Non-interference and opacity enforcement

From observability to privacy and security in discrete event systems

Prof. Gianmaria DE TOMMASI Email: detommas@unina.it

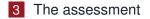
December 2020

Course syllabus

- 1 Discrete Event Systems (DES), Languages and Automata
- 2 Petri nets (PNs) and their twofold representation to model DES
- 3 MILP and ILP formulations: logical conditions, binary variables "do everything", and variable connecting
- 4 Adding uncertainty: unobservable events and observers for finite state automata and PNs
- 5 Augmenting the observers: diagnosability of prefix-closed languages, diagnosers and the fault detection for finite state automata
- 6 Diagnosability and fault detection in PNs Part I: graph-based approaches
- 7 Diagnosability and fault detection in PNs Part II: algebraic approaches for bounded systems
- 8 Security issues in DES: non-interference and opacity
- 9 Non-interference and opacity enforcement
- 10 Open issues

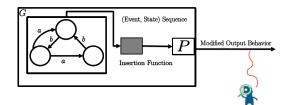
1 Non-interference enforcement via supervisory control

2 Open issues



■ Enforcement by Supervisory Control → to restrict the system's behaviour in order to preserve the security/privacy property

- Enforcement by Supervisory Control → to restrict the system's behaviour in order to preserve the security/privacy property
- Enforcement by insertion/obfuscation → to input or mask observable events of the systems so to output (possibly) modified information to the malicious observers



Taken from

C. Keroglou and S. Lafortune Embedded Insertion Functions for Opacity Enforcement, IEEE Transactions on Automatic Control, 2020

Main assumptions

The net system $S = \langle N, \boldsymbol{m}_0 \rangle$ is bounded

Main assumptions

- **The net system** $S = \langle N, \boldsymbol{m}_0 \rangle$ is bounded
- The net system is assumed to be unlabeled
- The P/T net: N = (P, L, H, Pre, Post), with $L \cap H = \emptyset$
 - L low-level transitions
 - H high-level transitions

$$T = L \cup H$$

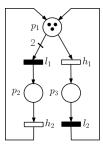
Main assumptions

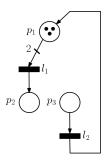
- **The net system** $S = \langle N, \boldsymbol{m}_0 \rangle$ is bounded
- The net system is assumed to be unlabeled
- The P/T net: N = (P, L, H, Pre, Post), with $L \cap H = \emptyset$
 - L low-level transitions
 - H high-level transitions
 - $T = L \cup H$

Objective: to exploit the twofold representation of PN systems to find algebraic conditions to assess SNNI

The *low-level* system is the system *induced* by the low-level transitions

• $L = \{l_1, l_2\}$ and $H = \{h_1, h_2\}$





• Let $S = \langle N, \mathbf{m}_0 \rangle$ be a net system and $S_L = \langle N_L, \mathbf{m}_0 \rangle$ the correspondent low-level system

- Let $S = \langle N, \mathbf{m}_0 \rangle$ be a net system and $S_L = \langle N_L, \mathbf{m}_0 \rangle$ the correspondent low-level system
- S is SNNI if and only if

 $Pr_L(\mathcal{L}(N, \boldsymbol{m}_0)) = \mathcal{L}(N_L, \boldsymbol{m}_0)$

The system is assumed **bounded**

- The system is assumed **bounded**
- Therefore it is possible to describe the state space by means of a set of linear constraints (as we did for diagnosability)

- The system is assumed **bounded**
- Therefore it is possible to describe the state space by means of a set of linear constraints (as we did for diagnosability)
- There exists a set of ρ integer vectors $\mathbf{s}_1, \ldots, \mathbf{s}_{\rho}$ with $\rho \leq |\sigma|$ such that the following linear constraints are fulfilled

$$\begin{cases} \boldsymbol{m} \geq \operatorname{Pre} \cdot \boldsymbol{s}_{1} \\ \boldsymbol{m} + \boldsymbol{C} \cdot \boldsymbol{s}_{1} \geq \operatorname{Pre} \cdot \boldsymbol{s}_{2} \\ \dots \\ \boldsymbol{m} + \boldsymbol{C} \cdot \sum_{i=1}^{\rho-1} \boldsymbol{s}_{i} \geq \operatorname{Pre} \cdot \boldsymbol{s}_{\rho} \\ \sum_{i=1}^{\rho} \boldsymbol{s}_{i} = \pi(\sigma) \end{cases}$$
(1)

iff there exists at least one sequence σ , which is enabled under the marking **m** and such that $\pi(\sigma) = \sigma$

