RTFs in fusion experiments
A plasma control experts’ perspective

Future Improvements in Realtime Systems and Technologies (FIRST 2019)

Gianmaria De Tommasi
Email: detommas@unina.it

Cosylab - Ljubljana, Jan, 21st 2019
I am the only and solely responsible of the statements, opinions that you will see in this presentation.
I am the only and solely responsible of the statements, opinions that you will see in this presentation.

What is discussed in the next slides represents my point of view on the subject, which is based mainly on the experience that I did at JET and EAST, and working on International projects such as ITER and JT-60SA.
I am the only and solely responsible of the statements, opinions that you will see in this presentation.

What is discussed in the next slides represents my point of view on the subject, which is based mainly on the experience that I did at JET and EAST, and working on International projects such as ITER and JT-60SA.

If you think there should be someone to be blamed for what you will see, that person is me.
I am the only and solely responsible of the statements, opinions that you will see in this presentation.

What is discussed in the next slides represents my point of view on the subject, which is based mainly on the experience that I did at JET and EAST, and working on International projects such as ITER and JT-60SA.

If you think there should be someone to be blamed for what you will see, that person is me.

I need to thank all the colleagues together with whom I had the honor and pleasure to work, for everything you may find useful in this presentation.
1. Development real-time systems in fusion experiments
 - The main characters
 - Automatic code generation
 - Model validation

2. Standard control architecture for ITER-like machines

3. Conclusions & discussion points
The main characters
The CODAC expert (The Good), the Scientist (The Bad) and the Control Expert (The Ugly)
The CODAC expert (The Good), the Scientist (The Bad) and the Control Expert (The Ugly)

- **The CODAC expert**
 - knows very well the RTF (as developer or/and client)
 - has a good knowledge of the (real-time implementation of) control and diagnostic algorithms
The CODAC expert (The Good), the Scientist (The Bad) and the Control Expert (The Ugly)

- **The CODAC expert**
 - knows very well the RTF (as developer or/and client)
 - has a good knowledge of the (real-time implementation of) control and diagnostic algorithms

- **The Scientist**
 - is (one of) the author(s) of the control or diagnostic algorithms
 - has some knowledge about RTF (sometimes a little bit more, sometimes little bit less)
The CODAC expert (The Good), the Scientist (The Bad) and the Control Expert (The Ugly)

- **The CODAC expert**
 - knows very well the RTF (as developer or/and client)
 - has a good knowledge of the (real-time implementation of) control and diagnostic algorithms

- **The Scientist**
 - is (one of) the author(s) of the control or diagnostic algorithms
 - has some knowledge about RTF (sometimes a little bit more, sometimes little bit less)

- **The Control Expert**
 - works in a research institute or university
 - sometimes he/she does not have a strong knowledge of the domain
 - many times he/she knows nothing about RTF...
 - . . .but he/she claims to be THE expert
The Control Expert

The three *roles* could overlap
The three roles could overlap
Let us focus on The Ugly…
The three *roles* could overlap

Let us focus on **The Ugly**...

... The Control Expert

- works in Matlab/Simulink environment
The Control Expert

- The three roles could overlap
- Let us focus on The Ugly . . .
- . . . The Control Expert
 - works in Matlab/Simulink environment
 - this is not necessarily true if we are dealing with a Diagnostic Expert
 (more on this later on)
The three *roles* could overlap

Let us focus on **The Ugly** . . .

. . . The Control Expert

- works in Matlab/Simulink environment
 - this is not necessarily true if we are dealing with a *Diagnostic Expert* (more on this later on)
 - thinks that (his/her) control algorithm is the most important thing in the world (kind of Πανάκεια)
The three *roles* could overlap

Let us focus on **The Ugly** . . .

. . . **The Control Expert**

- works in Matlab/Simulink environment
 - this is not necessarily true if we are dealing with a *Diagnostic Expert* (more on this later on)
- thinks that (his/her) control algorithm is the most important thing in the world (kind of Πανάκεια)
- does not want to *loose time* on the details of the RTF infrastructure/architecture
Since we are dealing with International projects, we cannot kill The Ugly.
Since we are dealing with International projects, we cannot kill The Ugly

We need to learn how to leave with The Ugly, minimising the effort needed to get his amazing control algorithm
To confine (as much as possible) the Ugly

The (obvious) **plug-in** solution

- Was not so common in the fusion community (at the beginning of the new millennium)

Some references (some very old)

- G. De Tommasi et al.,
 A flexible software for real-time control in nuclear fusion experiments

- A. Neto et al.,
 MARTe: A Multiplatform Real-Time Framework

- W. Treutberger et al.,
 ASDEX Upgrade Discharge Control System – A real-time plasma control framework
To confine (as much as possible) the Ugly

