A Graphical Tool for Design Portable Automation Software

G. De Tommasi, P. Di Sanzo, A. Pironti

Università di Napoli “Federico II”
Dipartimento di Informatica e Sistemistica

21-23 June 2006, Madrid
Outline

1. Introduction
2. UniSim
3. Example
4. Conclusions
Outline

1. Introduction
2. UniSim
3. Example
4. Conclusions
PLCs and industrial automation

- Control of industrial processes is today dominated by computerized systems
- Programmable Logic Controller (PLC) are widely used for industrial automation
- PLCs have been developed in the late 60’s, and since then have evolved into powerful devices
- Teaching PLCs programming in industrial automation classes
- Students should learn how to:
 - design automation systems (methodology)
 - develop automation software (practice)
PLCs and industrial automation

- Control of industrial processes is today dominated by computerized systems
- Programmable Logic Controller (PLC) are widely used for industrial automation
- PLCs have been developed in the late 60’s, and since then have evolved into powerful devices
- Teaching PLCs programming in industrial automation classes
- Students should learn how to:
 - design automation systems (methodology)
 - develop automation software (practice)
PLCs and industrial automation

- Control of industrial processes is today dominated by computerized systems
- Programmable Logic Controller (PLC) are widely used for industrial automation
- PLCs have been developed in the late 60's, and since then have evolved into powerful devices
- Teaching PLCs programming in industrial automation classes
- Students should learn how to:
 - design automation systems (methodology)
 - develop automation software (practice)
PLCs and industrial automation

- Control of industrial processes is today dominated by computerized systems
- Programmable Logic Controller (PLC) are widely used for industrial automation
- PLCs have been developed in the late 60’s, and since then have evolved into powerful devices
- Teaching PLCs programming in industrial automation classes
 - Students should learn how to:
 - design automation systems (methodology)
 - develop automation software (practice)
PLCs and industrial automation

- Control of industrial processes is today dominated by computerized systems
- Programmable Logic Controller (PLC) are widely used for industrial automation
- PLCs have been developed in the late 60’s, and since then have evolved into powerful devices
- Teaching PLCs programming in industrial automation classes
- Students should learn how to:
 - design automation systems (methodology)
 - develop automation software (practice)
Control of industrial processes is today dominated by computerized systems.

Programmable Logic Controller (PLC) are widely used for industrial automation.

PLCs have been developed in the late 60’s, and since then have evolved into powerful devices.

Teaching PLCs programming in industrial automation classes.

Students should learn how to:
- design automation systems (methodology)
- develop automation software (practice)
Automation projects and IEC 61131-3 standard

An automation project includes all the information about the control system configuration, the data and the code.

- Many manufacturers - many ways to define automation projects - many different programming languages
- The *IEC 61131* standard has been introduced by the *International Electrotechnical Commission*
- IEC 66131 - Part 3 specifies:
 - how an automation project should be structured
 - the programming languages that can be used by the developers
Automation projects and IEC 61131-3 standard

Automation project

An automation project includes all the information about the control system configuration, the data and the code

- Many manufacturers - many ways to define automation projects - many different programming languages
- The IEC 61131 standard has been introduced by the International Electrotechnical Commission
- IEC 66131 - Part 3 specifies:
 - how an automation project should be structured
 - the programming languages that can be used by the developers
Automation projects and IEC 61131-3 standard

Automation project
An automation project includes all the information about the control system configuration, the data and the code

- Many manufacturers - many ways to define automation projects - many different programming languages
- The *IEC 61131* standard has been introduced by the *International Electrotechnical Commission*
- IEC 66131 - Part 3 specifies:
 - how an automation project should be structured
 - the programming languages that can be used by the developers
Automation projects and IEC 61131-3 standard

Automation project

An automation project includes all the information about the control system configuration, the data and the code

- Many manufacturers - many ways to define automation projects - many different programming languages
- The *IEC 61131* standard has been introduced by the *International Electrotechnical Commission*
- IEC 66131 - Part 3 specifies:
 - how an automation project should be structured
 - the programming languages that can be used by the developers
Automation projects and IEC 61131-3 standard

An automation project includes all the information about the control system configuration, the data and the code.

- Many manufacturers - many ways to define automation projects - many different programming languages
- The *IEC 61131* standard has been introduced by the *International Electrotechnical Commission*
- IEC 66131 - Part 3 specifies:
 - how an automation project should be structured
 - the programming languages that can be used by the developers
Although IEC 61131-3 has been introduced in 1993, only few manufacturer produce devices which fully complies with the standard.

Students who have learned IEC 61131-3, should be introduced to the platform available in the laboratory.
Although IEC 61131-3 has been introduced in 1993, only few manufacturers produce devices which fully comply with the standard.

