Non-interference assessment in bounded Petri nets via Integer Linear Programming

American Control Conference 2018 (ACC 2018)

Francesco Basile and Gianmaria DE TOMMASI

Milwaukee - 28 June 2018

00000

Main results

Example

Outline

1 Preliminaries

- Non-interference in DES context
- Contribution
- Notation & definitions

2 Main results

- Necessary and sufficient condition to check SNNI
- Necessary and sufficient condition to check BSNNI

3 Example

4 Conclusions

Prelimi	naries
000	

Main	resu

Non-interference

In system security it is important to prevent information leaks

Prelim	inari	ies
000		

Main	resul

- Non-interference
 - In system security it is important to prevent information leaks
 - Objective: to prevent to an intruder to access to secret information

Preli	mi	na	rie
000			

Non-interference

Main	resul

Example

- In system security it is important to prevent information leaks
- Objective: to prevent to an intruder to access to secret information
- DES have been used to model different information flow properties
 - opacity (the secret is a state or a sequence)

Preli	mi	na	rie
000			

Main	resul

PIE UNI NA

- In system security it is important to prevent information leaks
- Objective: to prevent to an intruder to access to secret information
- DES have been used to model different information flow properties
 - opacity (the secret is a state or a sequence)
 - non-interference

Non-interference

Prelimi	inari	ies
000		

Mai	n re	esi	ul

Non-interference

- In system security it is important to prevent information leaks
- Objective: to prevent to an intruder to access to secret information
- DES have been used to model different information flow properties
 - opacity (the secret is a state or a sequence)
 - non-interference

Y.-C. Wu and S. Lafortune,

Comparative analysis of related notions of opacity in centralized and coordinated architectures,

Discrete Event Dyn. Syst., vol. 23, no. 3, pp. 307-339, 2013

N. Busi and R. Gorrieri,

A survey on non-interference with Petri nets,

Lectures on Concurrency and Petri Nets. pp. 328-344_2004

Preliminaries ○●○ ○○ ○○○○○○

Main results

Example

Non-interference in PN systems

Two classes of users: high-level and low-level users

Main results

Example

Non-interference in PN systems

- Two classes of users: high-level and low-level users
- A leak of information occurs when a low-level user (the **intruder**) obtains information meant to be visible only to high-level users

Main results

Example

Non-interference in PN systems

- Two classes of users: high-level and low-level users
- A leak of information occurs when a low-level user (the intruder) obtains information meant to be visible only to high-level users
- Both high-level and low-level users know the system structure, but they interact with the system in two different ways (*views*)

Preliminaries ○●○ ○○ ○○○○○○

Main results

Example

Non-interference in PN systems

- Two classes of users: high-level and low-level users
- A leak of information occurs when a low-level user (the intruder) obtains information meant to be visible only to high-level users
- Both high-level and low-level users know the system structure, but they interact with the system in two different ways (*views*)
- If the high-level view of the system interferes with the low-level one, information leaks may occur

Prelin	ninaries
000	
0000	

Main results ○

Example

Conclusions

Non-interference properties

In a strong non-deterministic non-interference (SNNI) the firings of a high-level transition cannot enable any additional firing of any low-level transition

Prelimir	aries
000	
00000	

Main results ୍

Example

Conclusions

Non-interference properties

- In a strong non-deterministic non-interference (SNNI) the firings of a high-level transition cannot enable any additional firing of any low-level transition
- In a Bisimulation SNNI (BSNNI) the firing of a low-level transition cannot disable the firing of any high-level transition

Preliminaries	
000	
00000	

Main results

Example

Conclusions

Non-interference properties

- In a strong non-deterministic non-interference (SNNI) the firings of a high-level transition cannot enable any additional firing of any low-level transition
- In a Bisimulation SNNI (BSNNI) the firing of a low-level transition cannot disable the firing of any high-level transition
- More restrictive non-interference properties exist
 - Bisimulation non-deducibility on composition (BNDC)
 - Place-based non-interference (PBNI)

Preliminaries ○○○ ●○ ○○○○○ Main results

Example

Conclusions

Contribution of this work

Main results

Example

Conclusions

Contribution of this work

- to check SNNI in bounded PNs
- to check BSNNI in bounded PNs

Contribution of this work

- to check SNNI in bounded PNs
- to check BSNNI in bounded PNs
- The proposed approach relies on the algebraic representation of the PN dynamic
- The proposed conditions are based on the solution of Integer Linear Programming (ILP) problems