- The system is assumed **bounded**
- Therefore it is possible to describe the state space by means of a set of linear constraints (as we did for diagnosability)
- There exists a set of ρ integer vectors $\mathbf{s}_1, \ldots, \mathbf{s}_{\rho}$ with $\rho \leq |\sigma|$ such that the following linear constraints are fulfilled

$$\begin{cases} m \ge \operatorname{Pre} \cdot s_1 \\ m + \boldsymbol{C} \cdot \boldsymbol{s}_1 \ge \operatorname{Pre} \cdot \boldsymbol{s}_2 \\ \dots \\ m + \boldsymbol{C} \cdot \sum_{i=1}^{\rho-1} \boldsymbol{s}_i \ge \operatorname{Pre} \cdot \boldsymbol{s}_\rho \\ \sum_{i=1}^{\rho} \boldsymbol{s}_i = \pi(\sigma) \end{cases}$$
(1)

iff there exists at least one sequence σ , which is enabled under the marking **m** and such that $\pi(\sigma) = \sigma$

■ For a bounded net, given a sufficiently large number of inequality constraints (1), it is possible to describe the *R*(*N*, *m*₀) set

- The system is assumed **bounded**
- Therefore it is possible to describe the state space by means of a set of linear constraints (as we did for diagnosability)
- There exists a set of ρ integer vectors $\mathbf{s}_1, \ldots, \mathbf{s}_{\rho}$ with $\rho \leq |\sigma|$ such that the following linear constraints are fulfilled

$$\begin{cases} m \ge \operatorname{Pre} \cdot s_1 \\ m + \boldsymbol{C} \cdot \boldsymbol{s}_1 \ge \operatorname{Pre} \cdot \boldsymbol{s}_2 \\ \dots \\ m + \boldsymbol{C} \cdot \sum_{i=1}^{\rho-1} \boldsymbol{s}_i \ge \operatorname{Pre} \cdot \boldsymbol{s}_\rho \\ \sum_{i=1}^{\rho} \boldsymbol{s}_i = \pi(\sigma) \end{cases}$$
(1)

iff there exists at least one sequence σ , which is enabled under the marking **m** and such that $\pi(\sigma) = \sigma$

■ For a bounded net, given a sufficiently large number of inequality constraints (1), it is possible to describe the R(N, m₀) set → let assume that J inequalities are sufficient to this purpose

For bounded net, given J there exists a maximum number of time a transition can fire given the constraints (1)

- For bounded net, given J there exists a maximum number of time a transition can fire given the constraints (1)
- Let us denote as φ_t the maximum number of firings of a low-level transition t in the low-level system S_L

- For bounded net, given J there exists a maximum number of time a transition can fire given the constraints (1)
- Let us denote as φ_t the maximum number of firings of a low-level transition t in the low-level system S_L
- If it is possible to have at least one additional firing of t in the original net system, this implies interference

- For bounded net, given J there exists a maximum number of time a transition can fire given the constraints (1)
- Let us denote as φ_t the maximum number of firings of a low-level transition t in the low-level system S_L
- If it is possible to have at least one additional firing of t in the original net system, this implies interference
- The other source of interference is the possibility of using high-level transitions to enable the firing of t

Maximum number of firing of a low-level transition in S_L

Given *J* constraints in (1), the maximum number of firings for $t \in L$ in S_L can be computed as the solution of the ILP

$$\varphi_t = \max \sum_{i=1}^J \sigma_i(t)$$

subject to

$$\begin{array}{l} \begin{array}{l} \boldsymbol{m}_{0} \geq \operatorname{Pre}_{L} \cdot \boldsymbol{\sigma}_{1} \\ \boldsymbol{m}_{0} + \boldsymbol{C}_{L} \cdot \boldsymbol{\sigma}_{1} \geq \operatorname{Pre}_{L} \cdot \boldsymbol{\sigma}_{2} \\ \cdots \\ \boldsymbol{m}_{0} + \boldsymbol{C}_{L} \cdot \sum_{i=1}^{J-1} \boldsymbol{\sigma}_{i} \geq \operatorname{Pre}_{L} \cdot \boldsymbol{\sigma}_{J} \\ \boldsymbol{m}_{0} + \boldsymbol{C}_{L} \cdot \sum_{i=1}^{J} \boldsymbol{\sigma}_{i} \geq \boldsymbol{0} \\ \boldsymbol{\sigma}_{i} \in \mathbb{N}^{n}, \quad i = 1, 2, \dots, J \end{array}$$

Gianmaria De Tommasi – detommas@unina.it

SNNI assessment in DES modeled as Petri nets (I)

