Input-Output Finite-Time Stabilization with Constrained Control Inputs

Francesco Amato1 Giuseppe Carannante2
Gianmaria De Tommasi2 Alfredo Pironti2

1Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy,
2Università degli Studi di Napoli Federico II, Napoli, Italy

51th IEEE Conference on Decision and Control
December 10–13, 2012, Maui, Hawaii
Outline

1 Motivations

2 Structured Input-Output Finite-Time Stability
 - Notation
 - Problem Statement

3 Analysis Results

4 Synthesis Results
 - Theorem 1
 - Theorem 2

5 Example
Input-output finite-time stability vs classic IO stability

IO stability

A system is said to be IO \mathcal{L}_p-stable if for any input of class \mathcal{L}_p, the system exhibits a corresponding output which belongs to the same class.

IO-FTS

A system is defined to be IO-FTS if, given a class of norm bounded input signals over a specified time interval T, the outputs of the system do not exceed an assigned threshold during T.
Main features of IO-FTS

- IO-FTS:
 - involves signals defined over a finite time interval
 - does not necessarily require the inputs and outputs to belong to the same class
 - specifies a *quantitative* bounds on both inputs and outputs

IO stability and IO-FTS are independent concepts
Motivations

Contribution of the paper

- In this paper we provide extend the *classical* definition of IO-FTS to the one of *structured* IO-FTS.
- Structured IO-FTS permits to incorporate *amplitude constraints on the control input variables* in the definition of the stabilization problem.
- A *necessary and sufficient condition* is given for the solution of the IO finite-stabilization problem, when the input signals belong to \mathcal{L}_2.
- A *sufficient condition* is given for the solution of the IO finite-stabilization problem, when the inputs belong to \mathcal{L}_∞.
Structured IO-FTS

Notation

- \mathcal{L}_p denotes the space of vector-valued signals whose p-th power is absolutely integrable over $[0, +\infty)$.
- The restriction of \mathcal{L}_p to $\Omega := [t_0, t_0 + T]$ is denoted by $\mathcal{L}_p(\Omega)$.
- Given the time interval Ω, a symmetric positive definite matrix-valued function $R(\cdot)$, bounded on Ω, and a vector-valued signal $s(\cdot) \in \mathcal{L}_p(\Omega)$, the weighted signal norm

$$\left(\int_{\Omega} \left[s^T(\tau) R(\tau) s(\tau) \right]^{\frac{p}{2}} d\tau \right)^{\frac{1}{p}},$$

will be denoted by $\|s(\cdot)\|_{p,R}$. If $p = \infty$

$$\|s(\cdot)\|_{\infty,R} = \text{ess sup}_{t \in \Omega} \left[s^T(t) R(t) s(t) \right]^{\frac{1}{2}}.$$
Structured IO-FTS of LTV systems

Let

- \mathcal{W} be a class of input signals defined over $\Omega = [t_0, t_0 + T]$.
- $Q(t) := \text{diag}(Q_1(t), \ldots, Q_\alpha(t))$, with $Q_i(t) \in \mathbb{R}^{m_i \times m_i}$, $i = 1, \ldots, \alpha$, a positive definite matrix-valued function.

The system

$$
\dot{x}(t) = A(t)x(t) + G(t)w(t), \quad x(t_0) = 0 \quad (1a)
$$
$$
y(t) = C(t)x(t) + F(t)w(t) \quad (1b)
$$

is said to be structured IO–FTS with respect to $(\mathcal{W}, Q(\cdot), \Omega)$ if

$$
w(\cdot) \in \mathcal{W} \Rightarrow y_i^T(t)Q_i(t)y_i(t) < 1, \quad t \in \Omega, \quad i = 1, \ldots, \alpha,
$$

where the output vector $y(t)$ is partitioned as follows

$$
y(t) = (y_1^T(t) \cdots y_\alpha^T(t))^T, \quad t \in \Omega.
$$
The finite-time stabilization problem

- In the finite-time stabilization problem we consider the LTV system

\[
\dot{x}(t) = A(t)x(t) + B(t)u(t) + G(t)w(t), \quad x(t_0) = 0 \tag{2a}
\]

\[
y(t) = C(t)x(t) + F(t)w(t) \tag{2b}
\]

where \(u(\cdot) : \Omega \mapsto \mathbb{R}^q \) is the control input and \(w(\cdot) \) is the disturbance (exogenous) input.