Students who have learned IEC 61131-3, should be introduced to the platform available in the laboratory.
UniSim is an educational tool developed at University of Naples. It can be used to design automation software which complies with IEC 61131-3. UniSim allows to avoid the choice of a specific commercial platform when teaching PLCs programming. Thanks to its simulation engine, UniSim allows to validate off-line the developed software. UniSim can be used to fast prototype the automation systems using a desktop equipped with low-cost I/O boards.
UniSim is an educational tool developed at University of Naples.

- UniSim can be used to design automation software which complies with IEC 61131-3.
- UniSim allows to avoid the choice of a specific commercial platform when teaching PLCs programming.
- Thanks to its simulation engine, UniSim allows to validate off-line the developed software.
- UniSim can be used to fast prototype the automation systems using a desktop equipped with low-cost I/O boards.
UniSim is an educational tool developed at University of Naples.

- UniSim can be used to design automation software which complies with IEC 61131-3.
- UniSim allows to avoid the choice of a specific commercial platform when teaching PLCs programming.
- Thanks to its simulation engine, UniSim allows to validate off – line the developed software.
- UniSim can be used to fast prototype the automation systems using a desktop equipped with low-cost I/O boards.
UniSim is an educational tool developed at University of Naples

- UniSim can be used to design automation software which complies with IEC 61131-3
- UniSim allows to avoid the choice of a specific commercial platform when teaching PLCs programming.
- Thanks to its *simulation engine*, UniSim allows to validate off – line the developed software
- UniSim can be used to *fast prototype* the automation systems using a desktop equipped with low-cost I/O boards
UniSim can be used
- by the teacher - in the classroom to work out examples
- by students - when solving their homework

UniSim interfaces with off-the-shelf I/O boards, thus it can be used during lab activities.

Labs do not need to be equipped with a large number of expensive commercial PLC platforms.

UniSim makes use of the XML Formats for IEC 61131-3 to import/export the projects. This feature gives the possibility to reuse the developed software on a commercial platform → portability.
UniSim can be used

- by the teacher - in the classroom to work out examples
- by students - when solving their homework

UniSim interfaces with off-the-shelf I/O boards, thus it can be used during lab activities

Labs do not need to be equipped with a large number of expensive commercial PLC platforms

UniSim makes use of the XML Formats for IEC 61131-3 to import/export the projects. This feature gives the possibility to reuse the developed software on a commercial platform → portability
UniSim can be used
- by the teacher - in the classroom to work out examples
- by students - when solving their homework

UniSim interfaces with off-the-shelf I/O boards, thus it can be used during lab activities

- Labs do not need to be equipped with a large number of expensive commercial PLC platforms
- UniSim makes use of the XML Formats for IEC 61131-3 to import/export the projects. This feature give the possibility to reuse the developed software on a commercial platform → portability
UniSim can be used
- by the teacher - in the classroom to work out examples
- by students - when solving their homework

UniSim interfaces with off-the-shelf I/O boards, thus it can be used during lab activities

Labs do not need to be equipped with a large number of expensive commercial PLC platforms

UniSim makes use of the XML Formats for IEC 61131-3 to import/export the projects. This feature give the possibility to reuse the developed software on a commercial platform → portability
UniSim can be used
- by the teacher - in the classroom to work out examples
- by students - when solving their homework

UniSim interfaces with off-the-shelf I/O boards, thus it can be used during lab activities

Labs do not need to be equipped with a large number of expensive commercial PLC platforms

UniSim makes use of the XML Formats for IEC 61131-3 to import/export the projects. This feature give the possibility to reuse the developed software on a commercial platform → portability
UniSim can be used
- by the teacher - in the classroom to work out examples
- by students - when solving their homework

UniSim interfaces with off-the-shelf I/O boards, thus it can be used during lab activities

Labs do not need to be equipped with a large number of expensive commercial PLC platforms

UniSim makes use of the *XML Formats for IEC 61131-3* to import/export the projects. This feature gives the possibility to reuse the developed software on a commercial platform → portability
UniSim - Software architecture

- It has been designed by using an object-oriented approach
- It has been developed on the .Net platform
UniSim - Software architecture

UniSim

- It has been designed by using an object-oriented approach
- It has been developed on the .Net platform
Objects hierarchy
Toy example

Requirements

- The door must be opened when the button Bo is pushed
- The door must be closed when the button Bc is pushed, or if it stays open for more than 10s
- If an object is detected by Sp while the door is moving, lamp La must be turned on
Toy example

Requirements

- The door must be opened when the button Bo is pushed.
- The door must be closed when the button Bc is pushed, or if it stays open for more than 10s.
- If an object is detected by Sp while the door is moving, lamp La must be turned on.
Toy example

