Sensors selection for \mathcal{K} -diagnosability of Petri nets via Integer Linear Programming

Francesco Basile¹ G. De Tommasi² C. Sterle²

¹DIEM, Università degli Studi di Salerno, Italy ²DIETI, Università degli Studi di Napoli Federico II , Italy

 $23^{\rm rd}$ Mediterranean Conference on Control Automaton, Torremolinos, 2015

- Outline

Outline

1 Preliminaries

- Diagnosability in the Petri nets context
- Main result on *K*-diagnosability

2 Sensors selection for ensuring diagnosability of PNs

- Problem statement
- Proposed approach

3 Examples

4 Conclusions

- Preliminaries

-Diagnosability of PNs

Diagnosability in the DES framework

- Fault detection and diagnosability have been studied in the DES framework since early 90s
- The standard approach to check diagnosability is based on the diagnoser automata (see the seminal paper by Sampath et al., IEEE TAC-1995)
- In the PNs framework, a possible approach to fault diagnosis provides to associate the faults to unobservable transitions
- A PN system is said to be *diagnosable* if every occurrence of an unobservable fault transition can be detected within a finite number of transition firings
- A number of approaches based on PNs have been proposed (*Cabasino et al.*, IEEE TAC-2012, *Basile et al.*, Automatica-2012)

Preliminaries

- Diagnosability of PNs

PN notations

- $S = \langle N, \mathbf{m}_0 \rangle$ is the net system, where $N = (P, T, \mathbf{Pre}, \mathbf{Post})$ • $T = T_o \cup T_{uo}$, and $T_f \subset T_{uo}$
- Given a firing count vector $\sigma \in \mathbb{N}^n$, we would like to consider only the firings of either the observable or the unobservable transitions. Hence the following notation is introduced:

$$oldsymbol{\sigma}_{|\mathcal{T}_o} \in \mathbb{N}^n, ext{ with } oldsymbol{\sigma}_{|\mathcal{T}_o}(t) = \left\{egin{array}{c} oldsymbol{\sigma}(t) & ext{if } t \in \mathcal{T}_o \ 0 & ext{if } t \notin \mathcal{T}_o \end{array}
ight.$$
 $oldsymbol{\sigma}_{|\mathcal{T}_{uo}} \in \mathbb{N}^n, ext{ with } oldsymbol{\sigma}_{|\mathcal{T}_{uo}}(t) = \left\{egin{array}{c} oldsymbol{\sigma}(t) & ext{if } t \in \mathcal{T}_{uo} \ 0 & ext{if } t \notin \mathcal{T}_{uo} \end{array}
ight.$

Sensors selection for \mathcal{K} -diagnosability of Petri nets via ILP

Preliminaries

Diagnosability of PNs

Unobservable explanations

Consider a net system $S = \langle N, \mathbf{m}_0 \rangle$ and a sequence $\sigma \in T^*$ such that $\mathbf{m}_0[\sigma\rangle$ and

$$\sigma = \sigma_{uo}^1 t_o^1 \sigma_{uo}^2 t_o^2 \dots \sigma_{uo}^k t_o^k ,$$

with $\sigma_{uo}^i \in \mathcal{T}_{uo}^*$ and $t_o^i \in \mathcal{T}_o$, $i = 1, \ldots, k$. The following set

$$\begin{split} \boldsymbol{\Sigma}(\boldsymbol{N},\sigma) &\triangleq \left\{ \boldsymbol{\bar{\sigma}} \in \boldsymbol{T}_{uo}^* \mid \boldsymbol{\bar{\sigma}} = \boldsymbol{\bar{\sigma}}_{uo}^1 \boldsymbol{\bar{\sigma}}_{uo}^2 \dots \boldsymbol{\bar{\sigma}}_{uo}^{k+1} \text{ and} \\ \mathbf{m}_0 \big[\boldsymbol{\bar{\sigma}}_{uo}^1 \boldsymbol{t}_o^1 \boldsymbol{\bar{\sigma}}_{uo}^2 \boldsymbol{t}_o^2 \dots \boldsymbol{\bar{\sigma}}_{uo}^k \boldsymbol{t}_o^k \boldsymbol{\bar{\sigma}}_{uo}^{k+1} \rangle \right\}, \end{split}$$

contains the unobservable explanations of σ .