- Similarly to what has been done for the output, the control input vector \(u(t) \) is partitioned as

\[
u(t) = (u_1^T(t) \cdots u_\beta^T(t))^T
\]
The IO finite-time stabilization problem via state feedback - 1

Consider β positive definite weighting matrix-valued functions $T_i(t) \in \mathbb{R}^{q_i \times q_i}, i = 1, \ldots, \beta$, and define

$$T(t) := \text{diag}(T_1(t), \ldots, T_\beta(t))$$
The IO finite-time stabilization problem via state feedback - 2

Given a positive scalar T, the class of signals \mathcal{W}, and the weighting matrices $Q(\cdot), T(\cdot)$, find a state feedback control law

$$u(t) = K(t)x(t),$$

where $K(\cdot) : \Omega \mapsto \mathbb{R}^{q \times n}$, such that the system

$$\dot{x}(t) = (A(t) + B(t)K(t))x(t) + G(t)w(t)$$

is structured IO–FTS with respect to $(\mathcal{W}, \text{diag}(Q(\cdot), T(\cdot)), \Omega)$.
The IO finite-time stabilization problem via state feedback - 3

Note that the partition

\[T(t) := \text{diag}(T_1(t), \ldots, T_\beta(t)) \]

induces the following structure for the controller gain

\[K(t) = (K_1^T(t) \cdots K_\beta^T(t))^T, \quad t \in \Omega. \] (4)
Considered class of input signals

\(\mathcal{W}_2 \) signals

Norm bounded square integrable signals over \(\Omega \), defined as follows

\[\mathcal{W}_2 (\Omega, R(\cdot)) := \{ w(\cdot) \in L_2(\Omega) : \| w \|_{2,R} \leq 1 \} \cdot \]

\(\mathcal{W}_\infty \) signals

Uniformly bounded signals over \(\Omega \), defined as follows

\[\mathcal{W}_\infty (\Omega, R(\cdot)) := \{ w(\cdot) \in L_\infty(\Omega) : \| w \|_{\infty,R} \leq 1 \} \cdot \]
The analysis results presented in Amato et al., Automatica 2010 and Amato et al., TAC 2012 have been extended to the case of structured IO-FTS.

- F. Amato et al.
 Input-output Finite-Time Stabilization of Linear Systems
 Automatica, 2010

- F. Amato et al.
 Input-Output Finite-Time Stability of Linear Systems: Necessary and Sufficient Conditions
 IEEE Transactions on Automatic Control, 2012
Proper and strictly-proper linear systems

- For the class of \mathcal{W}_2 signals we consider a strictly proper system, i.e. $F(\cdot) = 0$, otherwise the concept of structured IO-FTS would be ill-posed.

\mathcal{W}_2 includes signals that are unbounded on a zero measure interval included in Ω. For those signals, if $F(\cdot) \neq 0$ then there exists at least one time instant where the output would be unbounded.

- For the class of \mathcal{W}_∞ signals we consider proper system, i.e. $F(\cdot) \neq 0$
Structured IO-FTS for \mathcal{W}_2 signals

Given system (1) with $F(\cdot) = 0$, the class of inputs \mathcal{W}_2, a continuous positive definite matrix–valued function $Q(\cdot)$, and the time interval Ω, the following statements are equivalent:

i) System (1) is structured IO–FTS with respect to $(\mathcal{W}_2, Q(\cdot), \Omega)$.

ii) The inequality

$$
\lambda_{\max}\left(Q_i^{\frac{1}{2}}(t)C_i(t)W(t, t_0)C_i^T(t)Q_i^{\frac{1}{2}}(t)\right) < 1
$$

holds for all $t \in \Omega$ and $i = 1, \ldots, \alpha$, where $W(\cdot, \cdot)$ is the positive semidefinite solution of the DLE

$$
\dot{W}(t, t_0) = A(t)W(t, t_0) + W(t, t_0)A^T(t) + G(t)R(t)^{-1}G^T(t)
$$

$W(t_0, t_0) = 0$ (6a) (6b)

iii) The coupled DLMI/LMI

$$
\begin{pmatrix}
P(t) + A^T(t)P(t) + P(t)A(t) & P(t)G(t) \\
G^T(t)P(t) & -R(t)
\end{pmatrix} < 0
$$

$$
P(t) \geq C_i^T(t)Q_i(t)C_i(t), \quad i = 1, \ldots, \alpha
$$

admits a positive definite solution $P(\cdot)$ over Ω.
Structured IO-FTS for \mathcal{W}_∞ signals

