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1Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy,
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Motivations

Input-output finite-time stability vs classic IO
stability

IO stability

A dynamical system is said to be IO Lp-stable if for any input of
class Lp, the system exhibits a corresponding output which belongs
to the same class

IO-FTS

A dynamical system is defined to be IO-FTS if, given a class of
norm bounded input signals over a specified time interval T , the
outputs of the system do not exceed an assigned threshold
during T
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Motivations

Main features of IO-FTS

IO-FTS:

involves signals defined over a finite time interval

does not necessarily require the inputs and outputs to belong
to the same class

specifies a quantitative bounds on both inputs and outputs

IO stability and IO-FTS are independent concepts
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Motivations

Examples of application

G. Ambrosino, M. Ariola, G. De Tommasi, A. Pironti
Plasma Vertical Stabilization in the ITER Tokamak via
Constrained Static Output Feedback
IEEE Trans. Contr. Tech., 2011

F. Amato, G. Carannante, G. De Tommasi, A. Pironti
Input-Output Finite-Time Stabilization of Linear Systems with
Input Constraints
IET Contr. Theory Appl., 2014
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Motivations

Contribution of the paper

In this paper we show that the sufficient condition to check
IO-FTS of time-dependent Impulsive Dynamical Linear
Systems (IDLS), which is expressed in terms of a coupled
difference/differential LMI (D/DLMI) feasibility problem, and
which was originally given in

F. Amato, G. Carannante, G. De Tommasi
Input-output Finite-Time Stabilisation of a class of Hybrid
Systems via Static Output Feedback
Int. J. Contr., 2011

is also necessary.

An alternative, and numerically more efficient, necessary
and sufficient condition for IO-FTS is proved, which requires
the solution of a coupled difference/differential Lyapunov
equation (D/DLE).
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Preliminaries

Notation

Notation

Lp denotes the space of vector-valued signals whose p-th
power is absolutely integrable over [0,+∞).

The restriction of Lp to the time interval Ω := [t0 , t0 + T ] is
denoted by Lp(Ω).

Given the time interval Ω, a symmetric positive definite
matrix-valued function R(·), bounded on Ω, and a
vector-valued signal s(·) ∈ Lp(Ω), the weighted signal norm(∫

Ω

[
sT (τ)R(τ)s(τ)

] p
2 dτ

) 1
p

,

will be denoted by ‖s(·)‖p ,R . If p =∞

‖s(·)‖∞ ,R = ess sup
t∈Ω

[
sT (t)R(t)s(t)

] 1
2 .
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Preliminaries

Notation

Impulsive Dynamical Linear Systems

The class of time dependent Impulsive Dynamical Linear Systems
is described by

Γ :


ẋ(t) = A(t)x(t) + G (t)w(t) , x(t0) = 0 , t 6∈ T (1a)

x+(ti ) = J(ti )x(ti ) , ti ∈ T (1b)

y(t) = C (t)x(t) , ∀ t , (1c)

J(·) is the matrix-valued function that describes the resetting law of the
system.

The elements of the set T =
{
t1 , t2 , . . .

}
are called resetting times.

According to the continuous-time dynamics (1a) and the resetting
law (1b), an IDLS presents a left-continuous trajectory with a finite jump
from x(ti ) to x+(ti ) at each resetting time ti ∈ T .

Being interested in the dynamic behaviour of the IDLS in the time
interval Ω, the number of resetting times in Ω is assumed equal to N.

It is also assumed that the first resetting time t1 ∈ T is such
that t1 > t0.
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Preliminaries

Notation

The state transition matrix Φ(t , τ) of an IDLS

The following properties for the transition matrix Φ(t , τ) of (1) hold

Φ(t0 , t0) = I , (2a)

∂

∂t
Φ(t , t0) = A(t)Φ(t , t0) , t /∈ T (2b)

Φ+(ti , t0) = J(ti )Φ(ti , t0) , ti ∈ T . (2c)

Given tk < t < tk+1, with tk , tk+1 ∈ T , it is (see also Medina 2007)

Φ(t , t0) = Φk+1(t , tk)J(tk)Φk(tk , tk−1)J(tk−1) · · · J(t2)Φ2(t2 , t1)J(t1)Φ1(t1 , t0) ,
(3)

where for j = 1 , . . . ,N, Φj(·, ·) satisfies

∂

∂t
Φj(t , tj−1) = A(t)Φj(t, tj−1) , t ∈ [tj−1 , tj [ , Φj(tj−1 , tj−1) = I ,

and ΦN+1(·, ·),

∂

∂t
ΦN+1(t , tN) = A(t)ΦN+1(t, tN) , t ∈ [tN , t0 + T ] , ΦN+1(tN , tN) = I .

