Automatic generation of formal models for diagnosability of DES

23rd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2018)

R. Nardone¹, G. De Tommasi¹, N. Mazzocca¹, A. Pironti¹, V. Vittorini¹

¹Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione Università degli Studi di Napoli Federico II, Italy

Torino - 6 September 2018

Outline

- 1 Motivation & Contribution
- 2 The railway benchmark
- 3 Diagnosability of Discrete Event Systems modeled with Petri nets
 - Notations & Definitions
 - Diagnosability via ILP programming
- 4 Model-driven generation approach

5 Conclusions

Model Driven Engineering

- Model-Driven Engineering (MDE) is a software engineering paradigm where models are the key entities to implement a software system throughout the development process
- MDE relies on
 - modeling languages to describe a system at different levels of abstraction
 - Model-to-Model (M2M) and Model-to-Text (M2T) transformations to create bridges between different abstraction levels and/or technological spaces→ to provide efficient and automated procedure to produce artifacts from other artifacts
- During the last two decades MDE approaches have been promoted in different fields
 - manufacturing systems
 - electronic systems
 - automotive
 - embedded and control systems

Model Driven Engineering & Formal Methods - 1/2

There is a research trend that integrates formal methods (FM) with MDE approaches, in order to take advantages from both

	Advantages	Disadvantages
MDE	 * User-friendly notation * Derivative artifacts for tool development * Automated model transformations 	* Lack of semantics * Unfit for model analysis
FΜ	* Rigorous mathematical foundation * Suitable for model analysis	* Hard notation * Lack of tools * Lack of integration

Figure: Gargantini et al., ICSEA2009.

Motivation & Contribution The railway benchmark

Diagnosability of PNs

MD Generation Approach

Conclusions

Model Driven Engineering & Formal Methods - 2/2

- Aim: definition of model-driven processes that can be applied to automatically generate and analyze formal models in many application domains
- This direction is hard to go, as FM development is a not fully engineered field, unlike software development, this despite the scientific community has been working for decades for a more widespread adoption of FM in industry and the need for FM has always been declared (especially in critical system development)

Contribution - 1/3

- A model-driven approach for the automatic feneration of FM for diagnosability in the discrete event systems (DES) context
- The ultimate goal of the proposal is to enable the analysis of critical systems by supporting modelers in the definition of a high-level specification of the system
- Starting from this specification, FM for different kinds of analysis can be generated by exploiting automatic transformation chains

Contribution - 2/3

- The case study of a railway benchmark is used to deal with diagnosability of fault in DES
- The technique proposed in Basile et al., Automatica 2012 that relies on Petri net (PN) models of the system is first used to assess diagnosability
- The proposed approach relies on the solution of Integer Linear Programming (ILP) problems
 - Although the approach proved to be numerically efficient, it cannot be used to detect non diagnosable faults
 - It cannot be used to assess diagnosability of all the faults in the considered benchmark

Contribution - 3/3

- This motivated the presented model-driven approach
- It enables the generation of models that use different FM wrt to PNs
- It can be used to apply different analysis techniques
- a Promela benchmark is derived to apply model checking techniques
- Dynamic STate Machine (DSTM) is used as source specification language *Benerecetti et al.*, SCP-2017, which permits to derive different target models

Motivation & Contribution The railway benchmark

Diagnosability of PNs

MD Generation Approach

Conclusions

The railway benchmark - 1/2

- Originally proposed in Leveson and Stolzy, IEEE TSE, and recently adopted in Boussif et al., DX2017 as a benchmark to assess the performance of different diagnosability algorithms
- modular PN model of a railway system with
 - n tracks
 - level crossing (LC) controller
 - the barriers

MD Generation Approach

Conclusions

The railway benchmark 2/2

- The following fault events are modeled by unobservable transitions
 - the *i*-th transition (t_{i,4}, ig) indicates that the *i*-th train enters the LC zone before the controller lowers the barriers;
 - the transition (t₆, bf) indicates a defect in the barriers that results in a premature raising.
- The proposed optimization-based approach cannot be used to assess non-diagnosability
- The fault $(t_{i,4}, ig)$ is not diagnosable when n > 1.
- Only (*t*₆, bf) will be considered for the comparison

Conclusions

MD Generation Approach

S = $\langle N, \boldsymbol{m}_0 \rangle$ is the net system, where N = (P, T, Pre, Post)

•
$$T = T_o \cup T_{uo}$$
, and $T_f \subset T_{uo}$

■ Given a firing count vector σ ∈ Nⁿ, we would like to consider only firings of either observable or unobservable transitions. The following notation is introduced:

$$oldsymbol{\sigma}_{|T_o} \in \mathbb{N}^n, ext{ with } oldsymbol{\sigma}_{|T_o}(t) = \left\{egin{array}{c} \sigma(t) & ext{if } t \in T_o \ 0 & ext{if } t \notin T_o \end{array}
ight.$$
 $oldsymbol{\sigma}_{|T_{uo}} \in \mathbb{N}^n, ext{ with } oldsymbol{\sigma}_{|T_{uo}}(t) = \left\{egin{array}{c} \sigma(t) & ext{if } t \in T_{uo} \ 0 & ext{if } t \notin T_{uo} \end{array}
ight.$

Labeled PNs

- $G = \langle N, \boldsymbol{m}_0, \lambda \rangle$ is a *labeled* Petri net (LPN) system
- $\lambda : T \mapsto E \cup \{\varepsilon\}$ is the *labeling function*
 - λ(·) assigns to each transition t ∈ T either an event in E or the silent event ε
 - $\lambda(t) = \varepsilon$ if $t \in T_{uo}$, while $\lambda(t) \neq \varepsilon$ otherwise

We denote with

$$T^{\alpha} = \left\{ t \in T \mid \lambda(t) = \alpha \right\},\,$$

the set of transitions associated with the same event $\alpha \in E$.

