Previous Experience
& Proposal for Future Work

Gianmaria DE ToMMASI — CREATE/Universita di Napoli Federico Il — ltaly
Email: detommas@unina.it

Thanks to Marcello Cinque, Sara Dubbioso, Federico Fiorenza and Daniele Ottaviano

Plasma Control ISFN Meeting - ITER HQ, 23 Sep 2025

DIPARTIMENTO oI INGEGNERIA ELETTRICA
e DELLE TECNOLOGIE el INFORMAZIONE

U [VERSITA becy STUDI o
T1J/INEPOLI FEDERICO i



Background & main topics UN| C/

My bac und

2001 MSc in Electronic Engineering in 2001 - University
of Naples Federico Il

2002-2005 PhD in Control Engineering - University of Naples
Federico Il (. . . and at JET with the PPCC group)

2002-. .. Member of the CREATE Consortium (research
grants & contracts for JET, EAST, JT-60SA, DTT,
L)

2009-. .. Various contracts with ITER (Central Safety
System, Central Interlock System, Plasma Control
System)

Development of real-time software framework for fusion devices
Design and deployment of plasma (magnetic) control systems
System-engineering approach for PCS design
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JETRTApp

Data Collector 2

m The JETRT framework was developed in
2002/20083 to deploy the eXtreme Shape I
Controller (XSC) Ef_j

m JETRT was based on the cross-platform il
BaselLib library (developed by the JET PPCC - =
group) - o
@ G. De Tommasi et al. e =) l

é;lsﬁbéizég\;\faeg? é%rorgzal-time control in nuclear fusion experiments =g ‘ . F@
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Real-time application plug-in

Plant

The Real-time Application Plug-in
that can be used to:

m perform offline validation against a
plant model

m perform real-time validation with
hardware-in-the-loop

IVZ1ITaF=liTaYal
m run the real-time system on the plant =

Windows platform
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MARTe - The origins (2004-2005)

DIERSIN
RIFRINGE

I WANT TO EMBED

JETRT PLUGINS INTO MY
SIMULINK SCHEMES,

BUT IT AIN'T EASY!

YOU NEED TO DO THIS, THAT,
BLA BLA BLA...

EHI FISA!
I GOTTA A PROBLEM...

MUMBLE MUMBLE
GAM, DDB, LOGGER,...

MARTe real-time thread for

@ A. C. Neto et al.

MARTe: A Multiplatform Real-Time
Framework
IEEE Trans. Nucl. Sci., 2010

the JET VS5

Acquire data
ADCs ot

- signal
Plasma velocity estimation ngz:i"g
Observers <
Select controller to use
Scheduler
Closed loop control
Controllers T Add special features to
' | controller output
(delays, dither, hysteresis)
Add special features to Vertical
controller output Amplifier
Divertor Write to hardware
Amplifier (close the loop)
DACs
Collectors
Live statistics of signals
Information
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Automatic code (& configuration) generation

m Commonly used in many fields: rapid
prototyping (dSpace, NI, Mathworks,. . .),
automotive, railway, . ..

m Included in most of the RTFs for fusion

devices (TCV RTF, ITER RTF,
MARTe2+MDSplus)
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x-in-the-loop V&V

Requirement Analysis

Unit Testing

Code Generation
Implementation
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Setup for x-in-the-loop V&V

Model-in-the-loop — MIL
Simulink simulation environment

Control
algorithm

Plant
model

~ Automatic Code
Generation (ACG)

Automatic C 3
Generation (ACG)

.

e

Controller
GAM

&

Jynamic Data

Buffer (DDB) or
i kets

MARTe2 host

Plant model
GAM

Software-in-the-loop — SIL

S

>

Controller
GAM

MARTe2 host

ADC andfor
natwork comm
(TCP, UDP.

