M. Ariola¹ G. De Tommasi² F. Amato³

¹DI, Università degli Studi di Napoli Parthenope, Italy
 ²DIETI, Università degli Studi di Napoli Federico II, Italy
 ³DMSC, Università degli Studi di Catanzaro Magna Græcia, Italy

14th IEEE International Conference on Networking, Sensing and Control, Calabria, Italy, 2017

-Outline

Outline

1 Preliminaries

- The lateral collision avoidance problem
- Yaw lateral bicycle dynamics

2 Structured Input-Output Finite-Time Stability

- Definition
- Main result

3 Example

Simulation results

4 Conclusions & Future works

- Preliminaries
 - The lateral collision avoidance problem

Vehicle lateral collision avoidance

- The primary goal of collision avoidance system is to move the vehicle as fast as possible from an unsafe region to a safe one
- Once the vehicle is within the safe region a nominal controller can take over
- In our work we proposed a strategy based on control over a *finite-time horizon* for vehicle lateral collision avoidance
 - The finite-time strategy is used to bring the vehicle from the unsafe to the safe region
 - The proposed control approach is based only on steering (no braking)
 - The single vehicle case (subject to external disturbances) is considered in this work

- Preliminaries
 - The lateral collision avoidance problem

Vehicle lateral collision avoidance

- The primary goal of collision avoidance system is to move the vehicle as fast as possible from an unsafe region to a safe one
- Once the vehicle is within the safe region a nominal controller can take over
- In our work we proposed a strategy based on control over a *finite-time horizon* for vehicle lateral collision avoidance
 - The finite-time strategy is used to bring the vehicle from the unsafe to the safe region
 - The proposed control approach is based only on steering (no braking)
 - The single vehicle case (subject to external disturbances) is considered in this work

- Preliminaries
 - The lateral collision avoidance problem

Vehicle lateral collision avoidance

- The primary goal of collision avoidance system is to move the vehicle as fast as possible from an unsafe region to a safe one
- Once the vehicle is within the safe region a nominal controller can take over
- In our work we proposed a strategy based on control over a *finite-time horizon* for vehicle lateral collision avoidance
 - The finite-time strategy is used to bring the vehicle from the unsafe to the safe region
 - The proposed control approach is based only on steering (no braking)
 - The single vehicle case (subject to external disturbances) is considered in this work

- Preliminaries
 - └─ The lateral collision avoidance problem

Vehicle lateral collision avoidance

- The primary goal of collision avoidance system is to move the vehicle as fast as possible from an unsafe region to a safe one
- Once the vehicle is within the safe region a nominal controller can take over
- In our work we proposed a strategy based on control over a *finite-time horizon* for vehicle lateral collision avoidance
 - The finite-time strategy is used to bring the vehicle from the unsafe to the safe region
 - The proposed control approach is based only on steering (no braking)
 - The single vehicle case (subject to external disturbances) is considered in this work

- Preliminaries
 - The lateral collision avoidance problem

Vehicle lateral collision avoidance

- The primary goal of collision avoidance system is to move the vehicle as fast as possible from an unsafe region to a safe one
- Once the vehicle is within the safe region a nominal controller can take over
- In our work we proposed a strategy based on control over a *finite-time horizon* for vehicle lateral collision avoidance
 - The finite-time strategy is used to bring the vehicle from the unsafe to the safe region
 - The proposed control approach is based only on steering (no braking)
 - The single vehicle case (subject to external disturbances) is considered in this work

- Preliminaries
 - └─ Yaw lateral bicycle dynamics

The bicycle model

- The behaviour of the vehicle is described by a 2-DoF model of a *bicycle* (a two-wheel model)
- The bicycle model is commonly used to describe the behaviour of a four-wheel vehicle, when the differences between the running condition of the left and the right side can be ignored
- The bicycle model describes both the lateral and yaw motions of the two-wheel vehicle (no roll)