Given a K-bounded system S, let consider the two ILP problems

(2)

$$\min\sum_{i=1}\sum_{t_h\in H}\boldsymbol{x}_i(t_h)$$

J

subject to

$$\begin{array}{l} \mathbf{x}_{1} \\ \geq \mathbf{Pre} \cdot \mathbf{x}_{2} \\ (3a) \\ \mathbf{x}_{i} \geq \mathbf{Pre} \cdot \mathbf{x}_{J} \\ \mathbf{x}_{i} \geq \mathbf{Pre} \cdot \mathbf{x}_{J} \\ \mathbf{x}_{i} \geq \mathbf{0} \\ \varphi_{t} + 1 \\ = 1, 2, \dots, J \end{array}$$

$$\begin{array}{l} \mathbf{x}_{0} \\ \mathcal{Y}(m_{0}, \varphi_{t}) : \\ \mathbf{y}(m_{0}, \varphi_{t}) : \\ \mathbf{y}(m_{0}, \varphi_{t}) : \\ \mathbf{x}_{i} \geq \mathbf{0} \\ \sum_{i=1}^{J} \mathbf{y}_{i} \geq \mathbf{Pre} \cdot \mathbf{y}_{J} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{J} \mathbf{y}_{i} \geq \mathbf{Pre} \cdot \mathbf{y}_{J} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{J} \mathbf{y}_{i} \geq \mathbf{0} \\ \sum_{i=1}^{J} \mathbf{y}_{i}(t) = \varphi_{t} \\ \mathbf{y}_{i} \in \mathbb{N}^{n}, \quad i = 1, 2, \dots, J \end{array}$$

$$\begin{array}{l} \mathbf{x}_{0} \\ \mathbf{y}_{i} \in \mathbb{N}^{n}, \quad i = 1, 2, \dots, J \end{array}$$

$$\begin{array}{l} \mathbf{x}_{0} \\ \mathbf{x}$$

with $\epsilon < (K \cdot \operatorname{card}(H) \cdot J)^{-1}$

< □ > < □ > < □ > < □ >

$$\mathcal{X} (\boldsymbol{m}_{0}, \varphi_{t}): \begin{cases} \boldsymbol{m}_{0} \geq \mathbf{Pre} \cdot \boldsymbol{x}_{1} \\ \boldsymbol{m}_{0} + \boldsymbol{C} \cdot \boldsymbol{x}_{1} \geq \mathbf{Pre} \cdot \boldsymbol{x}_{2} \\ \cdots & (3a) \\ \boldsymbol{m}_{0} + \boldsymbol{C} \cdot \sum_{i=1}^{J-1} \boldsymbol{x}_{i} \geq \mathbf{Pre} \cdot \boldsymbol{x}_{J} \\ \boldsymbol{m}_{0} + \boldsymbol{C} \cdot \sum_{i=1}^{J} \boldsymbol{x}_{i} \geq \mathbf{0} \\ \sum_{i=1}^{J} \boldsymbol{x}_{i}(t) \geq \varphi_{t} + 1 & (3b) \\ \boldsymbol{x}_{i} \in \mathbb{N}^{n}, \quad i = 1, 2, \dots, J \quad (3c) \end{cases}$$

12 of 32

 $\min \left| \sum_{i=1}^{J} \sum_{t_l \in L} \boldsymbol{y}_i(t_l) + \epsilon \sum_{i=1}^{J} \sum_{t_h \in H} \boldsymbol{y}_i(t_h) \right|$ (4)

to

System S is SNNI iff the following two conditions hold for each $t \in L$

- 1) the ILP problem (2)-(3) does not admit a solution
- **2)** the solution of the ILP problem (4)-(5) $\tilde{\boldsymbol{y}}_1, \ldots, \tilde{\boldsymbol{y}}_J \in \mathbb{N}^n$ is such that $\sum_{i=1}^J \sum_{t_h \in H} \tilde{\boldsymbol{y}}_i(t_h) = 0$

The static SNNI enforcement problem

Given a bounded and not SNNI net system $S = \langle N, \boldsymbol{m}_0 \rangle$, and given a set of *potentially selectable* transitions $\mathcal{PS} \subseteq H$, find a subset $\mathcal{D} \subseteq \mathcal{PS}$ such that if $\mathcal{E} = (L \cup H) \setminus \mathcal{D}$, then

- i) the system $\mathcal{S}_{\mathcal{E}} = \langle N_{\mathcal{E}}, \boldsymbol{m}_0 \rangle$ is SNNI
- ii) for all $\mathcal{D}' \subseteq \mathcal{PS}$ such that $\mathcal{D}' \subset \mathcal{D}$, if $\mathcal{E}' = (L \cup H) \setminus \mathcal{D}'$, then the system $\mathcal{S}_{\mathcal{E}'} = \langle N_{\mathcal{E}'}, m_0 \rangle$ is not SNNI

The static SNNI enforcement problem

Given a bounded and not SNNI net system $S = \langle N, \boldsymbol{m}_0 \rangle$, and given a set of *potentially selectable* transitions $\mathcal{PS} \subseteq H$, find a subset $\mathcal{D} \subseteq \mathcal{PS}$ such that if $\mathcal{E} = (L \cup H) \setminus \mathcal{D}$, then

- i) the system $\mathcal{S}_{\mathcal{E}} = \langle N_{\mathcal{E}}, \boldsymbol{m}_0 \rangle$ is SNNI
- ii) for all $\mathcal{D}' \subseteq \mathcal{PS}$ such that $\mathcal{D}' \subset \mathcal{D}$, if $\mathcal{E}' = (L \cup H) \setminus \mathcal{D}'$, then the system $\mathcal{S}_{\mathcal{E}'} = \langle N_{\mathcal{E}'}, m_0 \rangle$ is not SNNI