Hardware-in-the-loop — HIL

Real-time

plant model

dSpace target
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Example: the DTT VS system

» 29
ol Convoidolay
Veoa| -+ © Ve
o >
s |

Packet st

Plasma centroid vertical displacement 4z, (1

g

Time [s]
In-vessel coil voltage V,.()

Vi k)

o 005 o1 015
Time (5]
In-vessel coll current (1)

015
Time (s)

MIL simulation of a 5 cm VDE rejection with a
systematic packet loss rate equal to Nn"f’a’i = 89%;
transmission frequency is assumed equal to 1 kHz.

@ S. Dubbioso et al.
Rapid prototyping of control modules for the
DTT Plasma Control System
Fus. Eng. Des., 2025

vy

HIL simulation (SCALEXIO) of a 5 cm VDE in presence of a systematic packet loss
set equal to NHIL — 91,

max
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Example: a Extremum-seeking based VS ’ UNI C

Hybrid

(plasma
controller 5

Plant

and conductive structures)

active coils

12

[

Extremum Secking

Kalman filter '7

Functional architecture ES

-based VS for TCV

Model-in-the-loop — MIL
Simulink simulation environment

@ S. Dubbioso et al.

Hardware-in-the-loop
validation of an

Extremum
Seeking-based system

for vertical stabilization
of tokamak plasmas
IFAC COSY Contf., 2025

MARTe2 host

Controller
GAM

Hardware-in-the-loop ~ HIL

TR
WWWWWW«MMWWWW

Time traces recorded during HIL simulation. Vertical stability is lost when a delay

of about 600 s is introduced in the control loop.

VS thread execution time (measured in us) during the HIL simulation
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Control hw/sw isolation

Satam . m Can we use cloud technologies in the
= (g context of ITER to consolidate
Cryoplant E -Vacuum multiple isolated control systems on
S >; ; = the same hardware?
}ﬂ] m Possible objectives
A .
Pressure (Mg 21 Ml Fast prototyping
S N o Cost reduction
/ ' Heterogeneous spread redundancy
— — Diversified control & protection
Di;tl:;t‘:on ) | R atr systems
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Contributions H'/\Al\l @

[ ] Real-time Containers rt-containers on co-kernels
Use the same abstraction everywhere :
Ensuring temporal isolation

m Containers on co-kernels (RTAI, Xenomai)
m Containers on partitioning hypervisors (Jailhouse)
m Containers on MPSoCs (on RPU/FPGA via the Omnivisor)

m Memory and I/O isolation
Reducing/controlling memory interference from
co-accessing cores
Real-time 1/O access regulation

m Criticality-aware orchestration
Placement & monitoring driven by containers criticality and 5
the isolation assured by nodes (K4.0s) i
Temporal isolation assessment

Placement prioritization (Preempt-K8s) 0
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HIL simulation of VS

with co-located interference

VS | MB. | MB. | MB.
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Controller

RT-Linux W m e:)
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eXtreme Shape Controller

Design & implementation of the eXtreme Shape Controller (XSC)
MIMO approach for plasma shape control

It minimizes the steady-state MSE over a number of plasma shape descriptor that
is greater than the number of actuators

Exploits the SVD of a linear relationship between the PF currents and the
controlled paramters

Model-based approach that (partially) trades robustness for performance
Originally implemented at JET but tested also on other machines (EAST, .. .)
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Plasma Shape Control at JET during /, ramp-up

m #83011 — plasma ramp-up with standard JET SC
m #83014 — plasma ramp-up with XSC

JET Data Display Conf_ VSO H

T T .
|@415 shape B o e
| control tlakes over - 33?{-2?2?;%"5”
| shape

| - * snapshots
| @43s the transition A
| to the desired plasma & reference
Ishape should be completed shape

10° Amps

I I I I
a0 a2 aa a6

Printed by: adetomn
Tue May 22 2012 1721
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#83011 — Shape tracking during the ramp-up with SC

shape reference

\ AN AN
N AN \
N
N
Actual
shape
— | — — |
= } - = |
/ /
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#83014 — Shape tracking during the ramp-up with XSC

@43s @44s D44
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Plasma surface and q95

JET Data Display

g *0F ——83011 MAGN/IPLA ]
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second
Printed by: fmavig
Wed May 23 2012 14:41
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nge of elongation during the plasma current ramp-down

ya

@
o

Printed by: gdetom
Wed Jun 202012 17:01

54 56 58
second

ia De Tommasi — detommas@unin:

