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My background

2001 MSc in Electronic Engineering in 2001 - University
of Naples Federico II

2002-2005 PhD in Control Engineering - University of Naples
Federico II (. . . and at JET with the PPCC group)

2002-. . . Member of the CREATE Consortium (research
grants & contracts for JET, EAST, JT-60SA, DTT,
. . .)

2009-. . . Various contracts with ITER (Central Safety
System, Central Interlock System, Plasma Control
System)

Topics

1 Development of real-time software framework for fusion devices
2 Design and deployment of plasma (magnetic) control systems
3 System-engineering approach for PCS design
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The JETRT framework was developed in
2002/2003 to deploy the eXtreme Shape
Controller (XSC)
JETRT was based on the cross-platform
BaseLib library (developed by the JET PPCC
group)

G. De Tommasi et al.
A flexible software for real-time control in nuclear fusion experiments
Contr. Eng. Prac., 2006
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The Real-time Application Plug-in
that can be used to:

perform offline validation against a
plant model

perform real-time validation with
hardware-in-the-loop

run the real-time system on the plant

RT Plug-in

Offline validation

HIL validation

Plant
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MARTe - The origins (2004-2005) UNI
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MARTe real-time thread for
the JET VS5

A. C. Neto et al.
MARTe: A Multiplatform Real-Time
Framework
IEEE Trans. Nucl. Sci., 2010
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Commonly used in many fields: rapid
prototyping (dSpace, NI, Mathworks,. . .),
automotive, railway, . . .
Included in most of the RTFs for fusion
devices (TCV RTF, ITER RTF,
MARTe2+MDSplus)
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S. Dubbioso et al.
Rapid prototyping of control modules for the
DTT Plasma Control System
Fus. Eng. Des., 2025

MIL simulation of a 5 cm VDE rejection with a
systematic packet loss rate equal to NMIL

max = 89%;
transmission frequency is assumed equal to 1 kHz.

HIL simulation (SCALEXIO) of a 5 cm VDE in presence of a systematic packet loss
set equal to NHIL

max = 91%.

Gianmaria De Tommasi – detommas@unina.it 11 of 49



Example: a Extremum-seeking based VS UNI
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VS Fast
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u
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Functional architecture ES-based VS for TCV

S. Dubbioso et al.
Hardware-in-the-loop
validation of an
Extremum
Seeking-based system
for vertical stabilization
of tokamak plasmas
IFAC COSY Conf., 2025
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System
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Time traces recorded during HIL simulation. Vertical stability is lost when a delay

of about 600 µs is introduced in the control loop.

VS thread execution time (measured in µs) during the HIL simulation
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Can we use cloud technologies in the
context of ITER to consolidate
multiple isolated control systems on
the same hardware?
Possible objectives

Fast prototyping
Cost reduction
Heterogeneous spread redundancy
Diversified control & protection
systems

Gianmaria De Tommasi – detommas@unina.it 13 of 49



Contributions UNI
NA

DIE
II I

Real-time containers
Use the same abstraction everywhere
Ensuring temporal isolation

Containers on co-kernels (RTAI, Xenomai)
Containers on partitioning hypervisors (Jailhouse)
Containers on MPSoCs (on RPU/FPGA via the Omnivisor)

Memory and I/O isolation
Reducing/controlling memory interference from
co-accessing cores
Real-time I/O access regulation

Criticality-aware orchestration
Placement & monitoring driven by containers criticality and
the isolation assured by nodes (K4.0s)
Temporal isolation assessment
Placement prioritization (Preempt-K8s)
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HIL simulation of VS
with co-located interference
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Isolation with rt-container and omnivisor UNI
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eXtreme Shape Controller UNI
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Design & implementation of the eXtreme Shape Controller (XSC)
MIMO approach for plasma shape control
It minimizes the steady-state MSE over a number of plasma shape descriptor that
is greater than the number of actuators
Exploits the SVD of a linear relationship between the PF currents and the
controlled paramters
Model-based approach that (partially) trades robustness for performance
Originally implemented at JET but tested also on other machines (EAST, . . .)
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Plasma Shape Control at JET during Ip ramp-up UNI
NA