- w denotes a word of events associated with a sequence σ such that $w = \lambda(\sigma)$
- |w| denotes the length of w, while |w|_α denotes the number of occurrences of the event α in w

Diagnosability - Definition 1/3

- $L/u = \{v \in T^* \text{ s.t. } uv \in L\}$, is the post-language of *L* after the sequence of transitions *u*.
- $Pr: T^* \mapsto T_o^*$ is the usual projection that erases the unobservable transitions in a sequence *u*.
- The inverse projection operator Pr_L^{-1} is defined as

$$Pr_L^{-1}(r) = \left\{ u \in L \text{ s.t. } Pr(u) = r \right\}$$

• Let \dot{u} be the final transition of sequence u and define

$$\Psi(\hat{t}) = \left\{ u \in L \text{ s.t. } \dot{u} = \hat{t} \right\}$$

Diagnosability - Definition 2/3

Definition (Diagnosable fault)

A fault transition $t_f \in T_f$ is said to be diagnosable if

 $\exists h \in \mathbb{N} \text{ such that } \forall u \in \Psi(t_f) \text{ and } \forall v \in L/u \text{ with } |v| \ge h,$

it is

$$r \in Pr_L^{-1}(Pr(uv)) \Rightarrow t_f \in r$$
.

Diagnosability - Definition 3/3

Definition (*K*-diagnosable fault)

Given $t_f \in T_f$ and $\mathcal{K} \in \mathbb{N}$ (i.e., the maximum length of the postfix is given), t_f is said to be \mathcal{K} -diagnosable if

$$\forall u \in \Psi(t_f) \text{ and } \forall v \in L/u \text{ such that } |v| \geq \mathcal{K}$$
,

then it is

$$r \in Pr_L^{-1}(Pr(uv)) \Rightarrow t_f \in r$$
.

MD Generation Approach Conclusions

00000

$\mathcal K\text{-}diagnosability$ via solution of ILP problems 1/3

- Originally proposed in *Basile et al.*, Automatica-2012
- Gives a necessary and sufficient condition to check *K*-diagnosability in **bounded and live** labeled net systems
- Cannot be used to assess non-diagnosability

MD Generation Approach

Conclusions

17 of 26

\mathcal{K} -diagnosability via solution of ILP problems 2/3

- A labeled bounded and live net system $G = \langle N, \boldsymbol{m}_0, \lambda \rangle$
- A fault transition t_f
- A positive integer \mathcal{J} such that inequalities (1) (denoted with $\mathcal{F}(\boldsymbol{m}_0, \hat{t}, \mathcal{J}, \mathcal{K})$) describe the set

$$\mathcal{M}(t_f) = \left\{ \boldsymbol{m} \in \mathbb{N}^m \mid \left(\boldsymbol{m}_0 \left[\boldsymbol{u} \right\rangle \boldsymbol{m} \right) \bigwedge \left(t_f \notin \boldsymbol{u} \right) \right. \\ \left. \bigwedge \left(\boldsymbol{m}[t_f \right\rangle \right) \right\}$$

$$\begin{split} \mathbf{m}_{0} &\geq \mathbf{Pre} \cdot \mathbf{u}_{1} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \mathbf{u}_{1} \geq \mathbf{Pre} \cdot \mathbf{u}_{2} \\ \dots \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}-1} \mathbf{u}_{i} \geq \mathbf{Pre} \cdot \mathbf{u}_{\mathcal{J}} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{Pre} (\cdot, \hat{\imath}) \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} + \mathbf{C} (\cdot, \hat{\imath}) \geq \mathbf{Pre} \cdot \mathbf{v}_{1} \\ \mathbf{Pre} \cdot \mathbf{v}_{2} \\ \dots \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} + \mathbf{C} (\cdot, \hat{\imath}) + \mathbf{C} \cdot \sum_{j=1}^{\mathcal{K}-1} \mathbf{v}_{j} \geq \mathbf{Pre} \cdot \mathbf{v}_{\mathcal{K}} \\ \\ \sum_{i=1}^{\mathcal{J}} \mathbf{u} (\hat{\imath}) = 0 \\ \sum_{i=1}^{\mathcal{J}} \mathbf{u} (\hat{\imath}) = 0 \\ \| \sum_{i=1}^{\mathcal{K}} \mathbf{v}_{i} \|_{1} \geq \mathcal{K} \\ \end{split}$$
(1e)