Some references (some very old)

- G. De Tommasi et al.,
 A flexible software for real-time control in nuclear fusion experiments
 Contr. Eng. Pract., 2006

- A. Neto et al.,
 MARTe: A Multiplatform Real-Time Framework

- W. Treutteer et al.,
 ASDEX Upgrade Discharge Control System – A real-time plasma control framework

The (obvious) **plug-in** solution

- Was not so common in the fusion community (at the beginning of the new millennium)

- First version of the JET RTF in 2003... then **GAMs** in MARTe...
To confine (as much as possible) the Ugly

Some references (some very old)

- G. De Tommasi et al., A flexible software for real-time control in nuclear fusion experiments *Contr. Eng. Prac.*, 2006

The (obvious) **plug-in** solution

- Was not so common in the fusion community (at the beginning of the new millennium)
- First version of the JET RTF in 2003... then **GAMs** in MARTe...
- ... *ApplicationProcess* in ASDEX DCS...
To confine (as much as possible) the Ugly

The (obvious) **plug-in** solution

- Was not so common in the fusion community (at the beginning of the new millennium)
- First version of the JET RTF in 2003... then **GAMs** in MARTe...
- ... **ApplicationProcess** in ASDEX DCS...
- ... there exists some **separation** also in the GA PCS (even if not documented in papers)...

Some references (some very old)

- G. De Tommasi et al.,
 A flexible software for real-time control in nuclear fusion experiments

- A. Neto et al.,
 MARTe: A Multiplatform Real-Time Framework

- W. Treutterer et al.,
 ASDEX Upgrade Discharge Control System – A real-time plasma control framework
To confine (as much as possible) the Ugly

Some references (some very old)

The (obvious) **plug-in** solution

- Was not so common in the fusion community (at the beginning of the new millennium)
- First version of the JET RTF in 2003... then *GAMs* in MARTe...
- ... *ApplicationProcess* in ASDEX DCS...
- ... there exists some *separation* also in the GA PCS (even if not documented in papers)...
- ... similar concept in the ITER RTF
A **Real-time Application Plug-in** that can be used:

- to perform offline validation against a plant model
- to perform real-time validation with hardware-in-the-loop
- to run the real-time system on the plant
Automatic code generation

Figure: Old idea (never implemented, AFAIK).

Ok, good, problem solved! The Ugly can be isolated

- Automatic code generation
Automatic code generation

Figure: Old idea (never implemented, AFAIK).

Ok, good, problem solved! The Ugly can be isolated

Automatic code generation

Commonly used in many fields: rapid prototyping (dSpace, NI, Mathworks, *ldots*), control education (Quanser), automotive, railway (ATO in the future?). . . .

Figure: Taken from Felici et al., FED, 2014.
Ok, good, problem solved! The Ugly can be isolated

- Automatic code generation
- Commonly used in many fields: rapid prototyping (dSpace, NI, Mathworks, Idots), control education (Quanser), automotive, railway (ATO in the future?). . . .

- IMHO, TCV is the state of the art in the community
Automatic code generation

Ok, good, problem solved! The Ugly can be isolated

- Automatic code generation
- Commonly used in many fields: rapid prototyping (dSpace, NI, Mathworks, Idots), control education (Quanser), automotive, railway (ATO in the future?). . . .

- IMHO, TCV is the state of the art in the community (but I am not sure that everything can be extended to ITER!)

Figure: Old idea (never implemented, AFAIK).

Figure: Taken from Felici et al., FED, 2014.
Automatic code generation is one of the option included in the ITER PCS simulation platform (PCSSP)
Automatic code generation is one of the options included in the ITER PCS simulation platform (PCSSP).

So far, little effort has been put on this aspect.

The needed effort is not negligible.
Automatic code generation is one of the options included in the ITER PCS simulation platform (PCSSP).

So far, little effort has been put on this aspect.

The needed effort is not negligible.

Generally, the effort to develop a robust PCS simulation platform for ITER is not negligible.
Automatic code generation is one of the options included in the ITER PCS simulation platform (PCSSP).

So far, little effort has been put on this aspect.

The needed effort is not negligible.

Generally, the effort to develop a robust PCS simulation platform for ITER is not negligible.

The development of such a platform should not be left only to The Ugly(ies) (remember the disclaimer!)

More references

F. Felici et al.
Development of real-time plasma analysis and control algorithms for the TCV tokamak using Simulink

M. L. Walker et al.,
A simulation environment for ITER PCS development
It works mainly for (simple) control algorithms

- what about control algorithms that requires online solution of optimization problems?
- what about support functions (ITER jargon for diagnostic functions et similia)?

