

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak

Roberto Ambrosino¹ Gianmaria De Tommasi² Massimiliano Mattei³ Alfredo Pironti²

¹CREATE, Università degli Studi di Napoli Parthenope, Napoli, Italy, ²CREATE, Università degli Studi di Napoli Federico II, Napoli, Italy, ³CREATE, Seconda Università di Napoli, Napoli, Italy

2015 IEEE Multi-Conference on Systems and Control September 21–23, 2015, Sydney, Australia

- 2 Plasma breakdown scenario
- **Breakdown scenario optimization**
 - Field map estimation via Kalman filter
- 5 Simulation results

Introduction

Tokamak

A tokamak is an electromagnetic machine containing a fully ionised gas (plasma) at about 100 million degrees within a torus shaped vacuum vessel

Introduction

Magnetic confinement in tokamaks

In tokamaks, control of the plasma is obtained by means of magnetic fields produced by the external active coils

G. De Tommasi (Federico II)

2015 IEEE MSC - Sydney, Australia

Plasma breakdown phase

- Plasma start-up in a tokamak is complex and calls on different control strategies during the early phases of plasma formation and current ramp-up
- The **breakdown (BD)** in a tokamak requires the establishment of a (poloidal) magnetic field null in a given region of the tokamak chamber
- BD conditions in terms of both electric and magnetic field should be reached within a given accuracy

Figure: Example of isoflux (blue) and isofield (black) lines at the BD.

G. De Tommasi (Federico II)

Plasma Breakdown in ITER

 In ITER the inductive toroidal electric field applied for ionization and to ramp-up the plasma current is about 0.3 V/m

Plasma Breakdown in ITER

- In ITER the inductive toroidal electric field applied for ionization and to ramp-up the plasma current is about 0.3 V/m
 - Given this value of the electric field, *ohmic* BD is only possible over a narrow range of pressure and magnetic error field

Plasma Breakdown in ITER

- In ITER the inductive toroidal electric field applied for ionization and to ramp-up the plasma current is about 0.3 V/m
 - Given this value of the electric field, *ohmic* BD is only possible over a narrow range of pressure and magnetic error field
 - Electron Cyclotron Resonance Heating (ECRH) may be necessary to provide robust and reliable plasma start-up in order to complete ionization of hydrogen

Figure: Layout of the ITER Electron Cyclotron plant.

Plasma Breakdown Optimization

- Feedforward control is maintained during the BD and the first plasma phases until sufficient plasma current *I_p* allows feedback control on both radial and vertical plasma position
- The optimization of the Poloidal Field (PF) voltages and currents involves a dynamic process with strong magnetic interactions among active coils and passive structures

Figure: ITER Poloidal cross section.

Plasma Breakdown Optimization

- The optimization problem is made more complex by the presence of hard constraints
 - current and voltage saturation limits
 - maximum fields
 - maximum vertical forces
- The need to ramp up *I_p* guaranteeing equilibrium conditions over a post-BD time interval, requires that voltages and currents optimization has to be performed over a sufficiently wide time window including transients

Figure: ITER Poloidal cross section.

Contribution

- Formalization of the BD scenario optimization problem as a Quadratic Programming (QP) problem with linear constraints
 - The proposed QP problem is based on a two-dimensional axi-symmetric model and on the hypothesis that plasma can be modeled as a circular massive conductor with known resistance for a plasma current value up to about 500kA

Contribution

- Formalization of the BD scenario optimization problem as a Quadratic Programming (QP) problem with linear constraints
 - The proposed QP problem is based on a two-dimensional axi-symmetric model and on the hypothesis that plasma can be modeled as a circular massive conductor with known resistance for a plasma current value up to about 500kA
- Design of a Kalman Filter to reconstruct the field map in the plasma chamber also in the presence of uncertainties and noise

Deriving a state-space model - 1/2

 The starting point is the Grad-Shafranov equation (nonlinear PDE), which is recasted into a finite dimensional problem using a first order Finite Elements Method

Deriving a state-space model - 1/2

- The starting point is the Grad-Shafranov equation (nonlinear PDE), which is recasted into a finite dimensional problem using a first order Finite Elements Method
- Given a first order mesh of *N* elements, *N* linear equations can be derived to describe the behaviour of the (poloidal) fluxes $\tilde{\psi}$ in the *N* nodes

$$\tilde{\psi} = C_{PF}I_{PF} + C_{eddy}I_{eddy} + C_{\rho}I_{\rho} + C_{fil}I_{fil}$$
(1)

with

- *I_{PF}* are the currents in the (active) PF coils
- *I_{eddy}* are the *eddy* currents in the passive structures
- I_p is the plasma current (which is *active* after the BD, i.e. $\forall t > t_{BD}$
- *I_{fil}* are additional **static** filamentary currents used to simulate additional magnetic fields (e.g., busbar connections, ferromagnetic material from building)