Let $\tilde{Q}_i(t) = (t - t_0)Q_i(t)$; if there exist a positive definite and continuously differentiable matrix-valued function $P(\cdot)$ and α scalar functions $\theta_1(\cdot), \ldots, \theta_{\alpha}(t) > 1$ such that the coupled DLMI/LMI

$$
\begin{pmatrix}
\dot{P}(t) + A^T(t)P(t) + P(t)A(t) & P(t)G(t) \\
G^T(t)P(t) & -R(t)
\end{pmatrix} < 0,
$$

$$
\theta_i(t)R(t) - R(t) \geq 2 \theta_i(t)F_i^T(t)Q_i(t)F_i(t),
$$

$$
P(t) \geq 2 \theta_i(t)C_i(t)^T\tilde{Q}_i(t)C_i(t), \quad i = 1, \ldots, \alpha,
$$

are fulfilled over Ω, then system (1) is IO–FTS with respect to $(\mathcal{W}_\infty, Q(\cdot), \Omega)$.
Theorem 1

IO finite-time stabilization for \mathcal{W}_2 signals

Given the class of disturbances \mathcal{W}_2 and $F(\cdot) = 0$, the IO finite-time stabilization problem via state feedback is solvable if and only if there exist a positive definite and continuously differentiable matrix–valued function $\Pi(\cdot)$, and β continuously differentiable matrix–valued functions $L_1(\cdot), \ldots, L_\beta(\cdot)$ such that,

\[
\begin{pmatrix}
\Theta(t) & G(t) \\
G^T(t) & -R(t)
\end{pmatrix} < 0, \tag{9a}
\]

\[
\begin{pmatrix}
\Pi(t) & \Pi(t)C_i^T(t) \\
C_i(t)\Pi(t) & \Xi_i(t)
\end{pmatrix} \geq 0, \quad i = 1, \ldots, \alpha \tag{9b}
\]

\[
\begin{pmatrix}
\Pi(t) & L_j^T(t) \\
L_j(t) & \Upsilon_j(t)
\end{pmatrix} \geq 0, \quad j = 1, \ldots, \beta \tag{9c}
\]

for all $t \in \Omega$, with

$\Theta(t) := -\dot{\Pi}(t) + \Pi(t)A^T(t) + A(t)\Pi(t) + B(t)\left(L_1^T(t) \cdots L_\beta^T(t)\right)^T + \left(L_1^T(t) \cdots L_\beta^T(t)\right)B^T(t),$ \\

$\Xi_i(t) := Q_i^{-1}(t),$ and $\Upsilon_j(t) := T_j^{-1}(t).$

The controller gain which solves the IO finite-time stabilization problem via state feedback is given by (4) with $K_j(t) = L_j(t)\Pi^{-1}(t), j = 1, \ldots, \beta.$
Sketch of proof - 1

Conditions (7) for the augmented output closed-loop system (3) read

\[
\begin{pmatrix}
\dot{P}(t) + A_{cl}^T(t)P(t) + P(t)A_{cl}(t) & P(t)G(t) \\
G^T(t)P(t) & -R(t)
\end{pmatrix} < 0, \\
P(t) \geq C_i^T(t)Q_i(t)C_i(t), \quad i = 1, \ldots, \alpha \\
P(t) \geq K_j^T(t)T_j(t)K_j(t), \quad j = 1, \ldots, \beta,
\]

where

\[A_{cl}(\cdot) = A(\cdot + B(\cdot)K(\cdot))\]
Sketch of proof - 2

Let $\Pi(t) = P^{-1}(t)$. By pre- and post-multiplying (10a) by
$\begin{pmatrix} \Pi(t) & 0 \\ 0 & I \end{pmatrix} > 0$, and by pre- and post-multiplying (10b) and (10c)
by $\Pi(t)$, we have

\begin{align*}
\begin{pmatrix} -\dot{\Pi}(t) + \Pi(t)A_{cl}^T(t) + A_{cl}(t)\Pi(t) & G(t) \\ G^T(t) & -R(t) \end{pmatrix} & < 0, \\
\begin{pmatrix} \Pi(t) & \Pi(t)C_i^T(t) \\ C_i(t)\Pi(t) & \Xi_i(t) \end{pmatrix} & \geq 0, \quad i = 1, \ldots, \alpha \\
\begin{pmatrix} \Pi(t) & \Pi(t)K_j^T(t) \\ K_j(t)\Pi(t) & \Upsilon_j(t) \end{pmatrix} & \geq 0, \quad j = 1, \ldots, \beta \end{align*}