Given (3), it is straightforward to verify that the impulsive response of (1), is
given by

H(t , τ) = C(t)Φ(t , τ)G(τ)δ−1(t − τ) .
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Preliminaries

Notation

Reachability Gramian of IDLSs

Also the reachability Gramian Wr (· , ·) of an IDLS can be
recursively defined

In Medina and Lawrence 2009 it has been shown that Wr (· , ·)
is the unique symmetric and positive semidefinite solution of
the following D/DLE

Ẇr (t , t0) = A(t)Wr (t , t0) + Wr (t , t0)AT (t) + G (t)GT (t) , t 6∈ T
(4a)

W+
r (ti , t0) = J(ti )Wr (ti , t0)JT (ti ) , ti ∈ T (4b)

Wr (t0 , t0) = 0 (4c)
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Preliminaries

Notation

Formal definition of IO-FTS for IDLSs

IO-FTS of IDLSs

Given a positive scalar T , a class of input signals W defined
over Ω = [t0 , t0 + T ], a continuous, positive definite
matrix-valued function Q(·) defined in Ω, system (1) is said to be
IO-FTS with respect to (W ,Q(·) ,Ω) if

w(·) ∈ W ⇒ yT (t)Q(t)y(t) < 1 , ∀t ∈ Ω .

Class square integrable disturbances - W2

W2 (Ω,R(·)) := {w(·) ∈ L2 (Ω) : ‖w‖2,R ≤ 1} .



2015 American Control Conference – Chicago, Illinois July 2015

Main result

IDLSs as linear operators

The IDLS (1) can be regarded as a linear operator

Γ : w(·) ∈ L2(Ω) 7→ y(·) ∈ L∞(Ω) , (5)

Equipping the L2(Ω) and L∞(Ω) spaces with the weighted
norms ‖ · ‖2,R and ‖ · ‖∞,Q , respectively, the induced norm
of (5) is equal to

‖Γ‖ = sup
‖w(·)‖2,R=1

[
‖y(·)‖∞,Q

]
.

Theorem 1

Given a time interval Ω, the class of input signals W2, and a
continuous positive definite matrix-valued function Q(·),
system (1) is IO-FTS with respect to

(
W2 ,Q(·) ,Ω

)
if and only

if ‖Γ‖ < 1.
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Main result

Norm of the linear operator Γ

Theorem 2

Given the IDLS (1), the norm of the corresponding linear
operator (5) is given by

‖Γ‖ = ess sup
t∈Ω

λ
1
2
max

(
Q

1
2 (t)C (t)W (t)CT (t)Q

1
2 (t)

)
, (6)

for all t ∈ Ω; W (·) is the piecewise continuously differentiable
positive semidefinite matrix-valued solution of

Ẇ (t) = A(t)W (t) + W (t)AT (t) + G (t)R(t)−1GT (t) ,

t 6∈ T (7a)

W+(ti ) = J(ti )W (ti )J
T (ti ) , ti ∈ T (7b)

W (t0) = 0 . (7c)
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Main result

Main result

Theorem 3

The following statements are equivalent:

i) The IDLS (1) is IO finite-time stable with respect to (W2 ,Q(·) ,Ω).

ii) The inequality ess supt∈Ω λmax

(
Q

1
2 (t)C(t)W (t)CT (t)Q

1
2 (t)

)
< 1 holds,

where W (·) is the solution of (7).

iii) The coupled D/DLMI(
Ṗ(t) + AT (t)P(t) + P(t)A(t) P(t)G(t)

GT (t)P(t) −R(t)

)
< 0

t 6∈ T , (8a)

JT (ti )P
+(ti )J(ti )− P(ti ) < 0 , t ∈ T , (8b)

P(t) > CT (t)Q(t)C(t) , t ∈ Ω (8c)

admits a piecewise continuously differentiable positive definite
solution P(·) over Ω.
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Example

Comparison of the computational burden 1/3

Let us consider the time-varying IDLS

A =

(
−2.5 + 0.2 · t −6.3

4 0.2 · t

)
, G =

(
2
0

)
,

C =
(

1.2 3.2
)
, J =

(
1.1 0
0 −0.8

)
.

(9)

The time interval we consider in this example is Ω = [0 , 2], while
the resetting times are

T = {0.25 , 0.5 , 0.75 , 1 , 1.5 , 1.8} .

The input weighting matrix is taken constant and equal to

R = 0.7 .
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Example

Comparison of the computational burden 2/3

Time response of the IDLS (9) in the interval Ω when an input in
W2 ([0 , 2] , 0.7) is considered, and when Q is taken equal to 2.
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Example

Comparison of the computational burden 3/3

Table: Values of Qmax obtained exploiting condition ii) in Theorem 3 for
the IDLS system (9)

Sample Time (Ts ) [ms] Qmax Computation time for the so-
lution of the D/DLE (7) [s]

10 0.0900 0.19
1 0.0910 0.22

0.1 0.0918 0.7

Table: Values of Qmax obtained exploiting condition iii) in Theorem 3
for the IDLS system (9)

Sample Time (Ts ) [ms] Qmax Average computation time for
a single iteration [s]

50 0.0740 2.6
25 0.0796 14.2
10 0.0837 298.4
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Conclusions

Conclusions

Necessary and sufficient conditions for IO-FTS of IDLSs have
been presented for the class of W2 disturbances

The D/DLMI formulation can be extended to solve the IO
finite-time stabilization problem either via state-feedback, or
via output-feedback

Thank you!
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