The solution to the static enforcement problem is not necessarily unique

The static SNNI enforcement problem

Given a bounded and not SNNI net system $S = \langle N, \boldsymbol{m}_0 \rangle$, and given a set of *potentially selectable* transitions $\mathcal{PS} \subseteq H$, find a subset $\mathcal{D} \subseteq \mathcal{PS}$ such that if $\mathcal{E} = (L \cup H) \setminus \mathcal{D}$, then

- i) the system $\mathcal{S}_{\mathcal{E}} = \langle N_{\mathcal{E}}, \boldsymbol{m}_0 \rangle$ is SNNI
- ii) for all $\mathcal{D}' \subseteq \mathcal{PS}$ such that $\mathcal{D}' \subset \mathcal{D}$, if $\mathcal{E}' = (L \cup H) \setminus \mathcal{D}'$, then the system $\mathcal{S}_{\mathcal{E}'} = \langle N_{\mathcal{E}'}, m_0 \rangle$ is not SNNI
- The solution to the static enforcement problem is not necessarily unique
- There may exist several subsets D₁,..., D_k ⊂ PS that satisfy conditions i) and ii)

Does the static SNNI problem admit a solution?

The static SNNI enforcement problem admits a solution **iff** the algorithm returns true

Investor 6 (Norma) DC C II			
Input: $S = \langle N, m_0 \rangle, \mathcal{PS} \subseteq H,$			
J, \mathcal{T} , and $\varphi_{\bar{t}}$ for all $\bar{t} \in \mathcal{T}$			
Output: return true if Problem 1 admits a solution,			
false otherwise			
1 $\mathcal{E} := (L \cup H) \setminus \mathcal{PS};$ /* assume that all the			
transitions in \mathcal{PS} are disabled $*/$			
2 foreach $\bar{t}_l \in \mathcal{T}$ do			
solve the ILP problem			
$\min \left[\sum_{i=1}^{J} \sum_{t \in L} \boldsymbol{y}_i(t) + \varepsilon \cdot \sum_{i=1}^{J} \sum_{t \in H \setminus \mathcal{PS}} \boldsymbol{y}_i(t) \right]$			
subject to the set of constraints $\mathcal{Y}_{\mathcal{E}}(m_0, \varphi_{\bar{t}})$;			
4 let \tilde{y}_i , with $i = 1,, J$, be the solution of the ILP			
problem solved at Step 3;			
if $\sum_{i=1}^{J} \sum_{t \in H \setminus \mathcal{PS}} \tilde{y}_i(t) > 0$; /* interference			
is due to non selectable high-level			
transitions */			
then			
return false			
end			
solve the ILP problem $\min \sum_{i=1}^{J} \sum_{t \in H \setminus \mathcal{PS}} x_i(t)$			
subject to the set of constraints $\mathcal{X}_{\mathcal{E}}(m_0, \varphi_{\bar{t}})$;			
let \tilde{x}_i , with $i = 1,, J$, be the solution of the ILP			
problem solved at Step 9;			
II if $\sum_{i=1}^{J} \sum_{t \in H \setminus \mathcal{PS}} \tilde{x}_i(t) > 0$; /* interference			
is due to non selectable high-level			
transitions */			
12 then			
13 return false			
14 end			
15 end			
is refurn true			

Compute a solution to the static enforcement problem

Input: $S = \langle N, m_0 \rangle, \mathcal{PS} \subset H$, J, \mathcal{T} , and $\varphi_{\bar{\tau}}$ for all $\bar{t} \in \mathcal{T}$ **Output:** a set $\mathcal{D} \subseteq \mathcal{PS}$ that solves Problem 1 Precondition: Algorithm 1 returns true $1 \mathcal{NS} := (L \cup H) \setminus \mathcal{PS};$ /* set of

