Necessary and Sufficient Conditions for Input-Output Finite-Time Stability of Impulsive Dynamical Systems

Francesco Amato¹ Gianmaria De Tommasi² Alfredo Pironti²

¹Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy, ²Università degli Studi di Napoli Federico II, Napoli, Italy

> 2015 American Control Conference July 1–3, 2015, Chicago, Illinois

2015 American Control Conference – Chicago, Illinois July 2015

Outline

Outline

Input-output finite-time stability vs classic IO stability

IO stability

A dynamical system is said to be IO \mathcal{L}_p -stable if for any input of class \mathcal{L}_p , the system exhibits a corresponding output which belongs to the same class

IO-FTS

A dynamical system is defined to be IO-FTS if, given a class of norm bounded input signals over a specified time interval T, the outputs of the system do not exceed an assigned threshold during T

Main features of IO-FTS

IO-FTS:

- involves signals defined over a finite time interval
- does not necessarily require the inputs and outputs to belong to the same class
- specifies a *quantitative* bounds on both inputs and outputs
- IO stability and IO-FTS are independent concepts

Examples of application

G. Ambrosino, M. Ariola, G. De Tommasi, A. Pironti Plasma Vertical Stabilization in the ITER Tokamak via Constrained Static Output Feedback *IEEE Trans. Contr. Tech.*, 2011

 F. Amato, G. Carannante, G. De Tommasi, A. Pironti Input-Output Finite-Time Stabilization of Linear Systems with Input Constraints IET Contr. Theory Appl., 2014

Contribution of the paper

- In this paper we show that the sufficient condition to check IO-FTS of time-dependent Impulsive Dynamical Linear Systems (IDLS), which is expressed in terms of a coupled difference/differential LMI (D/DLMI) feasibility problem, and which was originally given in
 - F. Amato, G. Carannante, G. De Tommasi Input-output Finite-Time Stabilisation of a class of Hybrid Systems via Static Output Feedback
 - Int. J. Contr., 2011
 - is also necessary.
- An alternative, and numerically more efficient, necessary and sufficient condition for IO-FTS is proved, which requires the solution of a coupled difference/differential Lyapunov equation (D/DLE).

- Notation

Notation

- L_p denotes the space of vector-valued signals whose p-th power is absolutely integrable over [0, +∞).
- The restriction of L_p to the time interval Ω := [t₀, t₀ + T] is denoted by L_p(Ω).
- Given the time interval Ω , a symmetric positive definite matrix-valued function $R(\cdot)$, bounded on Ω , and a vector-valued signal $s(\cdot) \in \mathcal{L}_p(\Omega)$, the weighted signal norm

$$\left(\int_{\Omega} \left[s^{T}(\tau)R(\tau)s(\tau)\right]^{\frac{p}{2}}d\tau\right)^{\frac{1}{p}}$$

will be denoted by $||s(\cdot)||_{p,R}$. If $p = \infty$

$$\|s(\cdot)\|_{\infty,R} = \operatorname{ess\,sup}\left[s^{\mathsf{T}}(t)R(t)s(t)\right]^{\frac{1}{2}}$$

- Notation

Impulsive Dynamical Linear Systems

The class of time dependent Impulsive Dynamical Linear Systems is described by

$$\begin{array}{c} \dot{x}(t) = A(t)x(t) + G(t)w(t), \quad x(t_0) = 0, \quad t \notin \mathcal{T} \quad (1a) \\ x^+(t_i) = J(t_i)x(t_i), \quad t_i \in \mathcal{T} \quad (1b) \\ y(t) = C(t)x(t), \quad \forall \ t, \quad (1c) \end{array}$$

- $J(\cdot)$ is the matrix-valued function that describes the *resetting law* of the system.
- The elements of the set $\mathcal{T} = \{t_1, t_2, \ldots\}$ are called *resetting times*.
- According to the continuous-time dynamics (1a) and the resetting law (1b), an IDLS presents a left-continuous trajectory with a finite jump from x(t_i) to x⁺(t_i) at each resetting time t_i ∈ T.
- Being interested in the dynamic behaviour of the IDLS in the time interval Ω , the number of resetting times in Ω is assumed equal to N.
- It is also assumed that the first resetting time $t_1 \in \mathcal{T}$ is such that $t_1 > t_0$.