- Preliminaries
 - └─ Yaw lateral bicycle dynamics

The bicycle model

- The behaviour of the vehicle is described by a 2-DoF model of a *bicycle* (a two-wheel model)
- The bicycle model is commonly used to describe the behaviour of a four-wheel vehicle, when the differences between the running condition of the left and the right side can be ignored
- The bicycle model describes both the lateral and yaw motions of the two-wheel vehicle (no roll)

- Preliminaries
 - └─ Yaw lateral bicycle dynamics

The bicycle model

- The behaviour of the vehicle is described by a 2-DoF model of a *bicycle* (a two-wheel model)
- The bicycle model is commonly used to describe the behaviour of a four-wheel vehicle, when the differences between the running condition of the left and the right side can be ignored
- The bicycle model describes both the lateral and yaw motions of the two-wheel vehicle (no roll)

- Preliminaries

└─ Yaw lateral bicycle dynamics

Bicycle linear model

Letting

$$x = \begin{pmatrix} \dot{y} & \omega & \psi & Y \end{pmatrix}^T, \quad u = \delta$$

where

- *y* is the lateral velocity
- ψ and $\omega = \dot{\psi}$ are the yaw and yaw rate
- Y is the lateral displacement of the CoG (wrt the ground-fixed axes)
- δ is the steering angle of the front wheel (control input)

Bicycle linear model

$$\dot{x} = \begin{pmatrix} -\frac{C_{\alpha f} + C_{\alpha r}}{Mv_{x}} & -\frac{C_{\alpha f} l_{f} - C_{\alpha r} l_{r}}{Mv_{x}} - v_{x} & 0 & 0\\ -\frac{C_{\alpha f} l_{f} - C_{\alpha r} l_{r}}{lv_{x}} & -\frac{C_{\alpha f} l_{f}^{2} + C_{\alpha r} l_{r}^{2}}{lv_{x}} & 0 & 0\\ 0 & 1 & 0 & 0\\ 1 & 0 & v_{x} & 0 \end{pmatrix} x + \begin{pmatrix} \frac{C_{\alpha f}}{M} \\ \frac{C_{\alpha f} l_{f}}{l} \\ 0\\ 0 \end{pmatrix} u$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Preliminaries

└─ Yaw lateral bicycle dynamics

Bicycle linear model

Letting

$$x = \begin{pmatrix} \dot{y} & \omega & \psi & Y \end{pmatrix}^T, \quad u = \delta$$

where

- y is the lateral velocity
- ψ and $\omega=\dot{\psi}$ are the yaw and yaw rate
- Y is the lateral displacement of the CoG (wrt the ground-fixed axes)
- δ is the steering angle of the front wheel (control input)

Bicycle linear model

$$\dot{x} = \begin{pmatrix} -\frac{C_{\alpha f} + C_{\alpha r}}{M_{\nu_{x}}} & -\frac{C_{\alpha f} l_{f} - C_{\alpha r} l_{r}}{M_{\nu_{x}}} - \nu_{x} & 0 & 0\\ -\frac{C_{\alpha f} l_{f} - C_{\alpha r} l_{r}}{l_{\nu_{x}}} & -\frac{C_{\alpha f} l_{f}^{2} + C_{\alpha r} l_{r}^{2}}{l_{\nu_{x}}} & 0 & 0\\ 0 & 1 & 0 & 0\\ 1 & 0 & \nu_{x} & 0 \end{pmatrix} x + \begin{pmatrix} \frac{C_{\alpha f}}{M} \\ \frac{C_{\alpha f} l_{f}}{l} \\ 0\\ 0 \end{pmatrix} u$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Preliminaries

└─ Yaw lateral bicycle dynamics

Model outputs and external disturbance

 The selected output vector z (corresponding monitored/constrained variables) is set equal to

$$z = \begin{pmatrix} \dot{y} & \omega & Y \end{pmatrix}^T$$
,

- The exogenous input w is included to model the effect of the side wind on the lateral position Y
- Denoting with η the efficiency of the side wind in moving the vehicle along the lateral direction, and

$$F = \begin{pmatrix} 0 & 0 & 0 & \eta \end{pmatrix}^T,$$

the model becomes

$$\dot{x} = Ax + Fw + Bu$$
(1a)
$$z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times$$
(1b)