Preliminaries

-Diagnosability of PNs

Diagnosability - Formal definitions 1/2

- $L/u = \{v \in T^* \text{ s.t. } uv \in L\}$, is the post-language of *L* after the sequence of transitions *u*.
- $Pr: T^* \mapsto T_o^*$ is the usual projection, which erases the unobservable transitions in a sequence u.
- The inverse projection operator Pr_L^{-1} is defined as

$$Pr_L^{-1}(r) = \left\{ u \in L \text{ s.t. } Pr(u) = r \right\}$$

• Let \dot{u} be the final transition of sequence u and define

$$\Psi(\hat{t}) = \left\{ u \in L \text{ s.t. } \dot{u} = \hat{t} \right\}$$

- Preliminaries

-Diagnosability of PNs

Diagnosability - Formal definitions 2/2

Definition (Diagnosable fault)

A fault transition $t_f \in T_f$ is said to be diagnosable if

 $\exists h \in \mathbb{N} \text{ such that } \forall u \in \Psi(t_f) \text{ and } \forall v \in L/u \text{ with } |v| \geq h$,

it is

$$r \in Pr_L^{-1}(Pr(uv)) \Rightarrow t_f \in r$$
.

Definition (\mathcal{K} -diagnosable fault)

Given $t_f \in T_f$ and $\mathcal{K} \in \mathbb{N}$ (i.e., the maximum length of the postfix is given), t_f is said to be \mathcal{K} -diagnosable if

$$\forall u \in \Psi(t_f) \text{ and } \forall v \in L/u \text{ such that } |v| \geq \mathcal{K}$$
,

then it is

$$r \in Pr_L^{-1}(Pr(uv)) \Rightarrow t_f \in r$$
.

Preliminaries

- Diagnosability of PNs

Example

$$T_o = \{t_1, t_4, t_5\}, \ T_{uo} = \{t_2, t_3\}, \ T_f = \{t_3\}$$

- Consider the sequence $u = t_1 t_3$, i.e., u is a sequence that ends with the fault transition t_3 . It turns out that t_3 is not 1-diagnosable: $v = t_2 t_4$ belongs to the post-language L/u and $t_1 t_2 t_4 \in Pr_L^{-1}(Pr(uv))$, with $t_3 \notin t_1 t_2 t_4$
- Exploiting similar arguments it readily follows that t₃ is 3-diagnosable, i.e., once t₃ has occurred it is possible to detect it after the firing of three transitions.

- Preliminaries

- K-diagnosability

- In Basile et al., Automatica-2012 the problem of *K*-diagnosability has been solved for bounded net systems by
 - exploiting the mathematical representation of PNs
 - \blacksquare using standard optimization tools \rightarrow Integer Linear Programming (ILP) problems

The proposed approach relies on the description (in terms of linear constraints) of the following two sets

The set of all markings reachable from m₀ that enable t_f (and that are reached by the firing of a sequence that does not contain t_f)

$$\mathcal{M}(t_f) = \left\{ \mathbf{m} \in \mathbb{N}^m \mid \left(\mathbf{m}_0[u
angle \mathbf{m}
ight) \bigwedge \left(t_f \notin u
ight) \bigwedge \left(\mathbf{m}[t_f
angle
ight)
ight\}.$$

■ The set of all possible continuations of the sequence *ut_f*, whose postfix contains at least *K* firings

$$\mathcal{S}(t_f, \mathcal{K}) = \left\{ \sigma \in T^* \mid \left(\sigma = ut_f v \right) \bigwedge \left(\mathbf{m}_0 [\sigma \rangle \right) \\ \bigwedge \left(\mathbf{m}_0 [u \rangle \mathbf{m} \right) \bigwedge \left(\mathbf{m} \in \mathcal{M}(t_f) \right) \bigwedge \left(|v| \ge \mathcal{K} \right) \right\}.$$