(11a) (11b) (11c)

where (11b) and (11c) are obtained by applying the Schur complements. The proof of the theorem then readily follows by letting
$L_j(t) = K_j(t)\Pi(t)$ for $j = 1, \ldots, \beta$.
IO finite-time stabilization for \mathcal{W}_∞ signals

Given the class of disturbances \mathcal{W}_∞, the IO finite-time stabilization problem via state feedback is solvable if there exist a positive definite and continuously differentiable matrix–valued function $\Pi(\cdot)$, β continuously differentiable matrix–valued functions $L_1(\cdot), \ldots, L_\beta(\cdot)$, and α strictly positive functions $\lambda_1(\cdot), \ldots, \lambda_\alpha(\cdot) < 1$ such that (9a) and

$$R(t) - \lambda_i(t)R(t) \geq 2 F_i^T(t) Q_i(t) F_i(t), \quad i = 1, \ldots, \alpha$$

$$(12a)$$

$$\begin{pmatrix} \Pi(t) & \Pi(t) C_i^T(t) \\ C_i(t) \Pi(t) & \frac{\lambda_i(t)}{2} \tilde{\Xi}_i(t) \end{pmatrix} \geq 0, \quad i = 1, \ldots, \alpha$$

$$(12b)$$

$$\begin{pmatrix} \Pi(t) & L_j^T(t) \\ L_j(t) & \tilde{\Upsilon}_j(t) \end{pmatrix} \geq 0, \quad j = 1, \ldots, \beta$$

$$(12c)$$

hold, when $t \in \Omega$, with $\tilde{\Xi}_i(t) := (\{(t - t_0)Q_i(t)\})^{-1}$, and $\tilde{\Upsilon}_j(t) := (\{(t - t_0)T_j(t)\})^{-1}$.

The controller gain which solves the IO finite-time stabilization problem via state feedback is given by (4) with $K_j(t) = L_j(t) \Pi^{-1}(t), j = 1, \ldots, \beta$.

Quarter car suspension model

- M_s sprung mass
- M_u unsprung mass
- B_s suspension damping coefficient
- K_s suspension spring elastic coefficient
- K_u elastic coefficient that models tire deflection
- u_f active force generated by the hydraulic actuator S

Figure: Schematic representation of the active suspension system.
Letting x_s and x_u the vertical displacement of the sprung and unsprung masses, respectively

- x_o the vertical ground displacement caused by road unevenness

and choosing as state variables

- the suspension stroke $x_s - x_u$
- the tire deflection $x_u - x_o$

and their derivatives The resulting open-loop dynamical model reads

$$\dot{x}(t) = \begin{pmatrix} 0 & 1 & 0 & -1 \\ -\frac{K_s}{M_s} & -\frac{B_s}{M_s} & 0 & \frac{B_s}{M_s} \\ 0 & 0 & \frac{B_s}{M_u} & -\frac{B_s}{M_u} \\ \frac{K_s}{M_u} & \frac{B_s}{M_u} & -\frac{K_u}{M_u} & -\frac{B_s}{M_u} \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ \frac{u_{\text{max}}}{M_s} \\ 0 \\ -\frac{u_{\text{max}}}{M_u} \end{pmatrix} u(t) + \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix} w(t), \quad (13)$$

where the normalized active force $u(\cdot) = u_f(\cdot)/u_{\text{max}}$ is the control input and the exogenous input $w(\cdot) = \dot{x}_o(\cdot)$ represents the disturbance caused by the road roughness.
Design constraints

When designing a controller a number of constraints should be considered.

- To ensure a firm uninterrupted contact of wheels to road, the dynamic tire load should not exceed the static one

\[k_u |x_3(t)| < (m_s + m_u) g \quad \forall \ t \geq 0. \]
\[(14) \]

- The suspension stroke should fulfill the following constraint

\[|x_1(t)| \leq SS, \quad \forall \ t \geq 0. \]
\[(15) \]

In order to cast the control design problem in the IO-FTS framework, we consider the following system outputs

\[
\begin{pmatrix}
 y_1(t) \\
 y_2(t) \\
 y_3(t)
\end{pmatrix} = \begin{pmatrix}
 \dot{x}_2(t) \\
 x_1(t) \\
 SS \\
 k_u x_3(t) \\
 g(m_s + m_u)
\end{pmatrix} = \begin{pmatrix}
 C_1 & C_2 & C_3
\end{pmatrix} x(t) + \begin{pmatrix}
 D_1 \\
 D_2 \\
 D_3
\end{pmatrix} u,
\]

\[(16) \]

where

\[C_1 = \begin{pmatrix}
 -k_s/m_s & -c_s/m_s & 0 & c_s/m_s
\end{pmatrix}, \quad D_1 = \frac{u_{\text{max}}}{m_s}, \]
\[C_2 = \begin{pmatrix}
 1 & 0 & 0 & 0
\end{pmatrix}, \quad D_2 = 0, \]
\[C_3 = \begin{pmatrix}
 0 & 0 & 1 & 0
\end{pmatrix}, \quad D_3 = 0. \]
Model parameters

