = [0 1 0 0 0 0 0 0 1 0 0]T ,
m6 = [0 0 1 0 0 0 0 0 1 0 0]T ,
e1 = [0 0 0 0 1 1], e2 = [1 1 1 0 0 0], e3 = [1 0 0 1 0 0] where the
ei , i = 1..3 vector’s components refers respectively to ε8, ε9, ε10, ε11,
ε12 and ε13.

Francesco Basile – fbasile@unisa.it 29 of 40



BRG UNI
NA

DIE
II I

Let T 1
f = {ε11}, T 2

f = {ε12}.
Consider the observation w = abbc, ∆(w ,T 1

f ) = 2 and ∆(w ,T 2
f ) = 1

since
M(w) = {(m6,y1), (m3,y2), (m4,y2) }, with
y1 = e2 = [1 1 1 0 0 0], y2 = e3 = [1 0 0 1 0 0] and the row vector
associated to m6, m3 and m4 are [1,1], [0,0] and [0,1].

Francesco Basile – fbasile@unisa.it 30 of 40



Verifier Net UNI
NA

DIE
II I

The term verifier is motivated since it has similarity with the
verifier automaton used in the study of the diagnosability of
discrete event systems modeled by finite-state automata.

The verifier net is built from a PN system, by considering the
parallel composition of the PN system with the PN system
induced by the set of faulty transitions Tf , i.e. obtained form the
restriction of pre- and post- incidence matrix to T \ Tf . The
synchronization is performed only wrt the observable
transitions.

The approach works for unbounded nets requires to search
for the existence of cycles in the coverability graph of the
verifier net involving a faulty node, which are nodes reachable
by firing a fault transition.
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 Parallel composition in absence of transitions sharing the same
label.
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Parallel composition in presence of transitions sharing the
same label.
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Tf = {ε2}
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 The self loop at [0 0ω 1 0 1 0ω 0]T , that is a faulty state, labeled by
(t ′6, t4) must be checked and it can be verified that it is not a repetitive
sequence. The net is diagnosable.
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Net unfolding approach has been conceived in control
architecture when the supervisor collects, not a sequence of
events, but rather a partially ordered set of events.

Net unfolding approach allows to device fault diagnosis
algorithm robust against a wrong event interleaving.

Net unfoldings are branching structures suitable to represent
the set of executions of a PN using an asynchronous semantic
with local states and partially ordered time. In this structure,
common prefixes of executions are shared, and executions
differing only in the interleaving of their transition firings are
represented only once.
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A configuration is a sub-net of the occurrence net, which is
conflict-free (no two nodes are in conflict), and causally closed.
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The configuration shown in grey is a diagnosis for the
observation (b,S1) (a,S2) (c,S1) as well as for (b,S1) (c,S1)
(a,S2) but not for (c,S1) (b,S1) (a,S2).
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