- Notation

а

The state transition matrix $\Phi(t, \tau)$ of an IDLS

The following properties for the transition matrix $\Phi(t, \tau)$ of (1) hold

$$\Phi(t_0, t_0) = I, \qquad (2a)$$

$$\frac{\partial}{\partial t}\Phi(t,t_0) = A(t)\Phi(t,t_0), \quad t \notin \mathcal{T}$$
(2b)

$$\Phi^+(t_i, t_0) = J(t_i)\Phi(t_i, t_0), \quad t_i \in \mathcal{T}.$$
 (2c)

Given $t_k < t < t_{k+1}$, with t_k , $t_{k+1} \in \mathcal{T}$, it is (see also Medina 2007) $\Phi(t, t_0) = \Phi_{k+1}(t, t_k)J(t_k)\Phi_k(t_k, t_{k-1})J(t_{k-1})\cdots J(t_2)\Phi_2(t_2, t_1)J(t_1)\Phi_1(t_1, t_0)$, (3) where for j = 1, ..., N, $\Phi_j(\cdot, \cdot)$ satisfies

$$\frac{\partial}{\partial t} \Phi_j(t, t_{j-1}) = A(t) \Phi_j(t, t_{j-1}), \quad t \in [t_{j-1}, t_j[, \Phi_j(t_{j-1}, t_{j-1})] = I,$$

and $\Phi_{N+1}(\cdot, \cdot),$

$$\frac{\partial}{\partial t} \Phi_{N+1}(t, t_N) = A(t) \Phi_{N+1}(t, t_N), \quad t \in [t_N, t_0 + T], \quad \Phi_{N+1}(t_N, t_N) = I.$$

Given (3), it is straightforward to verify that the impulsive response of (1), is given by

$$H(t,\tau) = C(t)\Phi(t,\tau)G(\tau)\delta_{-1}(t-\tau).$$

- Notation

Reachability Gramian of IDLSs

- Also the reachability Gramian $W_r(\cdot, \cdot)$ of an IDLS can be recursively defined
- In Medina and Lawrence 2009 it has been shown that *W_r*(·,·) is the unique symmetric and positive semidefinite solution of the following D/DLE

$$\begin{split} \dot{W}_{r}(t,t_{0}) &= A(t)W_{r}(t,t_{0}) + W_{r}(t,t_{0})A^{T}(t) + G(t)G^{T}(t), & t \notin \mathcal{T} \\ (4a) \\ W_{r}^{+}(t_{i},t_{0}) &= J(t_{i})W_{r}(t_{i},t_{0})J^{T}(t_{i}), & t_{i}\in \mathcal{T} \\ W_{r}(t_{0},t_{0}) &= 0 \end{split}$$
(4b)

- Notation

Formal definition of IO-FTS for IDLSs

IO-FTS of IDLSs

Given a positive scalar T, a class of input signals \mathcal{W} defined over $\Omega = [t_0, t_0 + T]$, a continuous, positive definite matrix-valued function $Q(\cdot)$ defined in Ω , system (1) is said to be IO-FTS with respect to $(\mathcal{W}, Q(\cdot), \Omega)$ if

$$w(\cdot) \in \mathcal{W} \Rightarrow y^{T}(t)Q(t)y(t) < 1, \quad \forall t \in \Omega.$$

Class square integrable disturbances - W_2

 $\mathcal{W}_2\left(\Omega, R(\cdot)\right) := \left\{w(\cdot) \in \mathcal{L}_2\left(\Omega\right) \ : \ \|w\|_{2,R} \leq 1\right\} \ .$

-Main result

IDLSs as linear operators

The IDLS (1) can be regarded as a linear operator

$$\Gamma: w(\cdot) \in \mathcal{L}_2(\Omega) \mapsto y(\cdot) \in \mathcal{L}_\infty(\Omega), \qquad (5)$$

Equipping the L₂(Ω) and L_∞(Ω) spaces with the weighted norms || · ||_{2,R} and || · ||_{∞,Q}, respectively, the induced norm of (5) is equal to

$$\|\Gamma\| = \sup_{\|w(\cdot)\|_{2,R}=1} \left[\|y(\cdot)\|_{\infty,Q} \right]$$

Theorem 1

Given a time interval Ω , the class of input signals \mathcal{W}_2 , and a continuous positive definite matrix-valued function $Q(\cdot)$, system (1) is IO-FTS with respect to $(\mathcal{W}_2, Q(\cdot), \Omega)$ if and only if $\|\Gamma\| < 1$.

