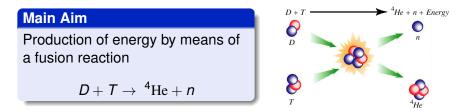


On plasma vertical stabilization at EAST tokamak

G. De Tommasi¹ Z. P. Luo² A. Mele¹ A. Pironti¹ B. J. Xiao² ¹Università degli Studi di Napoli Federico II/CREATE, Napoli, Italy ²Institute of Plasma Physics, Hefei, People's Republic of China

1st IEEE Conference on Control Technology and Applications August 27–30, 2017, Kohala Coast, Hawaii

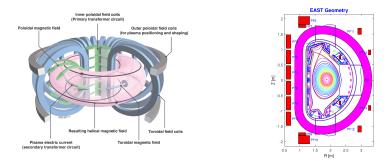
Outline


- The plasma vertical stabilization problem
- 2 Plasma-circuits linearized model
- Vertical stabilization at EAST with a SISO controller
- Vertical stabilization at EAST with a MIMO controller

Introduction

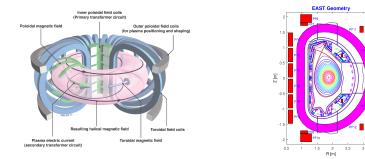
Nuclear Fusion for Dummies

Plasma


- High temperature and pressure are needed
- Fully ionised gas \mapsto Plasma
- Magnetic field is needed to confine the plasma

Introduction

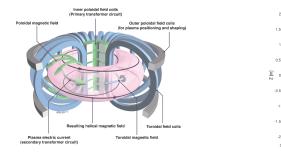
Plasma magnetic control


 In tokamaks, magnetic control of the plasma is obtained by means of magnetic fields produced by the external active coils

Introduction

Plasma magnetic control

- In tokamaks, magnetic control of the plasma is obtained by means of magnetic fields produced by the external active coils
- In order to obtain good performance, it is necessary to have a plasma with vertically elongated cross section ⇒ vertically unstable plasmas



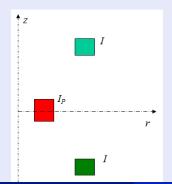
EAST Geometry

1.5

Introduction

Plasma magnetic control

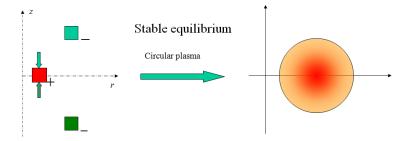
- In tokamaks, magnetic control of the plasma is obtained by means of magnetic fields produced by the external active coils
 - In order to obtain good performance, it is necessary to have a plasma with vertically elongated cross section ⇒ vertically unstable plasmas
 - It is important to maintain adequate plasma-wall clearance during operation



The plasma vertical instability

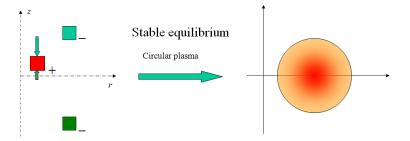
Simplified filamentary model

Consider the simplified electromechanical model with three conductive rings, two rings are kept fixed and in symmetric position with respect to the r axis, while the third can freely move vertically.


If the currents in the two fixed rings are equal, the vertical position z = 0 is an equilibrium point for the system.

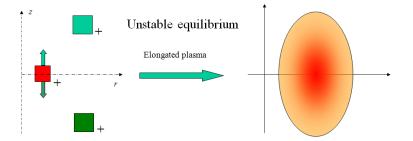
Stable equilibrium - 1/2

If $sgn(I_p) \neq sgn(I)$



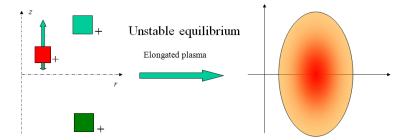
Stable equilibrium - 2/2

If $sgn(I_p) \neq sgn(I)$



Unstable equilibrium - 1/2

If $sgn(I_p) = sgn(I)$

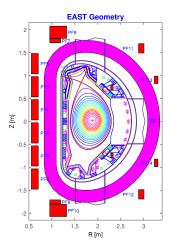


Unstable equilibrium - 2/2

If $sgn(I_p) = sgn(I)$

Vertical stabilization problem

 The plasma vertical instability reveals itself in the linearized model by the presence of an unstable eigenvalue in the dynamic system matrix