the algorithm terminates

end

17

18 end

	F (,)		
	J, T , and $\varphi_{\bar{t}}$ for all $\bar{t} \in T$		
01	utput: a set $D \subseteq PS$ that solves Problem 1		
Pr	recondition: Algorithm 1 returns true		
1 N	$S := (L \cup H) \setminus PS;$ /* set of the		
t	ransitions that are always enabled */		
2 CE	$S := \mathcal{PS}$; /* initialize the set of	solve the ILP problem min $\sum_{i=1}^{J} \sum_{t \in CS} x_i(t)$	
s	electable transitions */	subject to the set of constraints $X_{\mathcal{E}}(m_0, \varphi_{\bar{t}})$;	
	$:= \emptyset$; /* initialize \mathcal{D} */	let \tilde{x}_i , with $i = 1,, J$, be the solution of the	ILP
4 E	$:= \mathcal{NS} \cup \mathcal{CS}$; /* initialize the set of	problem solved at Step 19;	
	enabled transitions */	1 if $\sum_{i=1}^{J} \sum_{t \in CS} \tilde{x}_i(t) > 0$ then	
5 foreach $\bar{t}_l \in \mathcal{T}$ do		12 let $\tilde{t} \in CS$ be such that $\sum_{i=1}^{J} \tilde{x}_i(\tilde{t}) > 0$;	
6	solve the ILP problem	/* choose one $\tilde{t} \in CS$ that causes	
	$\min \left[\sum_{i=1}^{J} \sum_{t \in L} \boldsymbol{y}_{i}(t) + \epsilon \sum_{i=1}^{J} \sum_{t \in CS} \boldsymbol{y}_{i}(t) \right]$	interference and update the	
	subject to the set of constraints $\mathcal{Y}_{\mathcal{E}}(m_0, \varphi_{\bar{t}})$;	various sets */	
7	let \tilde{y}_i , with $i = 1,, J$, be the solution of the ILP	$\mathcal{D} := \mathcal{D} \cup \{\tilde{t}\};$	
	problem solved at Step 6;	24 $\mathcal{CS} := \mathcal{CS} \setminus \{\tilde{t}\};$	
8	if $\sum_{i=1}^{J} \sum_{t \in CS} \tilde{y}_i(t) > 0$ then	25 $\mathcal{E} := \mathcal{NS} \cup \mathcal{CS};$	
9	let $\tilde{t} \in CS$ be such that $\sum_{i=1}^{J} \tilde{y}_i(\tilde{t}) > 0$;	if $CS \neq \emptyset$ then	
	/* choose one $\tilde{t} \in \mathcal{CS}$ that causes	27 go to Step 19	
	interference and update the	28 else	
	various sets */	29 Problem 1 admits the solution $\mathcal{D} = \mathcal{PS}$ a	ind
10	$\mathcal{D} := \mathcal{D} \cup \{\tilde{t}\};$	the algorithm terminates	
11	$CS := CS \setminus \{\tilde{t}\};$	30 end	
12	$\mathcal{E} := \mathcal{N}\mathcal{S} \cup \hat{\mathcal{C}}\hat{\mathcal{S}};$	31 end	
13	if $CS \neq \emptyset$ then	32 end	
14	go to Step 6		
15	else		
16	Problem 1 admits the solution $D = PS$ and		

Compute all the solutions to the static enforcement problem

Algorithm to compute all the solutions to the static SNNI enforcement problem

```
Input: S = \langle N, m_0 \rangle, \mathcal{PS} \subseteq H,
            J, \mathcal{T}, and \varphi_{\bar{t}} for all \bar{t} \in \mathcal{T}
   Output: the set SOL of all the solutions to Problem 1
   Precondition: Algorithm 1 returns true
1 SOL := \emptyset: /* initialize the output */
2 run Algorithm 2 and let \overline{D} be the output;
3 add \overline{\mathcal{D}} to \mathcal{SOL} and flag it as "new":
4 foreach \mathcal{D} \in SOL flagged as "new" do
        flag \mathcal{D} as "old";
5
        foreach t \in \mathcal{D} do
6
            if Algorithm 1 returns true when executed using
7
              \mathcal{PS} \setminus \{t\} as set of potentially selectable
              transitions then
                 run Algorithm 2 using \mathcal{PS} \setminus \{t\} as set of
8
                 potentially selectable transitions and let \mathcal{D}'
                 the solution:
                 add \mathcal{D}' to \mathcal{SOL} and flag it as "new"
0
10
            end
11
        end
12 end
```

*ロト * 母 * * 目 *

Set \mathcal{SOL} of the solutions to the static enforcement problem

Given a bounded and not SNNI net system $S = \langle N, \mathbf{m}_0 \rangle$ and a set of potentially selectable transitions $\mathcal{PS} \subseteq H$, let SOL be the family of solutions to the static SNNI enforcement problem, i.e.

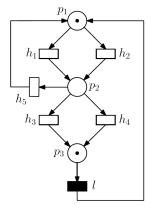
 $\mathcal{SOL} = \{ \mathcal{D} \mid \mathcal{D} \subseteq \mathcal{PS} \text{ and } \mathcal{D} \text{ solves the static SNNI enforcement problem} \}$ and let

$$\overline{\mathcal{SOL}} = \{ \mathcal{E} \subseteq L \cup H \mid \mathcal{E} = (L \cup H) \setminus \mathcal{D}, \text{ with } \mathcal{D} \in \mathcal{SOL} \}$$

be the family of transitions in \mathcal{PS} that can be enabled without violating SNNI. If \mathcal{SOL} is not empty, then the following properties hold

- a) \overline{SOL} is not empty
- **b)** $\overline{\mathcal{SOL}}$ is not closed under union