Sensors selection for $\mathcal K\text{-}diagnosability$ of Petri nets via ILP

- Preliminaries

 $\square \mathcal{K}$ -diagnosability

The set of linear constraints describing $S(t_f, \mathcal{K})$

$$\begin{split} \mathcal{F}(\mathbf{m}_{0},\hat{t},\mathcal{J},\mathcal{K}) &: \\ \left\{ \begin{array}{l} \mathbf{m}_{0} \geq \mathbf{Pre} \cdot \mathbf{u}_{1} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \mathbf{u}_{1} \geq \mathbf{Pre} \cdot \mathbf{u}_{2} \\ \cdots \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}-1} \mathbf{u}_{i} \geq \mathbf{Pre} \cdot \mathbf{u}_{\mathcal{J}} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}-1} \mathbf{u}_{i} \geq \mathbf{Pre} \cdot \mathbf{u}_{\mathcal{J}} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}-1} \mathbf{u}_{i} \geq \mathbf{Pre} \cdot \mathbf{u}_{\mathcal{J}} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{Pre} \cdot \mathbf{u}_{\mathcal{J}} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{Pre} \cdot \mathbf{v}_{\mathcal{J}} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{U}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{U}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{U}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J}} \mathbf{U}_{i} \geq \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} = \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} = \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \mathbf{C} + \mathbf{C} \cdot \mathbf{C} = \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \mathbf{C} + \mathbf{C} \cdot \mathbf{C} = \mathbf{C} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \mathbf{C} + \mathbf{C} \cdot \mathbf{C} + \mathbf{C} \cdot \mathbf{C} + \mathbf{C} \cdot \mathbf{C} + \mathbf{C} + \mathbf{C} \cdot \mathbf{C} + \mathbf{C} + \mathbf{C} \cdot \mathbf$$

- Preliminaries

- *K*-diagnosability

The set of linear constraints for the unobservable explanations of the vectors in $S(t_f, \mathcal{K})$

$$\begin{split} \mathcal{E} \left(\mathbf{m}_{0} \,, \sum_{i=1}^{\mathcal{J}} \mathbf{u}_{i|_{\mathcal{T}_{0}}} + \sum_{j=1}^{\mathcal{K}} \mathbf{v}_{j|_{\mathcal{T}_{0}}} \right) &: \\ \left\{ \begin{array}{l} \mathbf{m}_{0} + \mathbf{C} \cdot \boldsymbol{\varepsilon}_{1|_{\mathcal{T}_{uo}}} \geq \mathbf{Pre} \cdot \mathbf{s}_{1|_{\mathcal{T}_{o}}} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{2} \boldsymbol{\varepsilon}_{i|_{\mathcal{T}_{uo}}} + \mathbf{C} \cdot \mathbf{s}_{1|_{\mathcal{T}_{o}}} \geq \mathbf{Pre} \cdot \mathbf{s}_{2|_{\mathcal{T}_{o}}} \\ &\cdots \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J} + \mathcal{K}} \boldsymbol{\varepsilon}_{i|_{\mathcal{T}_{uo}}} + \mathbf{C} \cdot \sum_{j=1}^{\mathcal{J} + \mathcal{K} - 1} \mathbf{s}_{j|_{\mathcal{T}_{o}}} \geq \mathbf{Pre} \cdot \mathbf{s}_{\mathcal{J} + \mathcal{K}_{|_{\mathcal{T}_{o}}}} \\ \mathbf{m}_{0} \geq \mathbf{Pre} \cdot \boldsymbol{\varepsilon}_{1|_{\mathcal{T}_{uo}}} \\ \mathbf{m}_{0} \geq \mathbf{Pre} \cdot \boldsymbol{\varepsilon}_{1|_{\mathcal{T}_{uo}}} \\ \mathbf{m}_{0} + \mathbf{C} \cdot \left(\boldsymbol{\varepsilon}_{1|_{\mathcal{T}_{uo}}} + \mathbf{s}_{1|_{\mathcal{T}_{o}}} \right) \geq \mathbf{Pre} \cdot \boldsymbol{\varepsilon}_{2|_{\mathcal{T}_{uo}}} \\ \cdots \\ \mathbf{m}_{0} + \mathbf{C} \cdot \sum_{i=1}^{\mathcal{J} + \mathcal{K} - 1} \left(\boldsymbol{\varepsilon}_{i|_{\mathcal{T}_{uo}}} + \mathbf{s}_{i|_{\mathcal{T}_{o}}} \right) \geq \mathbf{Pre} \cdot \boldsymbol{\varepsilon}_{\mathcal{J} + \mathcal{K}_{|_{\mathcal{T}_{uo}}}} \end{split} \right.$$