Preliminaries

└─ Yaw lateral bicycle dynamics

Model outputs and external disturbance

 The selected output vector z (corresponding monitored/constrained variables) is set equal to

$$z = \begin{pmatrix} \dot{y} & \omega & Y \end{pmatrix}^T$$
,

- The exogenous input w is included to model the effect of the side wind on the lateral position Y
- Denoting with η the efficiency of the side wind in moving the vehicle along the lateral direction, and

$$\boldsymbol{F} = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\eta} \end{pmatrix}^T ,$$

the model becomes

$$\dot{x} = Ax + Fw + Bu$$
(1a)
$$z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times$$
(1b)

Preliminaries

└─ Yaw lateral bicycle dynamics

Model outputs and external disturbance

 The selected output vector z (corresponding monitored/constrained variables) is set equal to

$$z = \begin{pmatrix} \dot{y} & \omega & Y \end{pmatrix}^T$$
,

- The exogenous input w is included to model the effect of the side wind on the lateral position Y
- Denoting with η the efficiency of the side wind in moving the vehicle along the lateral direction, and

$$\boldsymbol{F} = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\eta} \end{pmatrix}^{T} ,$$

the model becomes

$$\dot{x} = Ax + Fw + Bu$$
(1a)
$$z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} x$$
(1b)

Structured IO-FTS

Definition

Structured Input-Output Finite-Time Stability - 1/2

Consider:

1 the system

$$\dot{x} = Ax + Fw + Bu$$
, $x(0) = 0$ (2a)
 $z = Cx$, (2b)

2 a α -tuple of integer numbers m_1, \ldots, m_{α} , where $1 < \alpha < m$, with $\sum_{i=1}^{\alpha} m_i = m$, and the partition the output vector (2b)

$$z(t) = \left(z_1^{\mathsf{T}}(t) \cdots z_{\alpha}^{\mathsf{T}}(t)\right)^{\mathsf{T}}, \quad t \in \Omega.$$
(3)

э

note: (3) induces the following partition on the C matrix

$$C = \left(C_1^T \cdots C_\alpha^T\right)^T$$
.

old 3 lpha positive definite weighting matrices $Q_i(t)\in \mathbb{R}^{m_i imes m_i}$, and

$$Q(t) := (Q_1(t), \dots, Q_\alpha(t)).$$

-Structured IO-FTS

Definition

Structured Input-Output Finite-Time Stability - 1/2

Consider:

1 the system

$$\dot{x} = Ax + Fw + Bu$$
, $x(0) = 0$ (2a)
 $z = Cx$, (2b)

2 a α -tuple of integer numbers m_1, \ldots, m_{α} , where $1 < \alpha < m$, with $\sum_{i=1}^{\alpha} m_i = m$, and the partition the output vector (2b)

$$z(t) = \left(z_1^{\mathsf{T}}(t) \cdots z_{\alpha}^{\mathsf{T}}(t)\right)^{\mathsf{T}}, \quad t \in \Omega.$$
(3)

note: (3) induces the following partition on the C matrix

$$C = \left(C_1^T \cdots C_\alpha^T\right)^T$$
.

3 lpha positive definite weighting matrices $Q_i(t) \in \mathbb{R}^{m_i imes m_i}$, and

$$Q(t) := (Q_1(t), \dots, Q_\alpha(t)). \tag{4}$$

- Structured IO-FTS

Definition

Structured Input-Output Finite-Time Stability - 1/2

Consider:

1 the system

$$\dot{x} = Ax + Fw + Bu$$
, $x(0) = 0$ (2a)
 $z = Cx$, (2b)