MD Generation Approach

Conclusions

$\mathcal{K}\mbox{-diagnosability via solution of ILP problems 3/3}$

Theorem

Given a positive integer \mathcal{K} , t_f is \mathcal{K} -diagnosable if and only if there exist $3(\mathcal{J} + \mathcal{K})$ vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{\mathcal{J}}, \mathbf{v}_1, \ldots, \mathbf{v}_{\mathcal{K}}$, $\epsilon_1, \ldots, \epsilon_{\mathcal{J} + \mathcal{K}}, \mathbf{s}_1, \ldots, \mathbf{s}_{\mathcal{J} + \mathcal{K}} \in \mathbb{N}^n$ such that

$$\min_{s.t. \ \mathcal{LD}(\boldsymbol{m}_0, t_f, \mathcal{J}, \mathcal{K})} \sum_{r=1}^{\mathcal{J}+\mathcal{K}} \epsilon_r(t_f) \neq 0,$$

where the set $\mathcal{LD}(\mathbf{m}_0, t_f, \mathcal{J}, \mathcal{K})$ includes $\mathcal{F}(\mathbf{m}_0, \hat{t}, \mathcal{J}, \mathcal{K})$ and other similar linear constraints.

MD Generation Approach

Conclusions

00000

Numerical results

nr. of	nr.	nr. of tran-	\mathcal{K}	Time needed to assess
tracks	places	sitions		K-diagnosability (s)
1	12	10	7	3.2
2	15	14	13	7.3
3	18	18	19	15.7
4	21	22	25	30.8
5	24	26	31	56
6	27	30	37	95.1
7	30	34	43	148.5
8	33	38	49	226.2
9	36	42	55	331.6
10	39	46	61	468.8

Figure: Results of the numerical experiments run to assess diagnosability of the fault (t_6 , bf) by solving the ILP problems. The ILP problems have been solved by using FICOTM Xpress on a standard PC equipped with an Intel® i7 processor at 3.4 GHz, and 8 GB of RAM running Windows 10 at 64 bit.

- Motivation & Contribution The railway benchmark Diagnosability of PNs MD Generation Approach Conclusions
 - The proposed model-driven approach proposed in this paper relies on Dynamic STate Machine (DSTM) as specification language
 - Exploiting the modularity of the original PN model, three DSTM sub-models are provided (one for the railway controller, one for the barrier and one for a generic track
 - Multi-track benchmark is easily realized (instantiating as many track sub-models as needed).
 - Once the DSTM model of the railway traffic is defined, it is translated both into a PN model and a **Promela** model by defining and applying two M2M transformations
 - The transformation from DSTM to Petri Nets (DSTM2PN) has been defined as part of this preliminary work (more details in the paper

Proposed workflow

- In the DSTM domain it is possible to specify different control strategies and reflect them to the original PN domain
- In the Promela domain it is possible to perform test and verification that are not enabled in the original domain (check non diagnosability, by using diagnoser-based approaches such as the one proposed in *Sampath et al.*, IEEE TAC-1995 or *Cabasino et al.*, IEEE TAC-2012

MD Generation Approach

Conclusions

DSTM models

Figure: DSTM specification of the benchmark components.

Example of Promela model


```
proctype controller(pid parent; mtype initial;chan chTerm) {
do
:: (state == controller init && HasToken[ pid]==1) ->
:: (state == controller_waitEntSignal && HasToken[ pid]==1) ->
:: (state == controller waitExitSignal && HasToken[ pid]==1) ->
atomic{
    HasToken[ pid]=0;
    if
    :: (((TrackSignalIn?[]) && (TrackSignalOut?[]))) ->
         TrackSignalIn? ;
         TrackSignalOut? ;
         TrackGolmsg;
         state = controller waitExitSignal;
    :: (((!(TrackSignalIn?[ ])) && (TrackSignalOut?[ ]))) ->
         TrackSignalOut? ;
         GoUp!msg;
         state = controller sentUpSignal;
    fi:
:: (state == controller sentUpSignal && HasToken[ pid]==1) ->
}od unless {(chTerm?[1]); ... }
```

Figure: Promela Controller (excerpt).

MD Generation Approach

Conclusions

Conclusions

- A preliminary results related to the realization of a model-driven approach to perform analysis of DES have been presented
- The proposed approach permits to perform analysis of the same system at different levels of abstraction, by means automatic transformations that start from the DSTM high-level model
- The case study of the railway Petri net model has been considered

Future developments

The work can be extended in several directions:

- 1 The derived model can be used to investigate advantages (and disadvantages) of combining different modelling and analysis techniques (example: to compare the efficiency of the state space exploration performed at both Petri Net and Promela level in order to identify the best trade-offs between the usage of these models)
- 2 The transformational approach will be enhanced and extended to consider the asynchronous instantiation of machines and allow for exploiting all the high-level features of the DSTM formalism
- 3 Develop a complete model-driven analysis approach for diagnosability also allowing for partial specification, removing the necessity of defining the high-level models of all the components of the system under study (example: model just the controller and neither the barrier or the tracks, which could be represented by a set of constraints over the external environment)

Questions?