Preliminaries

 $\square \mathcal{K}$ -diagnosability

Check $\mathcal{K}\text{-}diagnosability via sulution of an ILP problem$

Theorem 1

Consider a bounded net system $S = \langle N, \mathbf{m}_0 \rangle$ and a fault transition t_f , let \mathcal{J} be a positive integer such that $\mathcal{J} \geq \mathcal{J}_{\min}$.

Given a positive integer \mathcal{K} , t_f is \mathcal{K} -diagnosable if and only if there exist $3(\mathcal{J} + \mathcal{K})$ vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{\mathcal{J}}, \mathbf{v}_1, \ldots, \mathbf{v}_{\mathcal{K}}$, $\epsilon_1, \ldots, \epsilon_{\mathcal{J} + \mathcal{K}}, \mathbf{s}_1, \ldots, \mathbf{s}_{\mathcal{J} + \mathcal{K}} \in \mathbb{N}^n$ such that

$$\min_{\mathrm{s.t.} \ \mathcal{F} \cup \mathcal{E}} \sum_{r=1}^{\mathcal{J} + \mathcal{K}} \epsilon_r(t_f) \neq 0$$

Sensors selection for diagnosability

Sensors selection for ensuring diagnosability

- The goal is to select a minimal set of sensors to make the system diagnosable → *optimal static sensors selection*
- The word *minimal* is used to refer to different objectives
 - select the minimal number of sensors and the transitions/events to ensure diagnosability
 - select the sensors in order to minimize a cost function, which depends on the net transitions/events
- A number of results are available in the context of finite state automata (*Debouk et al.*, DEDS-2002, *Jiang et al.*, IEEE TAC-2003)
- In the field of PNs, the main contribution is that of Cabasino et al., Automatica-2013, where an approach based on the verifier net allows to tackle the sensors selection problem as a transition relabeling problem

Sensors selection for diagnosability

Main contribution

- The approach Cabasino et al., Automatica-2013 solves the problem in both the bounded and unbounded case
- However, it requires the computation of the reachability/coverability graph of the verified net to analyze its elementary bad paths, being very computation demanding
- We propose an approach based on the solution of ILP problems which exploits the same tools used to check diagnosability (and to perform fault detection → see Basile et al., IEEE TAC-2009 and Dotoli et al., Automatica-2009)
- In this preliminary work we propose a technique to compute the minimal number of randomly selected sensors needed to make a net system *K*-diagnosable
- We also propose a way to further improve this *estimation* by taking into account some elements of the net structures

-Sensors selection for diagnosability

- Problem statement

Problem statement

Problem 1

Given a bounded net system $S = \langle N, \mathbf{m}_0 \rangle$, a fault transition t_f , and a positive integer \mathcal{K} , find the integer \mathbf{Y}^* such that

a) there exists at least one possible choice of observable transitions T_o^* with card $(T_o^*) = Y^*$ such that t_f is \mathcal{K} -diagnosable;

b) for all the possible T_o with card (T_o) < Y^{*}, t_f results K-undiagnosable.