Deriving a state-space model - 2/2

The dynamic of the currents in (1) is driven by the following circuit equation

$$\begin{pmatrix} L_{PF,PF} & L_{PF,eddy} & L_{PF,\rho} \\ L_{eddy,PF} & L_{eddy,eddy} & L_{eddy,\rho} \\ L_{\rho,PF} & L_{\rho,eddy} & L_{\rho,\rho} \end{pmatrix} \frac{dI}{dt} + \begin{pmatrix} R_{PF} & 0 & 0 \\ 0 & R_{eddy} & 0 \\ 0 & 0 & R_{\rho} \end{pmatrix} I = \begin{pmatrix} V \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
(2)

where

•
$$I = \left(I_{PF}^{T} \ I_{eddy}^{T} \ I_{p}\right)^{T}$$

- During the first phase of the plasma current rise (soon after t_{BD}), plasma is modeled as a massive circular conductor with R_{ρ} of few $\mu\Omega$
- Plasma self-inductance L_p is one of the outputs of the electromagnetic model (computed under the assumption of circular massive conductor)

G. De Tommasi (Federico II)

State-space model for BD optimization - 1

Letting x = I, u = V, $w = I_{fil}$, $y = \tilde{\psi}$, yields to the usual state-space representation

$$\dot{x} = Ax + Bu$$
, $x(0) = x_0$ (3a)
 $y = Cx + Du + Fw$ (3b)

Assuming *u* **piecewise linear**, system (3) can be augmented as follows

$$\dot{x} = Ax + Bs, \quad x(0) = x_0 \tag{4a}$$

$$\dot{s} = \dot{u}, \quad s(0) = u_0$$
 (4b)

$$y = Cx + Du + Fw \tag{4c}$$

State-space model for BD optimization - 2

Finally, letting $z = (x^T s^T)^T$, system (4) can be written as

$$\dot{z} = \tilde{A}z + \tilde{B}\dot{u}, \quad z(0) = z_0$$
 (5a)

$$y_{ct} = \tilde{C}_{ct}z + y_{ct_0} \tag{5b}$$

$$y_{cs} = \tilde{C}_{cs} z + y_{cs_0} \tag{5c}$$

with

- *y_{ct}* **controlled outputs**, e.g., magnetic (vertical and radial) field and flux in the control points
- *y_{cs}* **constrained outputs**, e.g., PF currents and voltages, vertical forces on coils

•
$$y_{ct_0} = F_{ct}w$$
 and $y_{cs_0} = F_{cs}w$.

BD voltage optimization problem - 1

Problem statement

Given system (5), a desired value of the controlled outputs at the BD time t_{BD} , a desired time behavior of some of the controlled outputs y_{ct} , a set of constraints on output variables y_{cs} , a desired value of the flux state at t_{BD} , find:

- *t_{BD}* in which BD conditions are met with minimum loss of flux state
- the set of initial currents in PF and CS coils
- a piecewise linear time behaviour of PF and CS voltages from 0 to t_{BD}

BD voltage optimization problem - 2

- In order to formulate the BD voltage optimization problem, system (5) is converted into a discrete-time model (with constant sampling period *T_s*), under the assumption of piecewise linear input voltages *u*
- The explicit response of the discrete-time model is computed

$$\begin{pmatrix} y(k) \\ y(k-1) \\ \vdots \\ y(1) \end{pmatrix} = \Phi \begin{pmatrix} z_0 \\ \dot{u}(0) \\ \vdots \\ \dot{u}(k-1) \end{pmatrix} + \begin{pmatrix} y_0 \\ y_0 \\ \vdots \\ y_0 \end{pmatrix}$$
(6)

• By making the distinction between *controlled* and *constrained* outputs, it is possible to rewrite (6) as

$$Y_{ct} = \Phi_{ct} X + Y_{ct_0} \tag{7a}$$

$$Y_{cs} = \Phi_{ct} X + Y_{cs_0} \tag{7b}$$

QP problem

A solution to the BD voltage optimization problem can be obtained by solving the following QP problem

$$\min_{X} \left(\Phi_{ct} X + Y_{ct_0} - Y_{ct_d} \right)^T Q \left(\Phi_{ct} X + Y_{ct_0} - Y_{ct_d} \right) + X^T R X$$

subject to

- $\Phi_{cs}X + Y_{cs_0} < Y_{cs_M}$ • $\Phi_{cs}X + Y_{cs_0} > Y_{cs_m}$
- *X_m* < *X* < *X_M*

where Y_{ct_d} is the vector of the desired controlled outputs, while Q > 0 and $R \ge 0$ are weighting matrices.