——83202 MAGN/IPLA
Seqg=2 (0)

SOFT
STOP

——83202 EFIT/ELON
Seq=22 (0)

——83202 EFIT/AREA
Seq=22 (0)
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Isoflux XSC at EAST

— SISO - #78140
MIMO - #70280

%

m Comparison between the SISO
and MIMO shape controllers
(pulses #78140 and #79289)

m The LCFS att=4.5sis shown
together with the control points and
the target X-point position
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Block diagram of the allocated
closed-loop
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The current allocator block

The current allocator
The allocator equations are given by

.
. / T

= —KB] 1
o= k6] .| (907 (12)
du = BoyXa, (1b)
0y = P*ByXa. (1c)

m K € R™*" js a symmetric positive definite matrix used to specify the allocator
convergence speed, and to distribute the allocation effort in the different directions

m J(u*,oy*) is a continuously differentiable cost function that measures the trade-off
between the current saturations and the control error (on the plasma shape)

m By € R"™F*M g g suitable full column rank matrix
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The CLA Architecture

Modified
PF Currents :{]‘2 fa‘!;::ﬂ;:es‘"g)s
Requests | PF currents a PP

Current controller
+ Allocator (CA)

Plasma Shape
References

eXtreme Shape
Controller

(XSC
Plasma Shape ¢ ) PF Currents
Measurements Requests

JG11.240-4¢

Additional Plasma
Shape References

The CLA block is inserted between the XSC and the Current Decoupling Controller
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Experimental results of CLA @ JET

SURFLx201.2
— Current in the D1 circuit

: o \
& T RuseNesirs |
-4 1 = =z
20.0 205 21.0 215 220 225 23.0
Current in the D2 circuit
s _1DW”MWMWM
N
a
= -12 L I I
20.0 205 21.0 215 220 225 23.0
10 Current in the D3 circuit
g
5 My Akt A
o "
12 | Y y y
20.0 205 21.0 21.5 220 22.5 23.0
a Current in the D4 circuit
—~ 8
3 ;
1 | I i
20.0 205 21.0 215 220 225 230

Time (s)

Currents in the divertor circuits. #81710 (reference pulse

Shape comparison at 22.5 s. Black shape without CLA) and pulse #81715 (with CLA). The shared

(#81710 without CLA), red shape (#81715 areas correspond to regions beyond the current limits

with CLA) enforced by the CLA parameters.
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ITER-like VS for the EAST tokamak

EAST Geometry

1 . ITER-like VS

R[m]
1+ sr - s
U/Cref(s) = 1+ ST; ’ (KV : Ipref : 1+ sr, ! Zc(s) + K’C ’ I/C(S))
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Experimental results

Plasma current Ip Radial position r.

270

—— 70799 J
= 260 = = = -reference =
< E 185

2 25 3

IC current IIC

Vertical position z,
0.1

EO‘OS hmww\ 5‘0 ANWWWM

3

2 25 3 2 25
Time [s] Time [s]

EAST pulse #70799. During this pulse the ITER-like VS was enabled from t = 2.1 s for 1.2's, and only I and r¢
were controlled, while z¢ was left uncontrolled. This first test confirmed that the ITER-like VS vertically stabilized
the plasma by controlling Zz¢ and /¢, without the need to feed back the vertical position z;
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The ITER Magnetic Control Architecture (for PFPO-1/SRO)

]
=Ip control (
arly phase:

&1 Special

l actions ﬂ §§N controlle"

—g
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RFX-mod2 magnetic control with MPC

m The VS controller stabilizes the plasma
with the dedicated Saddle Coils

m /, controller and the MPC for the shape
control act on Magnetizing Windings (MW)

and Field Shaping (FS) coils (actuator MW & FS
Ip controll N » Gaps
sharing — model-based geometric ° < m > le

decoupling) Ip

2
Vs
The I, controller is a PID that acts on ]
a control direction ~ that does 0
. . Gaps
minimizes the effect on the plasma W aurents
s hape PF voltage requests