DIE
II I

#83011 – plasma ramp-up with standard JET SC

#83014 – plasma ramp-up with XSC
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#83011 – Shape tracking during the ramp-up with SC UNI
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@43s @44s @44.5s
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#83014 – Shape tracking during the ramp-up with XSC UNI
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@43s @44s @44.5s
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Plasma surface and q95 UNI
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Change of elongation during the plasma current ramp-down UNI
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Isoflux XSC at EAST UNI
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Comparison between the SISO
and MIMO shape controllers
(pulses #78140 and #79289)
The LCFS at t = 4.5 s is shown
together with the control points and
the target X-point position
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Block diagram of the allocated
closed-loop
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P⋆ := lim
s→0

P(s) ,
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The current allocator block UNI
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The current allocator
The allocator equations are given by

ẋa = −KBT
0

[
I

P⋆

]T

(∇J)T
∣∣∣
(u ,δy)

, (1a)

δu = B0xa, (1b)
δy = P⋆B0xa. (1c)

K ∈ Rna×na is a symmetric positive definite matrix used to specify the allocator
convergence speed, and to distribute the allocation effort in the different directions

J(u⋆, δy⋆) is a continuously differentiable cost function that measures the trade-off
between the current saturations and the control error (on the plasma shape)

B0 ∈ RnPF×na is a suitable full column rank matrix
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The CLA Architecture UNI
NA

DIE
II I

The CLA block is inserted between the XSC and the Current Decoupling Controller
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Experimental results of CLA @ JET UNI
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Shape comparison at 22.5 s. Black shape

(#81710 without CLA), red shape (#81715

with CLA)

Currents in the divertor circuits. #81710 (reference pulse

without CLA) and pulse #81715 (with CLA). The shared

areas correspond to regions beyond the current limits

enforced by the CLA parameters.
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ITER-like VS for the EAST tokamak UNI
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UICref (s) =
1 + sτ1

1 + sτ2
·
(

Kv · Īpref ·
s

1 + sτz
· Zc(s) + KIC · IIC(s)

)
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Experimental results UNI
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EAST pulse #70799. During this pulse the ITER-like VS was enabled from t = 2.1 s for 1.2 s, and only Ip and rc

were controlled, while zc was left uncontrolled. This first test confirmed that the ITER-like VS vertically stabilized

the plasma by controlling żc and IIC , without the need to feed back the vertical position zc
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The ITER Magnetic Control Architecture (for PFPO-1/SRO) UNI
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RFX-mod2 magnetic control with MPC UNI
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The VS controller stabilizes the plasma
with the dedicated Saddle Coils

Ip controller and the MPC for the shape
control act on Magnetizing Windings (MW)
and Field Shaping (FS) coils (actuator
sharing → model-based geometric
decoupling)

The Ip controller is a PID that acts on
a control direction γ that does
minimizes the effect on the plasma
shape
The MPC for the shape control acts
along the subspace E ,
where γT E = 0
MPC used to not violate voltage limits
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Model-free control
with Extremum Seeking
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Control approach based on the minimization
(via Extremum Seeking) of a candidate
Lyapunov function V(x)

u(t) = ω cos(ωt + kV (x))

A Kalman filter is needed to estimate the
plasma movement along the unstable mode x̂

Robustness against such Kalman filter has been
observed in simulation

Kalman filter can be replaced by a NN (trained
against simulation data)

Plan to test it on TCV (still WIP)

S. Dubbioso et al.
Model-free Stabilization via Extremum Seeking
using a cost neural estimator
Expert Sys. Appl., 2024
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ITER benchmark UNI
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RL magnetic control UNI
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G. De Tommasi et al.
A RL-based Vertical Stabilization System for the EAST tokamak
American Control Conf., 2022
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From naïve Q-learning to DDPG. . . UNI
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S. Dubbioso et al.
A Deep Reinforcement Learning approach for Vertical Stabilization of tokamak plasmas
Fus. Eng. Des., 2023
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My view (on AI for control. . .) UNI
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Time & resource consuming activity
A lot of trial & error
Need to setup joint activities with big player

EPFL/SPC & DeepMind
CEA & Capgemini

Are AI controller really outperforming model-based (adaptive control)?
Are tokamak discharge so unpredictable (once the scenario is assessed)?