MPC example

S. Gerkšič et al.
Model predictive control of ITER plasma current and shape using singular value decomposition
Fus. Eng. Des., 2018

M. Perne et al.,
Soft inequality constraints in gradient method and fast gradient method for quadratic programming
Opt. Eng., 2018
As far as support functions are concerned

- legacy codes, usually written in Fortran, C, C++
As far as *support functions* are concerned

- legacy codes, usually written in Fortran, C, C++
- plasma equilibrium codes: EFIT, PEFIT, CCS, LIOQE, …
- plasma boundary reconstruction codes: XLOC, …
As far as support functions are concerned
- legacy codes, usually written in Fortran, C, C++
- plasma equilibrium codes: EFIT, PEFIT, CCS, LIOQE, ...
- plasma boundary reconstruction codes: XLOC, ...

When dealing with The Ugly, for these modules (but even for existing control algorithms), it is important also to consider the inverse process (wrt automatic code generation)
As far as support functions are concerned
- legacy codes, usually written in Fortran, C, C++
- plasma equilibrium codes: EFIT, PEFIT, CCS, LIOQE, ...
- plasma boundary reconstruction codes: XLOC, ...

When dealing with The Ugly, for these modules (but even for existing control algorithms), it is important also to consider the inverse process (wrt automatic code generation)

The inverse process is useful (and should be included in the RTF, see also Anze’s presentation)
- to validate coding, when automatic code generation is not available
As far as *support functions* are concerned

- legacy codes, usually written in Fortran, C, C++
- plasma equilibrium codes: EFIT, PEFIT, CCS, LIOQE, …
- plasma boundary reconstruction codes: XLOC, …

When dealing with The Ugly, for these *modules* (but even for existing control algorithms), it is important also to consider the **inverse process** (wrt automatic code generation)

The *inverse process* is useful (and should be included in the RTF, see also *Anze’s presentation*)

- to validate coding, when automatic code generation is not available
- to trust automatic code generation, when available
The inverse process

Embedding RTF code into Simulink

- In most of the cases to check the real-time version of the controller it is convenient to run it against the plant model in the Simulink environment.
- The real-time version and the Simulink version of the system can be run in parallel in order to perform the validation.
Example: commissioning of the ITER-like VS at EAST

3. Commissioning procedure

3.1 Commissioning of the voltage-driven VS system
This section describes the commissioning procedure for the voltage-driven VS system.

3.1.1 Pre-requisites for the voltage-driven VS commissioning
The following systems/services are required and must be successfully commissioned before the VS commissioning:

1. PFC current control system.
2. Plasma current control system.

Furthermore:

4. The reference pulse 52444 should be reproduced under the current machine configuration.
5. The code that implements the control algorithm (1) should be validated against its Simulink version.

Item 5 will be performed once the CREATE team will be onsite.

Figure: Excerpts of the ITER-like VS commissioning procedure.

\[
U_{IC_{ref}}(s) = \frac{1 + s \tau_1}{1 + s \tau_2} \cdot \left(K_v \cdot I_{p_{ref}} \cdot \frac{s}{1 + s \tau_z} \cdot Z_c(s) + K_{IC} \cdot I_{IC}(s) \right)
\]
This issue is not really related to The Ugly, but it is somehow linked to automatic code generation.
Model-driven design

- This issue is not really related to The Ugly, but it is somehow linked to automatic code generation.
- Once a library of reusable blocks is available within the RTF, it may be useful to have a model-driven design tool.
This issue is not really related to The Ugly, but it is somehow linked to automatic code generation.

Once a library of reusable blocks is available within the RTF, it may be useful to have a model-driven design tool.

Example: model your system in SysML and automatically generate the RTF configuration.

G. De Tommasi et al.,
Modeling of MARTE-Based Real-Time Applications With SysML
IEEE Trans. Ind. Inf., 2013
The Control Expert designs the control algorithms using a model-based approach.
The Control Expert designs the control algorithms using a model-based approach.

Control-oriented models are (simple) linear and time-invariant; the overall plant model is obtained exploiting simplifying assumptions. These models are indeed used for the design of the control algorithm.

The inverse process may help also in this case.

The inverse process is useful also to validate the control-oriented models.
The Control Expert’s modelling tools

- The Control Expert designs the control algorithms using a model-based approach.

- Control-oriented models are (simple) linear and time-invariant; the overall plant model is obtained exploiting simplifying assumptions.
 - These models are indeed used for the design of the control algorithm.
 - In order to assess (robust) performance, a more complex model is desirable, which takes into account the peculiarities (nonlinearities) of the diagnostic and/or actuators.
The Control Expert’s modelling tools

- **The Control Expert** designs the control algorithms using a model-based approach.