Vertical stabilization problem

 The plasma vertical instability reveals itself in the linearized model by the presence of an unstable eigenvalue in the dynamic system matrix

Objectives

- The VS is the essential magnetic control system!
- Vertically stabilize elongated plasmas in order to avoid disruptions
- Counteract the effect of disturbances
- It does not necessarily control vertical position but it *simply* stabilizes the plasma

Plasma linearized model

Plasma-circuits linearized model

Starting from the nonlinear lumped parameters model, the following plasma linearized state space model can be easily obtained:

$$\delta \dot{\mathbf{x}}(t) = \mathbf{A} \delta \mathbf{x}(t) + \mathbf{B} \delta \mathbf{u}(t) + \mathbf{E} \delta \dot{\mathbf{w}}(t), \tag{1}$$

$$\delta \mathbf{y}(t) = \mathbf{C} \,\,\delta \mathbf{I}_{PF}(t) + \mathbf{F} \delta \mathbf{w}(t), \tag{2}$$

where:

- A, B, E, C and F are the model matrices
- $\delta \mathbf{x}(t) = \left[\delta \mathbf{I}_{PF}^{T}(t) \ \delta \mathbf{I}_{e}^{T}(t) \ \delta I_{p}(t) \right]^{T}$ is the state space vector
- $\delta \mathbf{u}(t) = \left[\delta \mathbf{U}_{PF}^{T}(t) \mathbf{0}^{T} \mathbf{0} \right]^{T}$ are the input voltages variations
- $\delta \mathbf{w}(t) = \left[\delta \beta_{p}(t) \, \delta I_{i}(t)\right]^{T}$ are the β_{p} and I_{i} variations
- $\delta \mathbf{y}(t)$ are the output variations

The model (1)–(2) relates the variations of the PF currents to the variations of the outputs around a given equilibrium

Stabilizing the EAST plasma using a SISO controller - 1/2

$$\Sigma : \begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), & \mathbf{x}(0) = \mathbf{x}_0 \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) \end{cases}$$

• From Σ it is possible to derive the input-output relationship between the vertical speed $V_p(s)$ and the voltage applied to the in-vessel coil $U_{IC}(s)$ (the plasma)

$$W_{
ho}(s) = rac{V_{
ho}(s)}{U_{IC}(s)}$$

Stabilizing the EAST plasma using a SISO controller - 1/2

$$\Sigma : \begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), & \mathbf{x}(0) = \mathbf{x}_0 \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) \end{cases}$$

• From Σ it is possible to derive the input-output relationship between the vertical speed $V_{\rho}(s)$ and the voltage applied to the in-vessel coil $U_{IC}(s)$ (the plasma)

$$W_{p}(s) = rac{V_{p}(s)}{U_{lC}(s)}$$

• The IC power supply is modeled as

$$U_{\mathit{IC}}(s) = rac{e^{-\delta_{\mathit{PS}}s}}{1+s au_{\mathit{PS}}} \cdot U_{\mathit{IC}_{\mathit{ref}}}(s) \, ,$$

with $U_{lC_{ref}}(s)$ the voltage requested by the controller, $\delta_{\rho s} = 550 \ \mu s, \tau_{\rho s} = 100 \ \mu s$

Stabilizing the EAST plasma using a SISO controller - 1/2

$$\Sigma : \begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), & \mathbf{x}(0) = \mathbf{x}_0 \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) \end{cases}$$