Example



■ The static SNNI enforcement problem admits multiple solutions when PS = H = {h₁, h₂, h₃, h₄, h₅}

$$SOL = \{ \{h_1, h_2\}, \{h_3, h_4\} \}$$

$$\overline{SOL} =$$

$$\{\{I, h_3, h_4, h_5\}, \{I, h_1, h_2, h_5\}\}$$

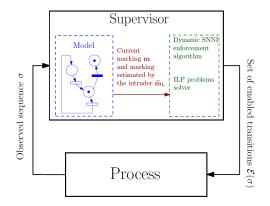
The union of sets in \overline{SOL} is equal to $L \cup H$ that does not belong to \overline{SOL}

the dynamic SNNI enforcement problem

Given a bounded and not SNNI net system $S = \langle N, \mathbf{m}_0 \rangle$, a set of potentially selectable transitions $\mathcal{PS} \subseteq H$, and a reachable marking $\mathbf{m} \in R(N, \mathbf{m}_0)$, find a subset $\mathcal{D}(\mathbf{m}) \subseteq \mathcal{PS}$ such that if $\mathcal{E}(\mathbf{m}) = (L \cup H) \setminus \mathcal{D}(\mathbf{m})$, then

- i) The system $\mathcal{S}_{\mathcal{E}(\boldsymbol{m})} = \langle N_{\mathcal{E}(\boldsymbol{m})}, \boldsymbol{m} \rangle$ is SNNI
- ii) for all $\mathcal{D}' \subseteq \mathcal{PS}$ such that $\mathcal{D}' \subset \mathcal{D}(\boldsymbol{m})$, if $\mathcal{E}' = (L \cup H) \setminus \mathcal{D}'$, then the system $\mathcal{S}_{\mathcal{E}'} = \langle N_{\mathcal{E}'}, \boldsymbol{m} \rangle$ is not SNNI

Control architecture for dynamic SNNI enforcement



< □ > < □ > < 亘 >

When the firing of the k-th transition t is observed, then the supervisor updates the two state vectors estimates

$$\begin{split} \boldsymbol{m}(k) &= \boldsymbol{m}(k-1) + \boldsymbol{C}(\cdot,t) \,, \\ \left\{ \begin{array}{ll} \widehat{\boldsymbol{m}}_L(k) &= \widehat{\boldsymbol{m}}_L(k-1) + \boldsymbol{C}(\cdot,t) \,, & \text{if } t \in L \,, \\ \widehat{\boldsymbol{m}}_L(k) &= \widehat{\boldsymbol{m}}_L(k-1) \,, & \text{otherwise} \end{array} \right. \end{aligned}$$

When the firing of the k-th transition t is observed, then the supervisor updates the two state vectors estimates

$$\begin{split} \boldsymbol{m}(k) &= \boldsymbol{m}(k-1) + \boldsymbol{C}(\cdot,t) \,, \\ \left\{ \begin{array}{ll} \widehat{\boldsymbol{m}}_L(k) &= \widehat{\boldsymbol{m}}_L(k-1) + \boldsymbol{C}(\cdot,t) \,, & \text{if } t \in L \,, \\ \widehat{\boldsymbol{m}}_L(k) &= \widehat{\boldsymbol{m}}_L(k-1) \,, & \text{otherwise} \end{array} \right. \end{aligned}$$

The two marking estimates are initially set equal to the initial marking, i.e. $m(0) = \hat{m}(0) = m_0$

- The two marking estimates are initially set equal to the initial marking, i.e. $m(0) = \hat{m}(0) = m_0$
- When the observed sequence is equal to *ε*, the supervisor disables all the high-level transitions that belong to at least one of the solutions to the static enforcement problem, i.e. the initial guess for the set of high-level transitions to be disabled is

$$\mathcal{D}(\boldsymbol{m}_{-1}) = \bigcup_{\bar{\mathcal{D}}\in\mathcal{SOL}} \bar{\mathcal{D}},$$

hence, the initial guess for the enabled transitions is $\mathcal{E}(\boldsymbol{m}_{-1}) = (L \cup H) \setminus \mathcal{D}(\boldsymbol{m}_{-1})$

- The two marking estimates are initially set equal to the initial marking, i.e. $m(0) = \hat{m}(0) = m_0$
- When the observed sequence is equal to ε, the supervisor disables all the high-level transitions that belong to at least one of the solutions to the static enforcement problem, i.e. the initial guess for the set of high-level transitions to be disabled is

$$\mathcal{D}(\boldsymbol{m}_{-1}) = \bigcup_{\bar{\mathcal{D}}\in\mathcal{SOL}} \bar{\mathcal{D}},$$

hence, the initial guess for the enabled transitions is $\mathcal{E}(\boldsymbol{m}_{-1}) = (L \cup H) \setminus \mathcal{D}(\boldsymbol{m}_{-1})$

■ $\mathcal{D}(\boldsymbol{m}_{-1})$ and $\mathcal{E}(\boldsymbol{m}_{-1})$ are used to compute $\mathcal{D}(\boldsymbol{m}_0)$ and $\mathcal{E}(\boldsymbol{m}_0) = (L \cup H) \setminus \mathcal{D}(\boldsymbol{m}_0)$