The MPC for the shape control acts
along the subspace E,

where y"E =0

MPC used to not violate voltage limits
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Model-free control

with Extremum Seeking

m Control approach based on the minimization N —
(via Extremum Seeking) of a candidate
Lyapunov function V(x)

u£.| Plant |

y VS system

u(t) = wcos(wt + kV(x))

m A Kalman filter is needed to estimate the
plasma movement along the unstable mode %

Event-driven

x
E

m Robustness against such Kalman filter has been sdapaton
observed in simulaton ..., L=
m Kalman filter can be replaced by a NN (trained _
against simulation data) 3 s owbiosocra
g Model-free Stabilization via Extremum Seeking
. . using a cost neural estimator
m Plan to test it on TCV (still WIP) Expert Sys. Appl., 2024
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ITER benchmark

Equilibrium 31 — §Z, Equilibrium #2 - 8Z.
8 Kok Kalman
Training A Tramning A
_ Training B Training B
§ 4 Training \ Training ©
.EI
= 2
T
3
o« - <
of =
2
V53 Equililrinm Vsi
]
Kalman Kalman
Training A Training A
- | Training B Traming 8
= Training © Training ©
‘s i
g%
5
=
5
fum 1 — Iy Equilibs Tvss
0
Y — r -
T | i
Fad
|
B-20
5 | m Kalman
< { "

ng A
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RL magnetic control

ARL-BASED VERTICAL STABILIZATION SYSTEM FOR THE EAST TOKAMAK @,Hm S0
G.De Tommasi' 5. Dubbioso' 2, Y. Huang’,Z.. Luo’, A ele', B. . Xiao DI

PP — |7
Consorzio CREATE. via Claudio 21, 80125, Ngal lly

Dipartimento di Economi,Ingegneria Societ e Impresa, Universit degli tudi dell Tuscia Viteb, aly
Hefei 230031

Nuclear fusion & Tokamaks Plasma Magnetic Control & Vertical Stabilization Stabi

Simulation results & Conclusions

——
o

P o o T e ST
™ s " s =

T e &l A P | e

Plasms shape descripors

@ G. De Tommasi et al.

A RL-based Vertical Stabilization System for the EAST tokamak
American Control Conf., 2022
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From naive Q-learning to DDPG. ..

|

VS AGENT ACTOR 1% \ecResl vsords  vso-vee ™
More complex e e
R the N o Gonotor —
= contrl policy environment, L Nl I == -
kY . . “Fower Suppiies e . =
g CRITIC z including all the e el
S e oo
T evaluate the = & : Flasma Mode! T grostc
E[T coreent policy | Policv update g other magnetic o P
H s control loops oorren_owl 54%
= Reward <&} Ip Controller Zodot
g — e ~Zodob
g - -
é PS and Plasma 4
Hyper-parameter Considered values
Assessing impact of Sampling time 7, 25 ms
i some of hyper Episode duration T 55 205
- Actor learning rate 5% 107
Shape controller J { Ip controller } Py Critic learning rate 107
[ parameter / training Actor hidden layers #m 64 128
. Critic hidden layers #n 32 128
\ RL environment /) parameters on the Discount factor " 0.99
perfo rmance Batch size 256
‘OUP variance 1840
OUP variance decay rate 8.66x10°° 35%107°

@ S. Dubbioso et al.
A Deep Reinforcement Learning approach for Vertical Stabilization of tokamak plasmas
Fus. Eng. Des., 2023
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My view (on Al for control. . .)

m Time & resource consuming activity
m A lot of trial & error

m Need to setup joint activities with big player

EPFL/SPC & DeepMind
CEA & Capgemini

m Are Al controller really outperforming model-based (adaptive control)?
m Are tokamak discharge so unpredictable (once the scenario is assessed)?
In the past we trade robustness to some degree to achieve tight control

m What if the Al controller does not work? How to re-tune it (in due time)?
m Al & ML can be beneficial in many other ways. ..
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Fast plasma boundary reconstruction with PIELM

m Physics Informed Neural Networks (PINNs) can be used to solve Partial
Differential Equations with initial/boundary conditions.