- **Control-oriented models** are (simple) linear and time-invariant; the overall plant model is obtained exploiting simplifying assumptions.
 - These models are indeed used for the design of the control algorithm.
 - In order to assess (robust) performance, a more complex model is desirable, which takes into account the peculiarities (nonlinearities) of the diagnostic and/or actuators.
 - The **inverse process** may help also in this case.
The Control Expert’s modelling tools

- **The Control Expert** designs the control algorithms using a model-based approach.

- **Control-oriented models** are (simple) linear and time-invariant; the overall plant model is obtained exploiting simplifying assumptions:
 - These models are indeed used for the design of the control algorithm.
 - In order to assess (robust) performance, a more complex model is desirable, which takes into account the *peculiarities* (nonlinearities) of the diagnostic and/or actuators.
 - The *inverse process* may help also in this case.

- **The inverse process** is useful also to validate the control-oriented models.
In order to take into account the nonlinear effect of diagnostics and/or actuators it is useful to provide the Control Expert with a Simulink version of specific functions that run on the real system.
In order to take into account the nonlinear effect of diagnostics and/or actuators it is useful to provide the Control Expert with a Simulink version of specific functions that run on the real system

- Usually requires *ad hoc* coding
In order to take into account the nonlinear effect of diagnostics and/or actuators it is useful to provide the **Control Expert** with a Simulink version of specific functions that run on the real system.

- **Usually requires ad hoc coding**
- **It would be nice to have the inverse option in the RTF**
The JET XLOC case

- Plasma shape controller designed on a linear approximation of the \textit{gaps} behavior
- Validation in closed-loop using the real-time code for plasma boundary reconstruction \textit{wrapped} into a S-function
- Some work needed, but ok (modularity and separation of MARTe were exploited)
Objective: preliminary assessment of the effect of the measurement noise on plasma boundary reconstruction

QST colleagues provided the Cauchy Condition Surface (CCS) code

Fortran compiled as an executable that runs only on Linux and I/O with text files

Closed-loop simulations take ages! KO

A2. How to run CCS

Binary of CCS: ccs_sa
Sample shell script for running binary of CCS: run.csh

[If you implement CCS with CREATE]
1. CREATE make “fort.70” in reference to inner plasma equilibrium and “fort.21” provided by QST magnetic controller
2. Run “ccs_sa”
3. CREATE read controlled variables and so on from “fort.71” which is output of binary of CCS
Although they are simple, the linear models need to be validated and tuned on the experiment. This experimental validation is an important step to be carried out before starting the design of advanced model-based controller.
Although they are simple, the linear models need to be validated and tuned on the experiment.

This experimental validation is an important step to be carried out before starting the design of *advanced model-based controller*.

Advanced controller = whatever *more* than a PI experimentally tuned.
Although their are simple, the linear models need to be validated and *tuned* on the experiment.

This experimental validation is an important step to be carried out before starting the design of *advanced model-based controller*.

- **Advanced controller = whatever *more* than a PI experimentally tuned**

- Both *open-loop* and *closed-loop* validations are needed.
Although their are simple, the linear models need to be validated and *tuned* on the experiment.

This experimental validation is an important step to be carried out before starting the design of *advanced model-based controller*.

- Advanced controller = whatever *more* than a PI experimentally tuned

Both *open-loop* and *closed-loop* validations are needed.

Closed-loop validation is important when dealing with unstable plants.
In order to validate/tune the CREATE plasma/tokamak linear model a campaign of simulations was carried out
In order to validate/tune the CREATE plasma/tokamak linear model a campaign of simulations was carried out.

Since EAST colleagues did not provide a Simulink version of the existing controllers...

1. Back engineering of the existing magnetic control system
 A LOT OF TIME
2. Tuning of the model
3. Design of new controllers
4. Something not working because changes have been made in the EAST PCS (new control modes, new bumpless transfer, . . .)? → go back to 1
Back engineering the EAST magnetic control system

Q. P. Yuan et al.
Plasma current, position and shape feedback control on EAST
Nucl. Fus., 2013

A. Castaldo et al.
Simulation suite for plasma magnetic control at EAST tokamak
Fus. Eng. Des., 2018
Open-loop model validation

Fig. 6. Comparison between simulated (green solid line) and experimental (blue solid line) plasma Lower X-point radial (left figure) and vertical (right figure) position for pulse #69449. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 7. Comparison between simulated (green solid line) and experimental (blue solid line) plasma Upper X-point radial (left figure) and vertical (right figure) position for pulse #69449. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
Fast Z controller (open loop)

Fig. 12. Fast Z controller (including the high pass filter) output for pulse #74104. The small discrepancies are due to a subsampling of the experimental feedback signal.