Field map reconstruction

• During early tokamak operation, the field map in the BD region should be reconstructed in order to introduce corrections between pulses

- During early tokamak operation, the field map in the BD region should be reconstructed in order to introduce corrections between pulses
- Results of model based open loop control optimization procedures are affected by model uncertainties (e.g., 3D effects, neglected external currents, probes misalignment)

- During early tokamak operation, the field map in the BD region should be reconstructed in order to introduce corrections between pulses
- Results of model based open loop control optimization procedures are affected by model uncertainties (e.g., 3D effects, neglected external currents, probes misalignment)
- The estimation of eddy currents is essential to correct the reconstruction of the field map

- During early tokamak operation, the field map in the BD region should be reconstructed in order to introduce corrections between pulses
- Results of model based open loop control optimization procedures are affected by model uncertainties (e.g., 3D effects, neglected external currents, probes misalignment)
- The estimation of eddy currents is essential to correct the reconstruction of the field map
- The field map estimation can be obtained by means of magnetic measurements (pick-up coils and flux loops), which are subject to the usual sensor noise and to drifts induced by the nuclear environment

- During early tokamak operation, the field map in the BD region should be reconstructed in order to introduce corrections between pulses
- Results of model based open loop control optimization procedures are affected by model uncertainties (e.g., 3D effects, neglected external currents, probes misalignment)
- The estimation of eddy currents is essential to correct the reconstruction of the field map
- The field map estimation can be obtained by means of magnetic measurements (pick-up coils and flux loops), which are subject to the usual sensor noise and to drifts induced by the nuclear environment
- A Kalman Filtering approach can be adopted to reconstruct eddy currents in the presence of measurement model uncertainties

- During early tokamak operation, the field map in the BD region should be reconstructed in order to introduce corrections between pulses
- Results of model based open loop control optimization procedures are affected by model uncertainties (e.g., 3D effects, neglected external currents, probes misalignment)
- The estimation of eddy currents is essential to correct the reconstruction of the field map
- The field map estimation can be obtained by means of magnetic measurements (pick-up coils and flux loops), which are subject to the usual sensor noise and to drifts induced by the nuclear environment
- A Kalman Filtering approach can be adopted to reconstruct eddy currents in the presence of measurement model uncertainties
- Before plasma BD (i.e. when $I_p = 0$), assuming that I_{PF} and the static offsets are known, then the circuit equation (2) can be exploited to design a Kalman filter that reconstructs the eddy currents

Requirements for ITER plasma initiation at half toroidal field (2.7 T)

• At $t = t_{BD}$, values of the poloidal field *B* in points 1-5 should be kept below 3 mT (with an isofield line at 3 mT that should contain the whole circular breakdown region)

Figure: Control point considered for the BD optimization.

G. De Tommasi (Federico II)

Requirements for ITER plasma initiation at half toroidal field (2.7 T)

- At $t = t_{BD}$, values of the poloidal field *B* in points 1-5 should be kept below 3 mT (with an isofield line at 3 mT that should contain the whole circular breakdown region)
- At $t = t_{BD}$, the external loop voltage at the plasma formation region centre point should be $\geq 11 \ V (\rightarrow \text{electric field} \geq 0.3 \ V/m)$

Figure: Control point considered for the BD optimization.

G. De Tommasi (Federico II)

2015 IEEE MSC - Sydney, Australia

Requirements for ITER plasma initiation at half toroidal field (2.7 T)

- At $t = t_{BD}$, values of the poloidal field *B* in points 1-5 should be kept below 3 mT (with an isofield line at 3 mT that should contain the whole circular breakdown region)
- At $t = t_{BD}$, the external loop voltage at the plasma formation region centre point should be $\geq 11 \ V (\rightarrow \text{electric field} \geq 0.3 \ V/m)$
- For t > t_{BD}, l_p should increase inductively with a rate of about 1 MA/s

Figure: Control point considered for the BD optimization.

G. De Tommasi (Federico II)

Requirements for ITER plasma initiation at half toroidal field (2.7 T)

Figure: Control point considered for the BD optimization.