m PINNs may require long training times

m Given the magnetic measurements m,, and mg, by solving A*y(r,z) =0itis
possible to find the LCFS

m This equation can be solved in real-time by Physics-Informed Extreme Learning
Machines (PIELMs)
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Extreme Learning Machine (ELM)

m ELMs are similar to one-layer feedforward
NNs and proved to have great generalization
capabilities

m The structure of an ELM is the following
Yem(x) = BTa(Wx + b)

being
B is a vector of unknown weights

o(+) is the activation function X
W and b are randomly initialised

40 of 49
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Fast boundary reconstruction with PIELM

Given a set of collocation points on the poloidal plane {x;};—1 . n, the ELM shall
satisfy the GS equation at those points

A Yem(xi) = BT A% o(Wx +b) =0
which is equivalent to
8TDy =0

being D, a matrix that can be computed offline.

By exploiting similar argument the ELM can be linked to the poloidal magnetic field
measures

BTDg = mp
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Fast boundary reconstruction with PIELM

m PIELM can be trained to satisfy the GS equation and magnetic measurements by
minizimizing the cost function

Loss(B) = |87 Dyl + (187 o(Wxy, + b) — my|l + |57 Dg — mg|

m Hence, standard least-squares methods are sufficient to train the ELM weights
(pseudo-inverse) = PIELM can be trained in real-time!

m If 3 = Ef, with DJE =0, then it is always |37 D, || = 0 = the PIELM satisfies the
GS equation by design and the weights are trained only to fit the measures
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Preliminary results on DTT

m This method can train the ELM
weights every time a new set of
measurements are available

m Once trained, the ELM is not

1 01 :
constrained by a grid of points B Y
m Other real-time methods 3 048
(XLOC, CCS, filamentary 4 069
reconstruction) need to either ERRETT
identify the boundary locally in R P

several regions or first identify
the sources and then put
together the contributions
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Other possible activities

m Design an LSTM estimator for
eddy-currents, instead Kalman filters
based on linear models

m Design of adaptive and robust magnetic
control components, such as a
Model-Reference Adaptive Control
(MRAC) for Vertical Stabilization

m Surrogate data-driven model to speed up
nonlinear simulations

m Data-driven model for gyrotrons control
(Andrea Antonione ECRH group)
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V-cycle — The ITER flavour

PCS Design
Stakeholder e
Requirements
(Design Basis) m(err:;;.ei 5
; D
Iterative @
. 2
& Rl Process Validation &
%, 5 . - of integrated &
L operation i 12?
% 1 scenarios 8 SR &
2 &
1> S
% o &
%’/ spesu ’:::m' Validation of
% s functional
requirements s
AN g 7
\4 ,;;Qé\
Q. Design Verification & &
“’zé . Functional Component £
%0, 3 Blocks (FB) a validation 2 (3-)
x <
& &
% &
&, N

L Implementation R\g
in PCSSP
\ e /

Implementation
@ P. de Vries et al.

Strategy to systematically design and deploy the ITER plasma control system: A system engineering and model-based design approach
Fus. Eng. Des., 2024
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LLM support for System-Engineering — 1/2

What's goin’ on. ..

@ J. J. Norheim et al.

Challenges in applying large language models to requirements engineering tasks
Design Science, 2024

m Requirements Engineering

Assist in drafting, clarifying, and validating system requirements (i.e., make them
testable)

Detect ambiguities, inconsistencies (e.g., between SHRs and SYRs), or missing
elements in requirement documents

m Model-Based Systems Engineering

Translate natural-language requirements into SysML/UML elements
Generate system diagrams or design artifacts from textual descriptions
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LLM support for System-Engineering — 2/2

m System Architecture & Design Support
Propose alternative architectures based on constraints and objectives
m Simulation & Testing

Generate test cases/scenarios from requirements
Automate setup assessments (in PCSSP, at least for atomic ones)

m Risk & Safety Analysis
Help identify potential hazards or failure modes from design documents
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