Requirements

- The door must be opened when the button Bo is pushed.
- The door must be closed when the button Bc is pushed, or if it stays open for more than 10s.
- If an object is detected by Sp while the door is moving, lamp La must be turned on.
Control algorithm

Outline
Introduction
UniSim
Example
Conclusions

Control algorithm diagram:

- Close0
 - Bc+ [Open2.T>10s]
 - So

- Close1
 - Sc
 - N
 - Mc

- Close2

- Open0
 - Bo
 - Sc

- Open1
 - N
 - Mo

- Open2

- S0
 - S1
 - N
 - La

- S0
 - S1
 - N
 - La

De Tommasi - Di Sanzo - Pironti
Advances in Control Education 2006 - ACE’06
Lab setup

- The **Host** runs the control algorithm with UniSim and a graphical user interface for the process.
- The **Target** runs the xPC Target real-time OS, which executes the process simulator.
The **Host** runs the control algorithm with UniSim and a graphical user interface for the process.

The **Target** runs the *xPC Target* real-time OS, which executes the process simulator.
UniSim

- It allows to teach IEC 61131-3 standard without tying to any commercial platform
- It can be used to easily set up a lab for an industrial automation class using only off-the-shelf devices
- It uses XML Formats for IEC 61131-3 guaranteeing software portability
UniSim

- It allows to teach IEC 61131-3 standard without tying to any commercial platform
- It can be used to easily set up a lab for an industrial automation class using only off-the-shelf devices
- It uses XML Formats for IEC 61131-3 guaranteeing software portability
UniSim

- It allows to teach IEC 61131-3 standard without tying to any commercial platform
- It can be used to easily set up a lab for an industrial automation class using only off-the-shelf devices
- It uses XML Formats for IEC 61131-3 guaranteeing software portability
Conclusions

But

- It is a *work in progress* release
 - Not all the features provided by the standard have been implemented
 - Only one *resource* can be specified in each *project*
 - Only the *sequential functional chart* and the *ladder diagram* languages have been implemented yet
 - ...
 - The development of UniSim it is itself a way to teach IEC 61131-3 standard

By the way

UniSim is distributed with a *GPL* license
http://wpage.unina.it/detommas/unisim
Conclusions

But

- It is a *work in progress* release
 Not all the features provided by the standard have been implemented
 - Only one *resource* can be specified in each *project*
 - Only the *sequential functional chart* and the *ladder diagram* languages have been implemented yet
 - ...
- The development of UniSim it is itself a way to teach IEC 61131-3 standard

By the way

UniSim is distributed with a *GPL* license
http://wpage.unina.it/detommas/unisim
But

- It is a *work in progress* release
 Not all the features provided by the standard have been implemented
 - Only one *resource* can be specified in each *project*
 - Only the *sequential functional chart* and the *ladder diagram*
 languages have been implemented yet
 - ...

- The development of UniSim it is itself a way to teach
 IEC 61131-3 standard

By the way

UniSim is distributed with a *GPL* license
http://wpage.unina.it/detommas/unisim
But

- It is a *work in progress* release
- Not all the features provided by the standard have been implemented
 - Only one *resource* can be specified in each *project*
 - Only the *sequential functional chart* and the *ladder diagram* languages have been implemented yet
 - ...

- The development of UniSim it is itself a way to teach IEC 61131-3 standard

By the way

UniSim is distributed with a *GPL* license

http://wpage.unina.it/detommas/unisim
But

- It is a *work in progress* release
 Not all the features provided by the standard have been implemented
 - Only one *resource* can be specified in each *project*
 - Only the *sequential functional chart* and the *ladder diagram* languages have been implemented yet
 - ...

- The development of UniSim it is itself a way to teach IEC 61131-3 standard

By the way

UniSim is distributed with a *GPL* license
http://wpage.unina.it/detommas/unisim
But

- It is a *work in progress* release
 Not all the features provided by the standard have been implemented
 - Only one *resource* can be specified in each *project*
 - Only the *sequential functional chart* and the *ladder diagram* languages have been implemented yet
 - ...

- The development of UniSim it is itself a way to teach IEC 61131-3 standard

By the way

UniSim is distributed with a *GPL* license
http://wpage.unina.it/detommas/unisim
Conclusions

But

- It is a work in progress release
 - Not all the features provided by the standard have been implemented
 - Only one resource can be specified in each project
 - Only the sequential functional chart and the ladder diagram languages have been implemented yet
 - …

- The development of UniSim it is itself a way to teach IEC 61131-3 standard

By the way

UniSim is distributed with a GPL license
http://wpage.unina.it/detommas/unisim