PIE UNI

Contribution of this work

- to check SNNI in bounded PNs
- to check BSNNI in bounded PNs
- The proposed approach relies on the algebraic representation of the PN dynamic
- The proposed conditions are based on the solution of Integer Linear Programming (ILP) problems
 - Off-the-shelf commercial software can be used (e.g., CPLEX, FICO-Xpress)

Preliminaries
00

Mair	ı resul

Main assumptions

Main assumptions

The net system is bounded

Prelimi	naries
00	
00000	

Main	resul

Main assumptions

Main assumptions

- The net system is bounded
- The *low-level* subnet (subnet *induced* by the low-level transitions) is acyclic

Preliminaries	
00	

Main	resu

Main assumptions

Main assumptions

- The net system is bounded
- The *low-level* subnet (subnet *induced* by the low-level transitions) is acyclic

Unnecessary assumptions

the net does not need to belong to any special class (ordinary or safe)

00

Notation

Example

- The P/T net: N = (P, L, H, Pre, Post), with $L \cap H = \emptyset$
- The incidence matrix: **C** = **Post Pre**
- The net system $S = \langle N, \boldsymbol{m}_0 \rangle$
- Projection of a string on the set of low-view transitions L

$$Pr_{L}(\varepsilon) = \varepsilon Pr_{L}(\sigma t) = \begin{cases} Pr_{L}(\sigma)t & \text{if } t \in L \\ Pr_{L}(\sigma) & \text{otherwise} \end{cases}$$

00 00000

Notation

Example

- The P/T net: N = (P, L, H, Pre, Post), with $L \cap H = \emptyset$
- The incidence matrix: **C** = **Post Pre**
- The net system $S = \langle N, \boldsymbol{m}_0 \rangle$
- Projection of a string on the set of low-view transitions L

$$Pr_{L}(\varepsilon) = \varepsilon$$

$$Pr_{L}(\sigma t) = \begin{cases} Pr_{L}(\sigma)t & \text{if } t \in L \\ Pr_{L}(\sigma) & \text{otherwise} \end{cases}$$

The projection $Pr_L(\cdot)$ can be extended in the usual way to sets of sequences, i.e., if $\Sigma \subseteq (L \cup H)^*$ then

$$Pr_L(\Sigma) = \{Pr_L(\sigma) \mid \sigma \in \Sigma\}$$
.

00 00000

Main results

Example

Conclusions

SNNI

Low-view trace equivalence

Two net systems S_1 and S_2 are said to be **low-view trace** equivalent, denoting it by

$$S_1 \stackrel{Pr}{\approx}_{tr} S_2$$
,

if and only if

$$\textit{Pr}_{\textit{L}_{1}}\left(\textit{\mathcal{L}}(\textit{N}_{1}\,,\textit{\textbf{m}}_{\textit{0}_{1}})\right) = \textit{Pr}_{\textit{L}_{2}}\left(\textit{\mathcal{L}}(\textit{N}_{2}\,,\textit{\textbf{m}}_{\textit{0}_{2}})\right)\,,$$

where $\mathcal{L}(N_i, \mathbf{m}_{0_i})$ is the language generate by the *i*-th net system.

000000

SNNI

Main results

0

Example

Conclusions

SNNI

Let $S = \langle N, m_0 \rangle$ be a net system and $S_L = \langle N_L, m_0 \rangle$ the system defined on the corresponding low-level subnet N_L . S is said to be **strong non-deterministic non-interference** if and only if

$$\mathcal{S} \stackrel{\mathsf{Pr}}{\approx}_{tr} \mathcal{S}_L$$
.

