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1 Discrete Event Systems (DES), Languages and Automata

2 Petri nets (PNs) and their twofold representation to model DES

3 MILP and ILP formulations: logical conditions, binary variables “do
everything", and variable connecting

4 Adding uncertainty: unobservable events and observers for finite state
automata and PNs

5 Augmenting the observers: diagnosability of prefix-closed languages,
diagnosers and the fault detection for finite state automata

6 Diagnosability and fault detection in PNs - Part I: graph-based approaches

7 Diagnosability and fault detection in PNs - Part II: algebraic approaches for
bounded systems

8 Security issues in DES: non-interference and opacity

9 Non-interference and opacity enforcement
10 Open issues
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1 Non-interference enforcement via supervisory control

2 Open issues

3 The assessment
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Privacy & security enforcement UNI
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Enforcement by Supervisory Control→ to restrict the
system’s behaviour in order to preserve the security/privacy
property

Enforcement by insertion/obfuscation→ to input or mask
observable events of the systems so to output (possibly)
modified information to the malicious observers
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Enforcement by insertion: an example UNI
NA

DIE
II I

Taken from
C. Keroglou and S. Lafortune
Embedded Insertion Functions for Opacity Enforcement,
IEEE Transactions on Automatic Control, 2020
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SNNI definition for P/T nets UNI
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Main assumptions

The net system S = 〈N ,m0〉 is bounded

The net system is assumed to be unlabeled
The P/T net: N = (P ,L ,H ,Pre ,Post), with L ∩ H = ∅

L low-level transitions
H high-level transitions
T = L ∪ H

Objective: to exploit the twofold representation of PN systems
to find algebraic conditions to assess SNNI
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Low-level system UNI
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The low-level system is the system induced by the low-level
transitions
L = {l1 , l2} and H = {h1 ,h2}
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SNNI net system UNI
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Let S = 〈N ,m0〉 be a net system and SL = 〈NL ,m0〉 the
correspondent low-level system

S is SNNI if and only if

PrL (L(N ,m0)) = L(NL ,m0)
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Exploiting the boundedness assumption UNI
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The system is assumed bounded

Therefore it is possible to describe the state space by means of a set of
linear constraints (as we did for diagnosability)

There exists a set of ρ integer vectors s1 , . . . , sρ with ρ ≤ |σ| such that the
following linear constraints are fulfilled

m ≥ Pre · s1

m + C · s1 ≥ Pre · s2

. . .

m + C ·
∑ρ−1

i=1 si ≥ Pre · sρ∑ρ
i=1 si = π(σ)

(1)

iff there exists at least one sequence σ, which is enabled under the
marking m and such that π(σ) = σ

For a bounded net, given a sufficiently large number of inequality
constraints (1), it is possible to describe the R(N ,m0) set→ let assume
that J inequalities are sufficient to this purpose
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The key idea exploited
in the algebraic approach
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For bounded net, given J there exists a maximum number of
time a transition can fire given the constraints (1)

Let us denote as ϕt the maximum number of firings of a
low-level transition t in the low-level system SL

If it is possible to have at least one additional firing of t in the
original net system, this implies interference
The other source of interference is the possibility of using
high-level transitions to enable the firing of t
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Maximum number of firing of a low-level
transition in SL
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Given J constraints in (1), the maximum number of firings
for t ∈ L in SL can be computed as the solution of the ILP

ϕt = max
J∑

i=1

σi(t)

subject to 

m0 ≥ PreL · σ1
m0 + CL · σ1 ≥ PreL · σ2
. . .

m0 + CL ·
∑J−1

i=1 σi ≥ PreL · σJ

m0 + CL ·
∑J

i=1 σi ≥ 0
σi ∈ Nn , i = 1 ,2 , . . . , J
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SNNI assessment in DES
modeled as Petri nets (I)
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Given a K -bounded system S, let consider the two ILP problems

min
J∑

i=1

∑
th∈H

x i (th) (2)

subject to

X (m0 , ϕt ) :



m0 ≥ Pre · x1

m0 + C · x1 ≥ Pre · x2

· · · (3a)

m0 + C ·
J−1∑
i=1

x i ≥ Pre · xJ

m0 + C ·
J∑

i=1

x i ≥ 0

J∑
i=1

x i (t) ≥ ϕt + 1 (3b)

x i ∈ Nn
, i = 1 , 2 , . . . , J (3c)

min

 J∑
i=1

∑
tl∈L

y i (tl ) + ε
J∑

i=1

∑
th∈H

y i (th)

 (4)

subject to

Y (m0 , ϕt ) :



m0 ≥ Pre · y1

m0 + C · y1 ≥ Pre · y2

· · · (5a)

m0 + C ·
J−1∑
i=1

y i ≥ Pre · yJ

m0 + C ·
J∑

i=1

y i ≥ 0

J∑
i=1

y i (t) = ϕt (5b)

y i ∈ Nn
, i = 1 , 2 , . . . , J (5c)

with ε < (K · card (H) · J)−1
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SNNI assessment in DES
modeled as Petri nets (II)
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System S is SNNI iff the following two conditions hold for
each t ∈ L

1) the ILP problem (2)-(3) does not admit a solution
2) the solution of the ILP problem (4)-(5) ỹ1 , . . . , ỹJ ∈ Nn is such

that
∑J

i=1
∑

th∈H ỹ j(th) = 0
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Static non-interference enforcement UNI
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The static SNNI enforcement problem