Algorithm for dynamic SNNI enforcement () PL UN

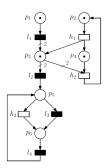
3 end

4 $\mathcal{DD} := \mathcal{D}(\boldsymbol{m}(k-1));$ 5 $\mathcal{EE} := \mathcal{E}(\boldsymbol{m}(k-1));$

6 f	preach $t_h \in \mathcal{D}(\boldsymbol{m}(k-1))$ such that $\boldsymbol{m}(k) \ge \mathbf{Pre}(\cdot, t_h)$								
	do								
7	$\mathcal{E}' := \mathcal{E}\mathcal{E} \cup \{t_h\};$								
8	keep_disbled:=false;								
9	foreach $t_l \in \mathcal{T}$ do								
10	if the ILP problem $\min \sum_{i=1}^{J} x_i(t_h)$ subject to								
	the set of constraints $\chi_{\mathcal{E}'}(\mathbf{m}(k), \bar{\mathbf{s}}_{t_i})$ admits a								
	solution then								
11	keep_disabled:=true;								
12	break								
13	end								
14	if the ILP problem								
	$\min \left[\sum_{i=1}^{J} \sum_{t \in L} y_i(t) + \epsilon \sum_{i=1}^{J} y_i(t_h)\right]$								
	subject to the set of								
	constraints $\mathcal{Y}_{\mathcal{E}'}(\widehat{m}_L(k), \overline{s}_{t_l})$ admits a								
	solution y'_i , $i = 1, \dots, J$ such that								
	$\sum_{i=1}^{J} y'_{i}(t_{h}) > 0$								
15	and the ILP problem								
	$\min \left[\sum_{i=1}^{J} \sum_{t \in L} \boldsymbol{y}_{i}(t) + \epsilon \sum_{i=1}^{J} \boldsymbol{y}_{i}(t_{h})\right]$								
	subject to the set of constraints $\mathcal{Y}_{\mathcal{E}'}(\mathbf{m}(k), \bar{s}_{t_1})$								
	admits a solution $y_i^{"}$, $i = 1,, J$ such that								
	$\sum_{i=1}^{J} y_i''(t_h) > 0 \text{ then}$								
16	keep_disabled:=true;								
17	break								
18	end								
19	end								
20	if keep_disabled=false then								
21	$\mathcal{D}\hat{\mathcal{D}} := \mathcal{D}\mathcal{D} \setminus \{t_h\};$								
22	$\mathcal{E}\mathcal{E}:=\mathcal{E}\mathcal{E}\cup\{t_h\}$								
23	end								
24 e	nd								
25 $D(\mathbf{m}(k)) = DD$;									
26 E	$\mathcal{E}(\mathbf{m}(k)) = \mathcal{E}\mathcal{E};$								

*ロト * 雪 * * 回 *

Example



Observed sequence	m							\widehat{m}_L						\bar{s}_{l_3}	\bar{s}_{l_4}	Comment	$\mathcal{D}(\cdot)$
ε	(1	1	1	1	0	0) ^T	(1	1	1	1	0	0) ^T	1	3	3	Under the initial marking h_1 is the only transition in $\mathcal{D}(\cdot)$ that could be potentially en- abled. However, for h_1 the ILP problem (14) admits a solution when l_2 is consid- ered. Hence, it must be kept in $\mathcal{D}(\cdot)$.	$\{h_1,h_3\}$
<i>l</i> ₁	(0	1	3	1	0	,	(0	1	3	1	0	,	1	4	3	h_1 is still the only transition in $\mathcal{D}(\cdot)$ that could be enabled, but also in this case the ILP problem (14) admits a solu- tion when l_2 is considered.	${h_1, h_3}$
l_1h_2	(0	2	1	0	0	$^{0})^{T}$	(0	1	3	1	0	$^{0)^{T}}$	1	4	3	In this case h_1 can be moved to $\mathcal{E}(\cdot)$.	${h_3}$
$l_1h_2h_1$	(0	1	2	1	0	0) ^T	(0	1	3	1	0	0) ^T	1	4	3	h_3 is the only transition in $\mathcal{D}(\cdot)$, but is not enabled under m , therefore Algo- rithm 4 does not need to be executed.	{h ₃ }
$l_1h_2h_1h_1$	(0	0	3	2	0	$0)^{T}$	(0	1	3	1	0	$^{0})^{T}$	1	4	3	h_3 is still not enabled un- der m .	${h_3}$
$l_1h_2h_1h_1l_2$	(0	0	1	2	1	0) ^T	(0	1	1	1	1	0) ^T	0	4	4	h_3 could now be potentially enabled, but when the low-level transition l_4 is considered, both ILP problems (15) and (16) admit a solution $\hat{\boldsymbol{y}}_i,$ $i = 1, \ldots, J$, such that $\sum_{i=1}^{J} \hat{\boldsymbol{y}}_i(h_3) > 0$. Therefore, h_3 must be kept disabled.	{h ₃ }