2 a α -tuple of integer numbers m_1, \ldots, m_{α} , where $1 < \alpha < m$, with $\sum_{i=1}^{\alpha} m_i = m$, and the partition the output vector (2b)

$$\mathbf{z}(t) = \left(z_1^{\mathsf{T}}(t) \cdots z_{\alpha}^{\mathsf{T}}(t) \right)^{\mathsf{T}}, \quad t \in \Omega.$$
(3)

note: (3) induces the following partition on the C matrix

$$\boldsymbol{C} = \left(\boldsymbol{C}_1^T \cdots \boldsymbol{C}_\alpha^T\right)^T.$$

3 lpha positive definite weighting matrices $Q_i(t) \in \mathbb{R}^{m_i imes m_i}$, and

$$Q(t) := (Q_1(t), \dots, Q_\alpha(t)). \tag{4}$$

-Structured IO-FTS

Definition

Structured Input-Output Finite-Time Stability - 1/2

Consider:

1 the system

$$\dot{x} = Ax + Fw + Bu$$
, $x(0) = 0$ (2a)
 $z = Cx$, (2b)

2 a α -tuple of integer numbers m_1, \ldots, m_{α} , where $1 < \alpha < m$, with $\sum_{i=1}^{\alpha} m_i = m$, and the partition the output vector (2b)

$$\mathbf{z}(t) = \left(z_1^{\mathsf{T}}(t) \cdots z_{\alpha}^{\mathsf{T}}(t) \right)^{\mathsf{T}}, \quad t \in \Omega.$$
(3)

note: (3) induces the following partition on the C matrix

$$\boldsymbol{C} = \left(\boldsymbol{C}_1^T \cdots \boldsymbol{C}_\alpha^T\right)^T.$$

3 α positive definite weighting matrices $Q_i(t) \in \mathbb{R}^{m_i imes m_i}$, and

$$Q(t) := (Q_1(t), \dots, Q_\alpha(t)). \tag{4}$$

-Structured IO-FTS

Definition

Structured Input-Output Finite-Time Stability - 2/2

Definition (Structured IO-FTS)

Given a time interval $\Omega = [0, T]$ with T > 0, a class of disturbances \mathcal{W} defined over Ω , the output partition (3) and the corresponding positive definite weighting matrix $Q(\cdot)$ defined in (4), system (2) is said to be structured IO-FTS with respect to $(\Omega, \mathcal{W}, Q(\cdot))$ if

$$w(\cdot) \in \mathcal{W} \Rightarrow z_i^{\mathsf{T}}(t)Q_i(t)z_i(t) < 1, t \in \Omega, i = 1, \dots, \alpha.$$

Structured IO-FTS

Definition

Constraining the control input using structured IO-FTS - 1/2

1 Given a β -tuple of integer numbers p_1, \ldots, p_β , where $\sum_{i=1}^{\beta} p_i = p$, let us partition the control input vector as

$$u(t) = \left(u_1^{\mathsf{T}}(t) \cdots u_{\beta}^{\mathsf{T}}(t)\right)^{\mathsf{T}}, \quad t \in \Omega.$$
(5)

2 Consider β positive definite weighting matrices $T_i(t) \in \mathbb{R}^{q_i \times q_i}$, $i = 1, \dots, \beta$, and $T(t) := (T_1(t), \dots, T_{\beta}(t)).$ (6

-Structured IO-FTS

Definition

Constraining the control input using structured IO-FTS - 1/2

1 Given a β -tuple of integer numbers p_1, \ldots, p_β , where $\sum_{i=1}^{\beta} p_i = p$, let us partition the control input vector as

$$u(t) = \left(u_1^{\mathsf{T}}(t) \cdots u_{\beta}^{\mathsf{T}}(t)\right)^{\mathsf{T}}, \quad t \in \Omega.$$
(5)

2 Consider β positive definite weighting matrices $T_i(t) \in \mathbb{R}^{q_i \times q_i}$, $i = 1, \dots, \beta$, and $T(t) := (T_1(t), \dots, T_\beta(t))$. (6)