Given a bounded and not SNNI net system S = 〈N ,m0〉, and
given a set of potentially selectable transitions PS ⊆ H, find a
subset D ⊆ PS such that if E = (L ∪ H) \ D, then
i) the system SE = 〈NE ,m0〉 is SNNI
ii) for all D′ ⊆ PS such that D′ ⊂ D, if E ′ = (L∪H) \D′, then the

system SE ′ = 〈NE ′ ,m0〉 is not SNNI

The solution to the static enforcement problem is not
necessarily unique
There may exist several subsets D1 , . . . ,Dk ⊂ PS that satisfy
conditions i) and ii)
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Does the static SNNI problem
admit a solution?
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The static SNNI enforcement
problem admits a solution iff the
algorithm returns true
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Compute a solution
to the static enforcement problem
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Compute all the solutions
to the static enforcement problem
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Algorithm to compute all the solutions to the static SNNI
enforcement problem
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Set SOL of the solutions
to the static enforcement problem

UNI
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Given a bounded and not SNNI net system S = 〈N ,m0〉 and a
set of potentially selectable transitions PS ⊆ H, let SOL be
the family of solutions to the static SNNI enforcement problem,
i.e.

SOL = {D | D ⊆ PS andD solves the static SNNI enforcement problem}

and let

SOL = {E ⊆ L ∪ H | E = (L ∪ H) \ D ,with D ∈ SOL}

be the family of transitions in PS that can be enabled without
violating SNNI. If SOL is not empty, then the following
properties hold

a) SOL is not empty
b) SOL is not closed under union
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Example UNI
NA

DIE
II I

The static SNNI enforcement
problem admits multiple solutions
when PS = H = {h1,h2,h3,h4,h5}
SOL = {{h1 ,h2} , {h3 ,h4}}
SOL =
{{l ,h3 ,h4 ,h5} , {l ,h1 ,h2 ,h5}}
The union of sets in SOL is equal
to L ∪ H that does not belong
to SOL
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Dynamic SNNI enforcement UNI
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the dynamic SNNI enforcement problem

Given a bounded and not SNNI net system S = 〈N ,m0〉, a set
of potentially selectable transitions PS ⊆ H, and a reachable
marking m ∈ R(N,m0), find a subset D(m) ⊆ PS such that
if E(m) = (L ∪ H) \ D(m), then
i) The system SE(m) = 〈NE(m) ,m〉 is SNNI
ii) for all D′ ⊆ PS such that D′ ⊂ D(m),

if E ′ = (L ∪ H) \ D′, then the system SE ′ = 〈NE ′ ,m〉 is not
SNNI
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Control architecture for dynamic SNNI
enforcement
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System marking estimates UNI
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When the firing of the k -th transition t is observed, then the
supervisor updates the two state vectors estimates

m(k) = m(k − 1) + C(·, t) ,{
m̂L(k) = m̂L(k − 1) + C(·, t) , if t ∈ L ,
m̂L(k) = m̂L(k − 1) , otherwise
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Initial values UNI
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The two marking estimates are initially set equal to the initial marking, i.e.
m(0) = m̂(0) = m0

When the observed sequence is equal to ε, the supervisor disables all the
high-level transitions that belong to at least one of the solutions to the static
enforcement problem, i.e. the initial guess for the set of high-level transitions
to be disabled is

D(m−1) =
⋃

D̄∈SOL

D̄ ,

hence, the initial guess for the enabled transitions
is E(m−1) = (L ∪ H) \ D(m−1)

D(m−1) and E(m−1) are used to compute D(m0)
and E(m0) = (L ∪ H) \ D(m0)
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Algorithm for dynamic SNNI enforcement UNI
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Example UNI
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Some open issues UNI
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Fault prognosability in Labeled Petri nets

Tackle the multilevel (multi-domain) non-interference problem
with PN systems exploiting the algebraic approach
Verification of state-based opacity for bounded Petri nets using
an algebraic approach

for unbounded it may be only graph-based approaches are
possible

Extend security and privacy analysis frameworks to the
stochastic case
Supervisory control approach of networked system in the case
of man-in-the-middle attacks
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Fault prognosability UNI
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Prognosability can be used to determine a priori if any fault
occurrence in the system can be correctly predicted

It requires that any fault sequence must have a non-fault prefix
for which we know for sure that a fault is guaranteed to occur
within a finite number of steps
An alarm can then be issued before the fault occurs
See also

X. Yin
Verification of Prognosability for Labeled Petri Nets,
IEEE Transactions on Automatic Control, 2018
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An alarm can then be issued before the fault occurs
See also

X. Yin
Verification of Prognosability for Labeled Petri Nets,
IEEE Transactions on Automatic Control, 2018
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Taken from
P. Baldan and A. Beggiato
Multilevel transitive and intransitive non-interference, causally,
Theoretical Computer Science, 2018
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Taken from
P. L. Lima et al.
Security Against Network Attacks in Supervisory Control Systems,
20th IFAC World Congress, 2017
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Subjects you should focus on

Operations on automata (look at the complement automaton). . .
. . . operations on the correspondent generated languages

Build the Observer Automaton for a nondeterministic automaton

Draw the Reachability & Coverability Graph for simple petri Petri net
systems

Build the Observer Coverability Graph

Check non-interference on DES modeled as automata

References

Ch. 2 in Cassandras Lafortune textbook

Giua Seatzu paper on IEEE TAC 2002

First part of lecture #8

The assessment

When you’re ready I will send you 2/3 exercises

You will have one week to send me back what you have done
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