The following values for the model parameters have been taken from Chen and Guo, TCST, 2005

\[M_s = 320 \text{ kg}, \quad K_s = 18 \frac{kN}{m}, \]
\[B_s = 1 \frac{kN \cdot s}{m}, \quad K_u = 200 \frac{kN}{m}, \]
\[M_u = 40 \text{ kg}, \quad u_{max} = 1.5 \text{ kN}, \]
\[SS = 0.08 \text{ m}. \]
Actuator saturation

Due to actuator saturation, the active force is bounded by u_{max}, i.e. the normalized force has to satisfy

$$|u(t)| \leq 1, \quad \forall \ t \geq 0.$$ \hfill (17)

In order to frame the problem of designing the active suspension control system in the context of structured IO finite-time stabilization let us rewrite the output equation as

\[
\begin{pmatrix}
y_1(t) \\
y_2(t) \\
y_3(t) \\
u(t)
\end{pmatrix}
= \begin{pmatrix}
\dot{x}_2(t) \\
\frac{x_1(t)}{SS} \\
\frac{k_u x_3(t)}{g(m_s+m_u)} \\
K(t) x(t)
\end{pmatrix}
= \begin{pmatrix}
C_1 + D_1 K(t) \\
C_2 + D_2 K(t) \\
C_3 + D_3 K(t) \\
K(t)
\end{pmatrix} x(t).
\] \hfill (18)
Reference disturbance

We will design the time–varying state feedback $K(t)$ that optimize the response to an isolated bump modeled as the \mathcal{W}_2 disturbance

$$w(t) = \begin{cases} \frac{M}{2} (1 - \cos \left(\frac{2\pi V}{L} t \right)), & 0 \leq t \leq \frac{L}{V} \\ 0, & t > \frac{L}{V} \end{cases}$$

(19)

where $M = 0.1 \ m$, $L = 5 \ m$ are the bump height and width, respectively, while $V = 45 \ km/h$ is the vehicle forward velocity.

In particular, given the bump (19) we want to minimize the body acceleration $y_1(t) = \dot{x}_2(t)$ fulfilling the constraints (14)–(17).
We consider the following IO-FTS parameters

\[T = 2 \, \text{s}, \quad R = 8. \]

Furthermore, given the selected outputs (18), the two outputs weighting matrices

\[Q_2 = Q_3 = 1, \]

allows to take into account the constraints (14) and (15), while the input weighting matrix is

\[T_1 = 0.15, \]

which allows to exploit the full scale of the control input when (19) is considered.

In order to minimize the body acceleration it is possible to exploit Theorem 1 and solve the following optimization problem

\[
\begin{align*}
\text{minimize} \quad & \Xi_1 \\
\text{subject to} \quad & (9)
\end{align*}
\]

(20)

where \(\Xi_1 = Q_1^{-1} \).
Solving the problem

- Assuming the two matrix–valued functions $\Pi(\cdot)$ and $L(\cdot)$ to be piecewise linear, it is possible to recast problem (20) in the LMIs framework.

- By solving (20), we get $\Xi_{1_{\text{min}}} = 7.22$ and the two feasible matrix–valued functions $\Pi(\cdot)$ and $L(\cdot)$; the time–varying controller $K(t)$ is then given by $K(t) = L(t)\Pi(t)^{-1}$.
Results - 1

Figure: Bump response: IO-FTS time-varying controller (−), constrained \mathcal{H}_∞ controller (− −, Chen and Guo, TCST, 2005).
Figure: Bump response: time behavior of the weighted outputs $y_2(t)^TQ_2y_2(t)$ and $y_3(t)^TQ_3y_3(t)$ when the IO-FTS time–varying controller is considered.
Conclusions

- The notion of structured IO-FTS has been introduced.
- Structured IO-FTS allows to take into account design constraint on the control input.
- Conditions for IO finite-time stabilization (in the structured context) of LTV systems via state feedback have been given.
- The effectiveness of the approach has been illustrated by means of an engineering case-study.

Thank you!