Main result

Norm of the linear operator **F**

Theorem 2

Given the IDLS (1), the norm of the corresponding linear operator (5) is given by

$$\|\Gamma\| = \operatorname{ess\,sup}_{t\in\Omega} \lambda_{\max}^{\frac{1}{2}} \left(Q^{\frac{1}{2}}(t)C(t)W(t)C^{T}(t)Q^{\frac{1}{2}}(t) \right), \qquad (6)$$

for all $t \in \Omega$; $W(\cdot)$ is the piecewise continuously differentiable positive semidefinite matrix-valued solution of

$$\begin{split} \dot{W}(t) &= A(t)W(t) + W(t)A^{T}(t) + G(t)R(t)^{-1}G^{T}(t), \\ & t \notin \mathcal{T} \end{split} \tag{7a} \\ \mathcal{N}^{+}(t_{i}) &= J(t_{i})W(t_{i})J^{T}(t_{i}), \quad t_{i} \in \mathcal{T} \cr W(t_{0}) &= 0. \end{split} \tag{7b}$$

- Main result

Main result

Theorem 3

The following statements are equivalent:

- i) The IDLS (1) is IO finite-time stable with respect to $(\mathcal{W}_2, Q(\cdot), \Omega)$.
- ii) The inequality $\operatorname{ess\,sup}_{t\in\Omega} \lambda_{\max}(Q^{\frac{1}{2}}(t)C(t)W(t)C^{\mathsf{T}}(t)Q^{\frac{1}{2}}(t)) < 1$ holds, where $W(\cdot)$ is the solution of (7).
- iii) The coupled D/DLMI

$$egin{pmatrix} \dot{P}(t)+A^{ au}(t)P(t)+P(t)A(t)&P(t)G(t)\ G^{ au}(t)P(t)&-R(t) \end{pmatrix} < 0 \ t
otin \mathcal{T}(t_i)P^+(t_i)J(t_i)-P(t_i)<0\,,\quad t\in\mathcal{T}\,, \end{split}$$

$$P(t) > C^{T}(t)Q(t)C(t), \quad t \in \Omega$$
 (8c)

admits a piecewise continuously differentiable positive definite solution $P(\cdot)$ over Ω .

- Example

C

Comparison of the computational burden 1/3

Let us consider the time-varying IDLS

$$A = \begin{pmatrix} -2.5 + 0.2 \cdot t & -6.3 \\ 4 & 0.2 \cdot t \end{pmatrix}, \quad G = \begin{pmatrix} 2 \\ 0 \end{pmatrix},$$

= $\begin{pmatrix} 1.2 & 3.2 \end{pmatrix}, \quad J = \begin{pmatrix} 1.1 & 0 \\ 0 & -0.8 \end{pmatrix}.$ (9)

The time interval we consider in this example is $\Omega = [0\,,2],$ while the resetting times are

$$\mathcal{T} = \{0.25\,, 0.5\,, 0.75\,, 1\,, 1.5\,, 1.8\}$$

The input weighting matrix is taken constant and equal to

$$R = 0.7$$
.

- Example

Comparison of the computational burden 2/3

Time response of the IDLS (9) in the interval Ω when an input in $\mathcal{W}_2([0,2], 0.7)$ is considered, and when **Q** is taken equal to 2.

- Example

Comparison of the computational burden 3/3

Table: Values of Q_{max} obtained exploiting condition **ii**) in Theorem 3 for the IDLS system (9)

Sample Time (T_s) [ms]	Q _{max}	Computation time for the so- lution of the D/DLE (7) [s]
10	0.0900	0.19
1	0.0910	0.22
0.1	0.0918	0.7

Table: Values of Q_{max} obtained exploiting condition **iii)** in Theorem 3 for the IDLS system (9)

Sample Time (<i>T_s</i>) [[ms] G	e _{max} /	Average cor a single iter	nputation ation [s]	time for
50	0.	0740 2	2.6		
25	0.	0796	14.2		
10	0.	0837 2	298.4		

- Conclusions

Conclusions

- Necessary and sufficient conditions for IO-FTS of IDLSs have been presented for the class of W₂ disturbances
- The D/DLMI formulation can be extended to solve the IO finite-time stabilization problem either via state-feedback, or via output-feedback

Thank you!