-Structured IO-FTS

Definition

Constraining the control input using structured IO-FTS - 2/2

Problem

Given a positive time interval $\Omega = [0, T]$ with T > 0, a class of disturbances W defined over Ω , the output partition (3), the input partition (5), and the corresponding positive definite weighting matrices $Q(\cdot)$, $T(\cdot)$ defined in (4) and (6), find a time-varying state feedback control law

u(t)=K(t)x(t),

where $K(\cdot)$: $\Omega \mapsto \mathbb{R}^{p \times n}$, such that the closed-loop system

$$\dot{x}(t) = (A + BK(t))x(t) + Fw(t), \quad x(t_0) = 0$$
 (7a)

$$\begin{pmatrix} z(t) \\ u(t) \end{pmatrix} = \begin{pmatrix} C \\ K(t) \end{pmatrix} x(t)$$

= $(C_1 \dots C_{\alpha} \quad K_1(t) \dots K_{\beta}(t))^T x(t),$ (7b)

is structured IO-FTS wrt $(\Omega, W, (Q(\cdot), T(\cdot)))$.

-Structured IO-FTS

-Main result

Structured IO-FTS for norm bounded signals over Ω

Given the class of signals W_{∞} , Problem 2 is solvable *if* there exist a positive definite continuously differentiable matrix-valued function $\Pi(\cdot)$ and β matrix-valued functions $L_1(\cdot), \ldots, L_{\beta}(\cdot)$ such that

$$\begin{pmatrix} \Theta(t) & F \\ F^{T} & -R(t) \end{pmatrix} < 0,$$
 (8a)

$$\begin{pmatrix} \Pi(t) & \Pi(t)C_i^T\\ C_i\Pi(t) & \widetilde{\Xi}_i(t) \end{pmatrix} \ge 0, \quad i = 1, \dots, \alpha$$
(8b)

$$\begin{pmatrix} \Pi(t) & L_j^{\mathcal{T}}(t) \\ L_j(t) & \widetilde{\Upsilon}_j(t) \end{pmatrix} \ge 0, \quad j = 1, \dots, \beta,$$
(8c)

for all $t \in \Omega$, where

$$\begin{split} \Theta(t) &:= -\dot{\Pi}(t) + \Pi(t)A^T + A\Pi(t) \\ &+ B\left(L_1^T(t)\cdots L_{\beta}^T(t)\right)^T + \left(L_1^T(t)\cdots L_{\beta}^T(t)\right)B^T \\ \widetilde{\Xi}_i(t) &:= (tQ_i(t))^{-1} \\ \widetilde{\Upsilon}_j(t) &:= (tT_j(t))^{-1} . \end{split}$$

A controller which solves Problem 2 is given by $K_j(t) = L_j(t) \Pi^{-1}(t)$, $j = 1, \dots, \beta$.

- Example

Model parameters

Table : Two-wheel model parameters

Mass of the vehicle M (kg)	1200
Yaw inertia I (kg· m²)	1500
Front cornering stiffness $C_{\alpha f}$	125000
(N/rad)	
Rear cornering stiffness $C_{lpha r}$	80000
(N/rad)	
Distance from the CoG and the	0.92
front axle <i>I_f</i> (m)	
Distance from the CoG and the rear	1.38
axle l_r (m)	
Longitudinal velocity v_x (m/s)	22
Side wind efficiency η	0.15

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Example

Constrains

In order to do not worse too much the passengers comfort when collision avoidance system is active, the lateral velocity \dot{y} and the yaw rate ω are limited as follows

$$ert \dot{y} ert_{max} = 1.4 \text{ m/s} (\sim 5 \text{ km/h}),$$

 $ert \omega ert_{max} = 0.26 \text{ rad/s} (\sim 15 \text{ deg/s}),$

yielding the following choice for Q_1 and Q_2

$$Q_1 = 0.51$$
, $Q_2 = 14.80$.