• From Σ it is possible to derive the input-output relationship between the vertical speed $V_{\rho}(s)$ and the voltage applied to the in-vessel coil $U_{IC}(s)$ (the plasma)

$$W_p(s) = rac{V_p(s)}{U_{lC}(s)}$$

The IC power supply is modeled as

$$U_{\mathit{IC}}(s) = rac{e^{-\delta_{\mathit{PS}}s}}{1+s au_{\mathit{PS}}} \cdot U_{\mathit{IC}_{\mathit{ref}}}(s) \, ,$$

with $U_{lC_{ref}}(s)$ the voltage requested by the controller, $\delta_{\rho s} = 550 \ \mu s$, $\tau_{\rho s} = 100 \ \mu s$

 At EAST the plasma vertical speed V_ρ(s) is estimated by means of a derivative filter applied on Z_ρ(s), i.e.

$$V_{\mathcal{P}}(s) = rac{s}{1+s au_{\mathcal{V}}} \cdot Z_{\mathcal{P}}(s) \, ,$$

with $\tau_v = 1$ ms.

Stabilizing the EAST plasma using a SISO controller - 2/2

• Putting everything together we get

$$\mathcal{W}_{\mathit{plant}}(s) = rac{s}{(1+s au_{\mathit{ps}})} \cdot \mathcal{W}_{\mathit{p}}(s) \cdot e^{-\delta_{\mathit{ps}}s}\,,$$

Stabilizing the EAST plasma using a SISO controller - 2/2

• Putting everything together we get

$$\mathcal{W}_{\mathit{plant}}(s) = rac{s}{(1+s au_{
ho s})(1+s au_{
ho s})} \cdot \mathcal{W}_{
ho}(s) \cdot e^{-\delta_{
ho s}s}\,,$$

• The 550 μ s time delay of the IC power supply can be replaced by its third order Padé approximation

$$\frac{-(s-8444)(s^2-1.34\cdot 10^4s+8.54\cdot 10^7)}{(s+8444)(s^2+1.34\cdot 10^4s+8.54\cdot 10^7)}$$

Stabilizing the EAST plasma using a SISO controller - 2/2

• Putting everything together we get

$$\mathcal{W}_{\mathit{plant}}(s) = rac{s}{(1+s au_{
ho s})(1+s au_{
ho s})} \cdot \mathcal{W}_{
ho}(s) \cdot e^{-\delta_{
ho s}s}\,,$$

 The 550 µs time delay of the IC power supply can be replaced by its third order Padé approximation

$$\frac{-(s-8444)(s^2-1.34\cdot 10^4s+8.54\cdot 10^7)}{(s+8444)(s^2+1.34\cdot 10^4s+8.54\cdot 10^7)}$$

 The only way to vertically stabilize EAST with a SISO stable controller (SISO strong stabilizability) is to include an integral action on the vertical speed (i.e., the vertical position z_p should be fed back

13/19

Stabilizing EAST with a SISO controller

Stabilizing the EAST plasma using a SISO controller - 2/2

Putting everything together we get

$$\mathcal{W}_{\mathit{plant}}(s) = rac{s}{(1+s au_{
ho s})(1+s au_{
ho s})} \cdot \mathcal{W}_{
ho}(s) \cdot e^{-\delta_{
ho s}s} \, ,$$

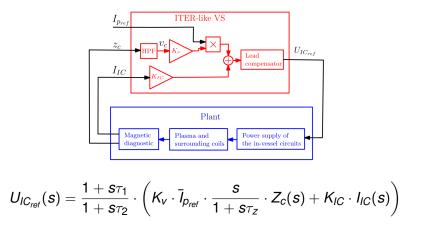
 The 550 µs time delay of the IC power supply can be replaced by its third order Padé approximation

$$\frac{-(s-8444)(s^2-1.34\cdot 10^4s+8.54\cdot 10^7)}{(s+8444)(s^2+1.34\cdot 10^4s+8.54\cdot 10^7)}$$

- The only way to vertically stabilize EAST with a SISO stable controller (SISO strong stabilizability) is to include an integral action on the vertical speed (i.e., the vertical position z_p should be fed back
- The reason is that the plasma unstable pole is *trapped* between two non minimum phase zeros

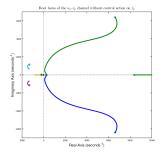
Parity-Interlacing-Property (PIP)

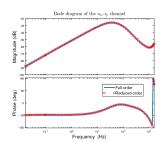
Theorem


A linear plant W(s) is strongly stabilizable if and only if the number of poles of W(s) between any pair of real zeros in the right-half-plane (RHP) is even.