- The solution to Problem 1 can be obtained by checking the condition of Theorem 1 for all the 2ⁿ⁻¹ possible selections of observable transitions
- In order to avoid this combinatorial explosion, we want exploit the ILP-based formulation of \mathcal{K} -diagnosability to obtain an estimation $\hat{\mathbf{Y}} > \mathbf{Y}^{\star}$

-Sensors selection for diagnosability

- Problem statement

Mimimum number of randomly selected sensors that assure \mathcal{K} -diagnosability

Given a bounded net system $S = \langle N, \mathbf{m}_0 \rangle$, a fault transition t_f , and a positive integer \mathcal{K} , the minimum number of randomly selected sensors that assure \mathcal{K} -diagnosability of t_f is an integer $\widetilde{\mathbf{Y}}$ such that i) for all the possible choices of observable transitions \widetilde{T}_o such that card $(\widetilde{T}_o) = \widetilde{Y}$, t_f is \mathcal{K} -diagnosable;

ii) there exist at least one choice of observable transitions T'_o with card $(T'_o) = \tilde{Y} - 1$ for which t_f results \mathcal{K} -undiagnosable.

-Sensors selection for diagnosability

- Proposed approach

Proposed approach

- In order to compute Y the main ideas exploited by the proposed approach are
 - To model the possibility of setting the q-th transition observable/unobservable using a binary variable ŝ_{ta}
 - 2 To turn the objective function of Theorem 1 into the constraint

$$\sum_{r=1}^{\mathcal{J}+\mathcal{K}} \epsilon_r(t_f) = 0$$

3 To maximize $\sum_{q=1}^{n} \hat{s}_{t_q}$

-Sensors selection for diagnosability

- Proposed approach

Compute $\widetilde{\mathbf{Y}}$ via ILP

Lemma 1

Given a bounded net system $S = \langle N, \mathbf{m}_0 \rangle$, a fault transition t_f , and a positive integer \mathcal{K} , let $\mathcal{J} \geq \mathcal{J}_{\min}$ and M be a sufficiently large integer. The minimum number of randomly selected sensors \widetilde{Y} that assures the \mathcal{K} -diagnosability of t_f is given by

 $\widetilde{Y} = \mathcal{Y}_1 + 1\,,$

with \mathcal{Y}_1 equal to the solution of the following ILP problem

$$\mathcal{Y}_1 = \max_{ ext{s.t. }\mathcal{G}} \sum_{q=1}^n \hat{s}_{t_q} \,,$$

with \mathcal{G} being a *proper* set of constraints (\rightarrow see (7) in the paper)

-Sensors selection for diagnosability

- Proposed approach

Remarks

- In general Lemma 1 provides a poor estimation of Y*, that is Y is overly larger than Y*
- **Exploiting the knowledge on the net structure** it is possible to improve the estimation of Y^* , i.e. to find an estimation $\hat{\mathbf{Y}}$ such that $\mathbf{Y}^* \leq \hat{\mathbf{Y}} \leq \widetilde{\mathbf{Y}}$

-Sensors selection for diagnosability

- Proposed approach

Sequential paths and generalized diamond structures

The oriented
path
$$\delta = t^1 p^1 \cdots t^{h-1} p^{h-1} t^h$$
,
with $h \ge 2$, is said to be a **sequentia**
path if

i) card
$$({}^{\bullet}t^1) \neq 1$$
 and card $(t^{h^{\bullet}}) \neq 1$
ii) $t^{w^{\bullet}} = \{p^w\}$ for $w = 1, \dots, h-1$
iii) $p^{w^{\bullet}} = \{t^{w+1}\}$ for $w = 1, \dots, h-1$