000000

SNNI

Main results

Example

Conclusions

SNNI

Let $S = \langle N, \boldsymbol{m}_0 \rangle$ be a net system and $S_L = \langle N_L, \boldsymbol{m}_0 \rangle$ the system defined on the corresponding low-level subnet N_L . S is said to be **strong non-deterministic non-interference** if and only if

 $\mathcal{S} \stackrel{\mathsf{Pr}}{\approx}_{tr} \mathcal{S}_L.$

In a SNNI system, the firings of a high-level transition cannot enable any *additional* firing of any low-level transition

Low-view bisimilarity

Let S_1 and S_2 be two net systems. A *low-view bisimulation* from S_1 to S_2 is a relation \mathcal{R} on $R(N_1, \mathbf{m}_{0_1}) \times R(N_2, \mathbf{m}_{0_2})$ such that if $(\mathbf{m}_1, \mathbf{m}_2) \in \mathcal{R}$, then for all $t \in \bigcup_{i=1,2} L_i \cup H_i$ it is:

- 1 if $m_1[t\rangle m'_1$ then there exist τ and m'_2 such that $m_2[\tau\rangle m'_2$, with $Pr_{L_1}(t) = Pr_{L_2}(\tau)$ and $(m'_1, m'_2) \in \mathcal{R}$;
- 2 if $m_2[t\rangle m'_2$ then there exist τ and m'_1 such that $m_1[\tau\rangle m'_1$, with $Pr_{L_2}(t) = Pr_{L_1}(\tau)$ and $(m'_1, m'_2) \in \mathcal{R}$.

 \mathcal{S}_1 and \mathcal{S}_2 are said to be low-view bisimilar, denoting it by

$$\mathcal{S}_1 \stackrel{Pr}{\approx}_{bis} \mathcal{S}_2$$
,

if and only if there exists a low-level bisimulation \mathcal{R} from \mathcal{S}_1 and \mathcal{S}_2 such that $(\boldsymbol{m}_{0_1}, \boldsymbol{m}_{0_2}) \in \mathcal{R}$.

BSNNI

Let $S = \langle N, m_0 \rangle$ be a net system and $S_L = \langle N_L, m_0 \rangle$ the system defined on the corresponding low-level subnet N_L . S is said to be **bisimulation strong non-deterministic non-interference** if and only if

 $\mathcal{S} \stackrel{\textit{Pr}}{pprox}_{\textit{bis}} \mathcal{S}_{\textit{L}}$.

0000

BSNNI

Let $S = \langle N, m_0 \rangle$ be a net system and $S_L = \langle N_L, m_0 \rangle$ the system defined on the corresponding low-level subnet N_L . S is said to be **bisimulation strong non-deterministic non-interference** if and only if

$$\mathcal{S} \stackrel{\mathsf{Pr}}{pprox}_{\mathit{bis}} \mathcal{S}_{\mathit{L}}$$
 .

- The class of SNNI systems includes the class of BSNNI systems, but the two classes are not equivalent
- In a BSNNI system the firing of a low-level transition cannot disable the firing of any high-level transition

Prelir	nina	aries	
0000			

Main results

Example

SNNI for bounded net systems

A bounded net system $S = \langle N, m_0 \rangle$ is SNNI if and only if the set of constraints

$$\begin{array}{l} \mathcal{M}_{0} + \mathcal{C}_{L} \cdot \hat{\sigma} \geq \operatorname{Pre} \cdot \mathbf{s}_{1} \\ \mathcal{M}_{0} + \mathcal{C}_{L} \cdot \hat{\sigma} + \mathcal{C} \cdot \mathbf{s}_{1} \geq \operatorname{Pre} \cdot \mathbf{s}_{2} \\ \cdots \\ \mathcal{M}_{0} + \mathcal{C}_{L} \cdot \hat{\sigma} + \mathcal{C} \cdot \sum_{i=1}^{J-1} \mathbf{s}_{i} \geq \operatorname{Pre} \cdot \mathbf{s}_{J} \\ \mathfrak{M}_{0} + \mathcal{C}_{L} \cdot \hat{\sigma} + \mathcal{C} \cdot \sum_{i=1}^{J} \mathbf{s}_{i} \geq \mathbf{0} \\ \sum_{i=1}^{J} \mathbf{s}_{i}(t) = 1 \end{array}$$

$$(1)$$

does not admit any solution $s_1, \ldots, s_J \in \mathbb{N}^{n_L+n_H}$ for all $t \in L$, with $J \ge \mathcal{J}_{\min}$ and $\hat{\sigma}$ being equal to the solution of the ILP problem

$$\max \boldsymbol{\sigma}(t)$$
s.t.
$$\begin{cases} \boldsymbol{m}_0 + \boldsymbol{C}_L \cdot \boldsymbol{\sigma} \ge \boldsymbol{0} \\ \boldsymbol{\sigma} \in \mathbb{N}^{n_L} \end{cases}$$
(2)