D. C. Youla, J. J. Bongiorno Jr., C. N. Lu Single-loop feedback stabilization of linear multivariable dynamical plants *Automatica*, vol. 10, no. 2, pp. 159–173, Mar. 1974

Stabilizing with a MIMO controller - 1/3

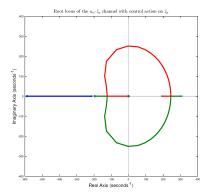




Stabilizing with a MIMO controller - 2/3

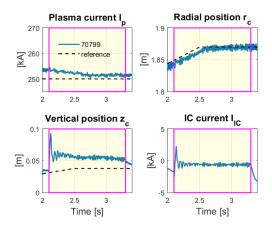
By closing the loop on $I_{lC}(s)$ we introduce another unstable pole in the $u_{ic} - \dot{z}_{p}$ channel

(a) Root locus of the $u_{ic} - \dot{z}_{\rho}$ channel, when the loop on the IC current is closed.


(b) Bode diagrams of the fullorder and reduced-order versions of transfer function for the $u_{ic} - \dot{z}_p$ channel, when the loop on the IC current is closed.

Stabilizing with a MIMO controller - 3/3

Closing a stable controller on the vertical speed is now possible to stabilize the EAST plasma


Figure : Root locus of the $u_{ic} - \dot{z}_p$ channel, when the loop on the IC current is also closed.

G. De Tommasi (Federico II)

Experimental results - Dec 2016

Figure : EAST pulse #70799. During this pulse the *ITER-like* VS was enabled from t = 2.1 s for 1.2 s, and only I_p and r_c were controlled, while z_c was left uncontrolled. This first test confirmed that the ITER-like VS vertically stabilized the plasma by controlling \dot{z}_c and I_{IC} , without the need to feed back the vertical position z_c .

G. De Tommasi (Federico II)

1st IEEE CCTA - Kohala Coast, Hawaii

Conclusions

 EAST cannot be vertically stabilized by means of a SISO stable controller that feeds back only the plasma speed z_p

- EAST cannot be vertically stabilized by means of a SISO stable controller that feeds back only the plasma speed z_p
- Stabilization can be achieved by a SISO controller on z_p with an integral action, i.e. by controlling also the plasma vertical position.

- EAST cannot be vertically stabilized by means of a SISO stable controller that feeds back only the plasma speed z_p
- Stabilization can be achieved by a SISO controller on *z_p* with an integral action, i.e. by controlling also the plasma vertical position.
 - Such a solution would couple the VS system with the plasma shape controller, preventing the deployment of advanced plasma shape control schemes that rely on such a decoupling

- EAST cannot be vertically stabilized by means of a SISO stable controller that feeds back only the plasma speed z_p
- Stabilization can be achieved by a SISO controller on *z_p* with an integral action, i.e. by controlling also the plasma vertical position.
 - Such a solution would couple the VS system with the plasma shape controller, preventing the deployment of advanced plasma shape control schemes that rely on such a decoupling
- The proposed MIMO controller allows to stabilize the plasma column at EAST without controlling the plasma vertical position

Conclusions

- EAST cannot be vertically stabilized by means of a SISO stable controller that feeds back only the plasma speed z_p
- Stabilization can be achieved by a SISO controller on *z_p* with an integral action, i.e. by controlling also the plasma vertical position.
 - Such a solution would couple the VS system with the plasma shape controller, preventing the deployment of advanced plasma shape control schemes that rely on such a decoupling
- The proposed MIMO controller allows to stabilize the plasma column at EAST without controlling the plasma vertical position

Thank you!