・ロト ・ 日 ・ モ ・ ・ 日 ・ うへつ

In order to limit the maximum steering angle as $|\delta|_{\text{max}} = 0.35$ rad (~ 20 deg), the corresponding weight is set equal to $T_1 = 8.16$. - Example

Constrains

In order to do not worse too much the passengers comfort when collision avoidance system is active, the lateral velocity \dot{y} and the yaw rate ω are limited as follows

$$ert \dot{y} ert_{max} = 1.4 \text{ m/s} (\sim 5 \text{ km/h}),$$

 $ert \omega ert_{max} = 0.26 \text{ rad/s} (\sim 15 \text{ deg/s}),$

yielding the following choice for Q_1 and Q_2

$$Q_1 = 0.51$$
, $Q_2 = 14.80$.

• In order to limit the maximum steering angle as $|\delta|_{max} = 0.35$ rad (~ 20 deg), the corresponding weight is set equal to $T_1 = 8.16$. Example

Controller synthesis

The time-varying state feedback control law that guarantees lateral vehicle collision avoidance can computed from the solution of the following optimization problem with DLMI constraints

$$\max_{s.t. \ (8)} Q_3. \tag{9}$$

 This optimization problem can be efficiently solved by first recasting the DLMIs into standard LMIs

- Example

-Simulation results

Wind gust

Figure : Input weighting function for the side wind and maximum considered wind velocity.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example

-Simulation results

Simulation results - 1/2

Figure : Simulation results obtained adopting the LTV state feedback as lateral collision avoidance system. for the bicycle model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Example

-Simulation results

Simulation results - 2/2

Figure : Comparison of the vehicle lateral displacement Y for both the open loop and the closed loop system.

- Conclusions & Future works

Conclusion & future works

 A state feedback controller based on the concept of IO-FTS has been proposed as possible solution for vehicle lateral collision avoidance

Possible future works:

- implement a hybrid controller that switches from a standard (nominal) controller to the time-varying controller designed using IO-FTS
- extend the approach to a platoon of vehicles with the aim of maintaining the minimum distance between the vehicles above a safety value even in the presence of disturbances.

Thank you!

- Conclusions & Future works

Conclusion & future works

- A state feedback controller based on the concept of IO-FTS has been proposed as possible solution for vehicle lateral collision avoidance
- Possible future works:
 - implement a hybrid controller that switches from a standard (nominal) controller to the time-varying controller designed using IO-FTS
 - extend the approach to a platoon of vehicles with the aim of maintaining the minimum distance between the vehicles above a safety value even in the presence of disturbances.

Thank you!

- Conclusions & Future works

Conclusion & future works

- A state feedback controller based on the concept of IO-FTS has been proposed as possible solution for vehicle lateral collision avoidance
- Possible future works:
 - implement a hybrid controller that switches from a standard (nominal) controller to the time-varying controller designed using IO-FTS
 - extend the approach to a platoon of vehicles with the aim of maintaining the minimum distance between the vehicles above a safety value even in the presence of disturbances.

Thank you!

Backup slides

V

Solving DLMIs - 1/2

- If Π(t) is the optimization matrix-valued function in (8), we sample Π(t) in the time interval Ω with a sampling time equal to T_s
- In the k-th time interval we can approximate $\Pi(t)$ as follows

$$\Pi(t) = \Pi_k + \Xi_k \left(t - (k-1)T_s \right) + \Upsilon_k \left(t - (k-1)T_s \right)^2, \quad t \in \left[(k-1)T_s, kTs \right], \quad (10)$$
with $k = 1, 2, \dots$

Backup slides

Solving DLMIs - 2/2

When using the proposed approximation, the following additional constraints should be added in order to assure both the continuity of $\Pi(t)$ and of its derivative in $t_k = kT_s$

$$\Pi^{-}(kT_s) = \Pi_k + \Xi_k T_s + \Upsilon_k T_s^2 = \Pi_{k+1} = \Pi^{+}(kT_s),$$

while, for the continuity of the derivative of P(t), it should be

$$\dot{\Pi}^{-}(kT_s) = \Xi_k + 2\Upsilon_k T_s = \Xi_{k+1} = \dot{\Pi}^{+}(kT_s),$$