<<p>(日)

Fault prognosability in Labeled Petri nets

- Fault prognosability in Labeled Petri nets
- Tackle the multilevel (multi-domain) non-interference problem with PN systems exploiting the algebraic approach

- Fault prognosability in Labeled Petri nets
- Tackle the multilevel (multi-domain) non-interference problem with PN systems exploiting the algebraic approach
- Verification of state-based opacity for bounded Petri nets using an algebraic approach

- Fault prognosability in Labeled Petri nets
- Tackle the multilevel (multi-domain) non-interference problem with PN systems exploiting the algebraic approach
- Verification of state-based opacity for bounded Petri nets using an algebraic approach
 - for unbounded it may be only graph-based approaches are possible

- Fault prognosability in Labeled Petri nets
- Tackle the multilevel (multi-domain) non-interference problem with PN systems exploiting the algebraic approach
- Verification of state-based opacity for bounded Petri nets using an algebraic approach
 - for unbounded it may be only graph-based approaches are possible
- Extend security and privacy analysis frameworks to the stochastic case

- Fault prognosability in Labeled Petri nets
- Tackle the multilevel (multi-domain) non-interference problem with PN systems exploiting the algebraic approach
- Verification of state-based opacity for bounded Petri nets using an algebraic approach
 - for unbounded it may be only graph-based approaches are possible
- Extend security and privacy analysis frameworks to the stochastic case
- Supervisory control approach of networked system in the case of *man-in-the-middle* attacks

Prognosability can be used to determine a priori if any fault occurrence in the system can be correctly predicted

- Prognosability can be used to determine a priori if any fault occurrence in the system can be correctly predicted
- It requires that any fault sequence must have a non-fault prefix for which we know for sure that a fault is guaranteed to occur within a finite number of steps

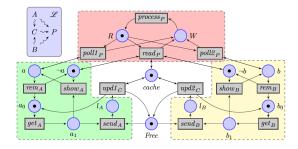
- Prognosability can be used to determine a priori if any fault occurrence in the system can be correctly predicted
- It requires that any fault sequence must have a non-fault prefix for which we know for sure that a fault is guaranteed to occur within a finite number of steps
- An alarm can then be issued before the fault occurs

- Prognosability can be used to determine a priori if any fault occurrence in the system can be correctly predicted
- It requires that any fault sequence must have a non-fault prefix for which we know for sure that a fault is guaranteed to occur within a finite number of steps
- An alarm can then be issued before the fault occurs
- See also

X. Yin

Verification of Prognosability for Labeled Petri Nets, IEEE Transactions on Automatic Control, 2018

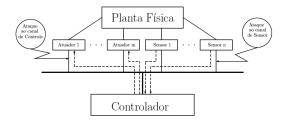
Multilevel non-inerference



Taken from

P. Baldan and A. Beggiato Multilevel transitive and intransitive non-interference, causally, *Theoretical Computer Science*, 2018

Attacked Networked Systems



Taken from

P. L. Lima *et al.* Security Against Network Attacks in Supervisory Control Systems, 20th IFAC World Congress, 2017

Non-interference enforcement by means of supervisory control

F. Basile, G. De Tommasi and C. Sterle Non-interference enforcement via supervisory control in bounded Petri nets, IEEE Transactions on Automatic Control, to appear 2021

Subjects you should focus on

- Operations on automata (look at the complement automaton)...
 - operations on the correspondent generated languages
- Build the Observer Automaton for a nondeterministic automaton
- Draw the Reachability & Coverability Graph for simple petri Petri net systems
- Build the Observer Coverability Graph
- Check non-interference on DES modeled as automata

Subjects you should focus on

- Operations on automata (look at the complement automaton)...
 - operations on the correspondent generated languages
- Build the Observer Automaton for a nondeterministic automaton
- Draw the Reachability & Coverability Graph for simple petri Petri net systems
- Build the Observer Coverability Graph
- Check non-interference on DES modeled as automata

References

- Ch. 2 in Cassandras Lafortune textbook
- Giua Seatzu paper on IEEE TAC 2002
- First part of lecture #8

Subjects you should focus on

- Operations on automata (look at the complement automaton)...
 - operations on the correspondent generated languages
- Build the Observer Automaton for a nondeterministic automaton
- Draw the Reachability & Coverability Graph for simple petri Petri net systems
- Build the Observer Coverability Graph
- Check non-interference on DES modeled as automata

References

- Ch. 2 in Cassandras Lafortune textbook
- Giua Seatzu paper on IEEE TAC 2002
- First part of lecture #8

The assessment

- When you're ready I will send you 2/3 exercises
- You will have one week to send me back what you have done

Non-interference and opacity enforcement

From observability to privacy and security in discrete event systems

Prof. Gianmaria DE TOMMASI Email: detommas@unina.it

December 2020