- At t = t_{BD}, values of the poloidal field B in points 1-5 should be kept below 3 mT (with an isofield line at 3 mT that should contain the whole circular breakdown region)
- At t = t_{BD}, the external loop voltage at the plasma formation region centre point should be ≥ 11 V (→ electric field ≥ 0.3 V/m)
- For t > t_{BD}, l_p should increase inductively with a rate of about 1 MA/s
- For t > t_{BD}, the vertical field B_z should vary according to the Shafranov vertical field formula
- For t > t_{BD}, the decay index of the vertical magnetic field should be close to 0.5

G. De Tommasi (Federico II)

BD optimization

- The presented BD optimization approach has been applied to the 2.7 *T*, early machine operation scenario, using a sampling $T_s = 90 ms$.
- BD conditions have been achieved at $t_{BD} = 1.09 s$, enforcing all the constraints
- In order to obtain BD conditions Switching Network Units, i.e. bank of resistors in series to the CS/PF coils were needed to increase the current slew rate and satisfy the requirement on the loop voltage/electric field

Isoflux (blue) and isofield (black) lines at t_{BD} . The control points 1-5 fall within a region inside the isofield line at 3 mT

Flux map reconstruction from noisy measurement

A3 & A4	60 Tangential Coils (Outer); 60 Normal Coils (Outer)		
A5 & A6	20 Tangential Steady State (Outer) 20 Normal Steady State (Outer)		
A7	6 Continuous Flux Loops (Outer)		
AA & AB	24 Tangential Coils (Inner); 12 Normal Coils (Inner)		
AD	22 Partial Flux Loops		
AL	12 Divertor Equilibrium Coils		

TABLE II. NOISE MAIN CHARACTERISTIC	S
-------------------------------------	---

Stdv	n_1	n_2	<i>n</i> ₃	n_4
AA	1.1e-3	1e-3	7.5e-4	4.1e-3
AB	1.1e-3	1e-3	7.5e-4	3.9e-3
AD	0	1e-3	0	8.7e-4
AL	1.1e-3	1e-3	7.5e-4	1.0e-2
A3	1.0e-3	1e-3	7.5e-4	5.0e-5
A4	1.0e-3	1e-3	7.5e-4	5.0e-5
A5	1.0e-3	1e-3	7.5e-4	0
A6	1.0e-3	1e-3	7.5e-4	0
A7	8.5e-4	1e-3	0	4.9e-3
AE	8.5e-4	1e-3	0	4.9e-3

Noise on the measured output has been modeled as

$$y_m(t) = y(t) (1 + n_1 + n_2(t)) + n_3(t) + n_4(t)$$

where

- n₁ constant multiplicative action
- n₂(t) multiplicative noise
- n₃(t) additive noise

n₄(t) - drift

Field map reconstruction - Simulation results

Figure: Comparison between the

reconstructed field map and the actual

Figure: Comparison between the optimized field map (red) and the actual one (black).

G. De Tommasi (Federico II)

2015 IEEE MSC - Sydney, Australia

one.

21/22

Conclusions

• A procedure to optimize BD scenarios in a modern tokamak in the presence of constraints has been presented

- A procedure to optimize BD scenarios in a modern tokamak in the presence of constraints has been presented
- In ITER, BD conditions are reached with very large currents flowing in the conductive passive structures

- A procedure to optimize BD scenarios in a modern tokamak in the presence of constraints has been presented
- In ITER, BD conditions are reached with very large currents flowing in the conductive passive structures
- If the field map has to be reconstructed for monitoring and control purposes, the estimation of the eddy currents is very important and can be obtained by means of magnetic measurements

- A procedure to optimize BD scenarios in a modern tokamak in the presence of constraints has been presented
- In ITER, BD conditions are reached with very large currents flowing in the conductive passive structures
- If the field map has to be reconstructed for monitoring and control purposes, the estimation of the eddy currents is very important and can be obtained by means of magnetic measurements
- It has been shown that using a KF to estimate eddy currents at the BD time allows a satisfactory reconstruction of the field map also in the presence of noise and model uncertainties

- A procedure to optimize BD scenarios in a modern tokamak in the presence of constraints has been presented
- In ITER, BD conditions are reached with very large currents flowing in the conductive passive structures
- If the field map has to be reconstructed for monitoring and control purposes, the estimation of the eddy currents is very important and can be obtained by means of magnetic measurements
- It has been shown that using a KF to estimate eddy currents at the BD time allows a satisfactory reconstruction of the field map also in the presence of noise and model uncertainties
- This is the first step towards open and/or closed loop strategies to correct the active coil currents to achieve satisfactory BD conditions

Conclusions

- A procedure to optimize BD scenarios in a modern tokamak in the presence of constraints has been presented
- In ITER, BD conditions are reached with very large currents flowing in the conductive passive structures
- If the field map has to be reconstructed for monitoring and control purposes, the estimation of the eddy currents is very important and can be obtained by means of magnetic measurements
- It has been shown that using a KF to estimate eddy currents at the BD time allows a satisfactory reconstruction of the field map also in the presence of noise and model uncertainties
- This is the first step towards open and/or closed loop strategies to correct the active coil currents to achieve satisfactory BD conditions

Thank you!