In the past we trade robustness to some degree to achieve tight control

What if the AI controller does not work? How to re-tune it (in due time)?
AI & ML can be beneficial in many other ways. . .
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Fast plasma boundary reconstruction with PIELM UNI
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Physics Informed Neural Networks (PINNs) can be used to solve Partial
Differential Equations with initial/boundary conditions.
PINNs may require long training times
Given the magnetic measurements mψ and mB, by solving ∆∗ψ(r , z) = 0 it is
possible to find the LCFS
This equation can be solved in real-time by Physics-Informed Extreme Learning
Machines (PIELMs)
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Extreme Learning Machine (ELM) UNI
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ELMs are similar to one-layer feedforward
NNs and proved to have great generalization
capabilities

The structure of an ELM is the following

ψELM(x) = βTσ(Wx + b)

being

β is a vector of unknown weights
σ(·) is the activation function
W and b are randomly initialised
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Fast boundary reconstruction with PIELM UNI
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Given a set of collocation points on the poloidal plane {xi}i=1 ,... ,N , the ELM shall
satisfy the GS equation at those points

∆∗ψELM(xi) = βT∆∗σ(Wx + b) = 0

which is equivalent to
βT Dψ = 0

being Dψ a matrix that can be computed offline.
By exploiting similar argument the ELM can be linked to the poloidal magnetic field
measures

βT DB = mB
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Fast boundary reconstruction with PIELM UNI
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PIELM can be trained to satisfy the GS equation and magnetic measurements by
minizimizing the cost function

Loss(β) = ∥βT Dψ∥+ ∥βTσ(Wxψ + b)− mψ∥+ ∥βT DB − mB∥

Hence, standard least-squares methods are sufficient to train the ELM weights
(pseudo-inverse) ⇒ PIELM can be trained in real-time!
If β = E β̃, with DT

ψE = 0, then it is always ∥βT Dψ∥ = 0 ⇒ the PIELM satisfies the
GS equation by design and the weights are trained only to fit the measures
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Preliminary results on DTT UNI
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This method can train the ELM
weights every time a new set of
measurements are available

Once trained, the ELM is not
constrained by a grid of points

Other real-time methods
(XLOC, CCS, filamentary
reconstruction) need to either
identify the boundary locally in
several regions or first identify
the sources and then put
together the contributions
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Other possible activities UNI
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Design an LSTM estimator for
eddy-currents, instead Kalman filters
based on linear models
Design of adaptive and robust magnetic
control components, such as a
Model-Reference Adaptive Control
(MRAC) for Vertical Stabilization
Surrogate data-driven model to speed up
nonlinear simulations
Data-driven model for gyrotrons control
(Andrea Antonione ECRH group)
. . .
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V-cycle – The ITER flavour UNI
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P. de Vries et al.
Strategy to systematically design and deploy the ITER plasma control system: A system engineering and model-based design approach
Fus. Eng. Des., 2024
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LLM support for System-Engineering – 1/2 UNI
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What’s goin’ on. . .
J. J. Norheim et al.
Challenges in applying large language models to requirements engineering tasks
Design Science, 2024

Requirements Engineering

Assist in drafting, clarifying, and validating system requirements (i.e., make them
testable)
Detect ambiguities, inconsistencies (e.g., between SHRs and SYRs), or missing
elements in requirement documents

Model-Based Systems Engineering

Translate natural-language requirements into SysML/UML elements
Generate system diagrams or design artifacts from textual descriptions
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LLM support for System-Engineering – 2/2 UNI
NA

DIE
II I

System Architecture & Design Support
Propose alternative architectures based on constraints and objectives

Simulation & Testing
Generate test cases/scenarios from requirements
Automate setup assessments (in PCSSP, at least for atomic ones)

Risk & Safety Analysis
Help identify potential hazards or failure modes from design documents
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