Prelimi	naries

- 14	n	ro	C 1	п 6	1
			9		5

BSNNI for bounded net systems

A SNNI bounded net system $\mathcal{S} = \langle N, m_0 \rangle$ is BSNNI if and only if the set of constraints

$$\begin{array}{l} \mathbf{m}_{0} \geq \mathbf{Pre} \cdot \mathbf{s}_{1} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \mathbf{s}_{1} \geq \mathbf{Pre} \cdot \mathbf{s}_{2} \\ \cdots \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{J-1} \mathbf{s}_{i} \geq \mathbf{Pre} \cdot \mathbf{s}_{J} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{J-1} \mathbf{s}_{i} \geq \mathbf{Pre} \cdot \mathbf{s}_{J} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{J} \mathbf{s}_{i} \geq \mathbf{0} \\ \sum_{j=1}^{J} \mathbf{s}_{i}(t_{j}) = \hat{\boldsymbol{\sigma}}(t_{j}) \\ \cdot \sum_{j=1}^{J} \mathbf{s}_{i}(t_{H}) = \sum_{j=1}^{J} \tilde{\boldsymbol{\sigma}}_{i}(t_{H}) \end{array}$$

$$(3)$$

admits a solution $s_1, \ldots, s_J \in \mathbb{N}^{n_L+n_H}$ for all $t_L \in L$ and $t_H \in H$, with $J \geq \mathcal{J}_{\min}$, $\hat{\sigma}$ being equal to the solution of (2), and $\bar{\sigma}_1, \ldots, \bar{\sigma}_J$ equal to the solution of the ILP problem

$$\max \sum_{i=1}^{J} \sigma_{i}(t_{H})$$
s.t.
$$\begin{cases}
\mathbf{m}_{0} \geq \mathbf{Pre} \cdot \sigma_{1} \\
\mathbf{m}_{0} + \mathbf{C} \cdot \sigma_{1} \geq \mathbf{Pre} \cdot \sigma_{2} \\
\cdots \\
\mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{J-1} \sigma_{i} \geq \mathbf{Pre} \cdot \sigma_{J} \\
\mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{J-1} \sigma_{i} \geq \mathbf{0} \\
\sigma_{i} \in \mathbb{N}^{n_{L}+n_{H}}, \quad i = 1, 2, \dots, J
\end{cases}$$
(4)

00000

Example (I)

Example

- By setting J = 5, the solution of (2) for the transition $l_1 \in L$ returns $\hat{\sigma}(l_1) = 1$
- The net system is NOT SNNI
- The time needed to solve a single instance of the ILP problem (2) and of the feasibility problem (1) is less the 500 μs using GLPK on a MacBook Pro equipped with an Intel® i5 at 3.1 GHz and with 16 GB of RAM

00

Example (II)

- By setting J = 5, in this case (1) does not admit any solution for any t ∈ L,
- The net system is SNNI
- The feasibility problem (3) does not admit a solution as well
- The firing of *I* prevents the firing of the two high level transitions
- The net system is NOT BSNNI
- About 2 ms are needed to check both SNNI and BSNNI on the considered hardware

Conclusions

Main	results

Example

Conclusions

The mathematical representation of Petri nets has been exploited to provide necessary and sufficient conditions to check both SNNI and BSNNI in bounded systems

Conclusions

Main	resu

Example

- The mathematical representation of Petri nets has been exploited to provide necessary and sufficient conditions to check both SNNI and BSNNI in bounded systems
- Possible extensions:
 - relaxation of the acyclicity assumption on the low-level subnet (submitted to the next CDC)
 - labeled net systems
 - non-interference enforcing (submitted to the next CDC)

Conclusions

Main	resu

Example

- The mathematical representation of Petri nets has been exploited to provide necessary and sufficient conditions to check both SNNI and BSNNI in bounded systems
- Possible extensions:
 - relaxation of the acyclicity assumption on the low-level subnet (submitted to the next CDC)
 - labeled net systems
 - **non-interference enforcing** (submitted to the next CDC)
 - algebraic characterization of opacity in PNs (WODES 2018)
 - F. Basile and G. De Tommasi, An algebraic characterization of language-based opacity in labeled Petri nets, WODES'18, Sorrento Coast, Italy, May 2018

Questions?