A set of transitions γ = {t¹,..., t^c}, with c ≥ 2, is a generalized diamond structure if

i)
$$t^{1\bullet} = t^{2\bullet} \cdots = t^{c-1\bullet} = t^{c-1}$$

ii) $\bullet t^1 = \bullet t^2 \cdots = \bullet t^{c-1} = \bullet t^c$

Sensors selection for diagnosability

- Proposed approach

Improve the estimation of Y^{\star}

Theorem 2

Let \mathcal{Y}_2 be the solution of the ILP problem

$$\mathcal{Y}_2 = \max_{ ext{s.t. } \mathcal{H}(extbf{m}_0, t_f, \mathcal{J}, \mathcal{K})} \sum_{q=1}^n \hat{s}_{t_q} \,,$$

(1)

where the constraints $\mathcal{H}(\mathbf{m}_0, t_f, \mathcal{J}, \mathcal{K})$ are

$$\left\{egin{aligned} \mathcal{G}ig(\mathbf{m}_0\,,t_f\,,\mathcal{J}\,,\mathcal{K}ig)\ \hat{s}_i &= 1\,,\quad orall\,t_i\in\gamma_{t_f}\,,t_i
eq t_f\ \sum\limits_{t_i\in\Theta(\delta_j)}\hat{s}_{t_i} &\leq 1\,,\quad orall\,\,\delta_j
otin \Delta_{t_f}\ \hat{s}_{t_j} &= 1\,,\quad orall\,\,t_j &= \dot{t}(\delta_j)\,,\delta_j\in\Delta_t \end{aligned}
ight.$$

-Sensors selection for diagnosability

-Proposed approach

Improve the estimation of Y^* (cont'd)

Theorem 2

If (1) is unfeasible, then an estimate of the solution to Problem 1 is given by

$$\hat{Y} = \mathsf{card}\left(\gamma_{t_f}\right) + \mathsf{card}\left(\Delta_{t_f}\right) - 1 \leq \widetilde{Y}$$
.

A possible choice for the set of observable transitions that makes $t_f \mathcal{K}$ -diagnosable, is to take all the transitions which form a generalized diamond structure with t_f together with $\dot{t}(\delta_j)$ for all $\delta_j \in \Delta_{t_f}$.

If (1) is feasible, an estimation of the solution to Problem 1 is given by

$$\hat{Y} = \mathcal{Y}_2 + 1 \leq \widetilde{Y}$$
 .

- Examples

Examples 1/2

- When $t_f = t_3$ and $\mathcal{K} = 2$, the solution of the ILP problem in Lemma 1 returns $\mathcal{Y}_1 = 3$, which yields $\widetilde{Y} = 4$
- This poor estimation of Y*, can be easily verified, by checking that there is a choice of three observable transitions that does not include t₂, and which makes the system not 2-diagnosable
- The ILP problem proposed in Theorem 2 constraints
 - t₂ to be observable, since it forms a generalized diamond structure with t_f
 - t_4 to be observable, because $\dot{t}(\delta) = t_4$, with $\delta = \{t_4, t_5, t_1\}$

and turns out to be unfeasible. Hence, $\hat{Y} = 2$, and the set of observable transitions $T_o = \{t_2, t_4\}$ guarantees the 2-diagnosability of the considered fault.

 In this case, it can be easily verified that Y^{*} = Ŷ, hence Theorem 2 returns the optimal solution to Problem 1

- Examples

Examples 2/2

- When $t_f = t_3$ and $\mathcal{K} = 3$, Lemma 1 returns $\widetilde{Y} = 4$
- By applying Theorem 2, we obtain $\hat{Y} = 3 < \widetilde{Y}$
- In this case Ŷ represents a suboptimal solution to Problem 1, being Y* = 2

- Conclusions

Conclusive remarks

- We have proposed an approach to **cast the problem of** sensors selection to ensure *K*-diagnosability in ILP framework
- This preliminary work allows to compute an estimate (suboptimal) of the optimal solution to the sensor selection problem
- It has been shown how to improve the proposed estimation by exploiting the analysis of some elements of the net structures
- An interesting problem to be explored in the future is the sensors selection when a sensor has an attached cost that depends on the corresponding transition (being such a cost possibly time-varying)

Thank you!