A. Castaldo et al.
Simulation suite for plasma magnetic control at EAST tokamak
Fus. Eng. Des., 2018
Closed-loop EAST controller validation

![Graph showing experimental magnetic profile](image)

Fig. 14. Simulated and experimental X-point position for pulse #74104, obtained with the existing EAST controller. The experimental signal is shown in blue, while the simulated one is in red. The dashed black line shows the reference signal. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

A. Castaldo et al.

Simulation suite for plasma magnetic control at EAST tokamak

Fus. Eng. Des., 2018

Gianmaria De Tommasi – detommas@unina.it
A. Mele et al.

MIMO shape control at EAST tokamak: simulations and experiments

30th Symposium on Fusion Technology (SOFT), 2018

Gianmaria De Tommasi – detommas@unina.it
- RTFs are one part of the whole story
- There are also control algorithms and support functions
RTFs are one part of the whole story

There are also control algorithms and support functions

Why CODAC Experts (The Good) should leave the fun only to the Control Experts (The Ugly)?
RTFs are one part of the whole story

There are also control algorithms and support functions

Why CODAC Experts (The Good) should leave the fun only to the Control Experts (The Ugly)?

Standard control algorithms (and support functions) should come together with the RTF (GA PCS approach)
- RTFs are one part of the whole story
- There are also control algorithms and support functions
- **Why CODAC Experts (The Good) should leave the fun only to the Control Experts (The Ugly)?**
- Standard control algorithms (and support functions) should come together with the RTF (GA PCS approach)
- The Control Expert can still play with advanced control algorithms (The Ugly becomes The Man With The Rifle)
A magnetic control architecture able to operate the plasma for an entire duration of the discharge, from the initiation to plasma ramp-down.
A magnetic control architecture able to operate the plasma for an entire duration of the discharge, from the initiation to plasma ramp-down

Machine-agnostic architecture (aka *machine independent* solution)

Model-based control algorithms

→ the design procedures relies on (validated) control-oriented models for the response of the plasma and of the surrounding conductive structures

The proposal is based on the JET experience
A magnetic control architecture able to operate the plasma for an entire duration of the discharge, from the initiation to plasma ramp-down

Machine-agnostic architecture (aka *machine independent* solution)

Model-based control algorithms

→ the design procedures relies on (validated) control-oriented models for the response of the plasma and of the surrounding conductive structures

The proposal is based on the JET experience

The architecture has been proposed for ITER & JT-60SA (& DEMO) and has been partially deployed at EAST (ongoing activity)

G. De Tommasi

Plasma Magnetic Control in Tokamak Devices

J. Fus. Energy, 2018
A possible architecture - 1/2

Plasma magnetic control system
Include *standard* algorithms for each controllers of the architecture

- Current decoupling controller
- Vertical stabilization controller
- Plasma current controller
- Plasma shape controller
The Control Expert is happy if he/she can easily plug his/her own stuff into RTF without caring too much about the details.

The Control Expert is even more happy if he/she get easily get pieces of an existing system and run them into his/her simulation environment.
The Control Expert is happy if he/she can easily plug his/her own stuff into RTF without caring too much about the details.

The Control Expert is even more happy if he/she get easily get pieces of an existing system and run them into his/her simulation environment.

These concepts, although they might seem obvious, they are not!
The Control Expert is happy if he/she can easily plug his/her own stuff into RTF without caring too much about the details.

The Control Expert is even more happy if he/she get easily get pieces of an existing system and run them into his/her simulation environment.

These concepts, although they might seem obvious, they are not!

Example: in my view EU contribution to JT-60SA may be affected by the lack of these (and other) features.
The Control Expert is happy if he/she can easily plug his/her own stuff into RTF without caring too much about the details.

The Control Expert is even more happy if he/she get easily get pieces of an existing system and run them into his/her simulation environment.

These concepts, although they might seem obvious, they are not!

Example: in my view EU contribution to JT-60SA may be affected by the lack of these (and other) features.

It may be the case to invest not only on RTFs, but also on standard control algorithms (as GA PCS).
At the end...

...I hope that The Ugly will appear a little less ugly to The Good
RTFs in fusion experiments
A plasma control experts’ perspective

Future Improvements in Realtime Systems and Technologies (FIRST 2019)

Gianmaria De TOMMASI
Email: detommas@unina.it

Cosylab - Ljubljana, Jan, 21st 2019

Thank you!