# Robust Plasma Vertical Stabilization in Tokamak Devices via Multi-objective Optimization

ODS2017 - Int. Conf. Optimization and Decision Science September 4–7, 2017, Sorrento, Italy

# G. De Tommasi<sup>1</sup> A. Mele<sup>1</sup> A. Pironti<sup>1</sup> <sup>1</sup>Università degli Studi di Napoli Federico II/CREATE, Napoli, Italy

ODS 2017 Sorrento

#### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

# **Outline**

# Introduction

The plasma vertical stabilization problem

A multi-objective optimization approach

Conclusions

ODS 2017 Sorrento

#### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

# **Main Aim**

Production of energy by means of a fusion reaction

$$D+T \rightarrow {}^{4}\text{He}+n$$



#### ODS 2017 Sorrento

#### G. De Tommasi



#### Introduction

Plasma vertical stabilization

Multi-objective optimization approach

Conclusions

# Plasma

- High temperature and pressure are needed
- Fully ionised gas  $\mapsto$  Plasma
- Magnetic field is needed to confine the plasma

### **Plasma magnetic control**





In tokamaks, magnetic control of the plasma is obtained by means of magnetic fields produced by the external active coils

#### ODS 2017 Sorrento

#### G. De Tommasi



Introduction

Plasma vertical stabilization

Multi-objective optimization approach

# **Plasma magnetic control**





- In tokamaks, magnetic control of the plasma is obtained by means of magnetic fields produced by the external active coils
- In order to obtain good performance, it is necessary to have a plasma with vertically elongated cross section wertically unstable plasmas

#### ODS 2017 Sorrento

#### G. De Tommasi



Introduction

Plasma vertical stabilization

Multi-objective optimization approach

# Plasma magnetic control





### In tokamaks, magnetic control of the plasma is obtained by means of magnetic fields produced by the external active coils

- In order to obtain good performance, it is necessary to have a plasma with vertically elongated cross section wertically unstable plasmas
- It is important to maintain adequate plasma-wall clearance during operation

#### ODS 2017 Sorrento

### G. De Tommasi



Introduction

Plasma vertical stabilization

Multi-objective optimization approach

# Simplified filamentary model

Consider the simplified electromechanical model with three conductive rings, two rings are kept fixed and in symmetric position with respect to the r axis, while the third can freely move vertically.



If the currents in the two fixed rings are equal, the vertical position z = 0 is an equilibrium point for the system.

#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

# Stable equilibrium - 1/2

# If $sgn(I_p) \neq sgn(I)$



#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

# Stable equilibrium - 2/2

# If $sgn(I_p) \neq sgn(I)$



#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

# Unstable equilibrium - 1/2

# If $sgn(I_p) = sgn(I)$



#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

# **Unstable equilibrium - 2/2**

# If $sgn(I_p) = sgn(I)$



#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

# Vertical stabilization problem

- The plasma vertical instability reveals itself in the linearized model by the presence of an unstable eigenvalue in the dynamic system matrix
- The vertical instability growth time is slowed down by the presence of the conducting structure surrounding the plasma
- This allows to use a feedback control system to stabilize the plasma equilibrium, using for example a pair of dedicated coils

#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

- The plasma vertical instability reveals itself in the linearized model by the presence of an unstable eigenvalue in the dynamic system matrix
- The vertical instability growth time is slowed down by the presence of the conducting structure surrounding the plasma
- This allows to use a feedback control system to stabilize the plasma equilibrium, using for example a pair of dedicated coils

### Objectives

- Vertically stabilize elongated plasmas in order to avoid disruptions
- Counteract the effect of disturbances
- The VS is the essential magnetic control system!

#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

### **ITER-like VS for the EAST tokamak**



#### ODS 2017 Sorrento

#### G. De Tommasi



Introduction Plasma vertical stabilizatio

Multi-objective optimization approach

Conclusions



R. Albanese et al.

ITER-like Vertical Stabilization System for the EAST Tokamak Nucl. Fus., vol. 57, no. 8, pp. 086039, Aug. 2017

# SISO stability margins



The single-input-single-output (SISO) transfer function obtained by opening the control loop in correspondence of the control output is exploited to compute the stability margins (gain and phase margins)



G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

# **SISO stability margins**



The single-input-single-output (SISO) transfer function obtained by opening the control loop in correspondence of the control output is exploited to compute the stability margins (gain and phase margins)

 Given the *i*-th plasma linearized model, it is possible to define the objective function

$$\mathcal{F}_{i} = c_{1} \cdot (PM_{t} - PM(K_{v}, K_{lC}, \tau_{1}, \tau_{2}))^{2}$$
  
- $c_{2} \cdot (UGM_{t} - UGM(K_{v}, K_{lC}, \tau_{1}, \tau_{2}))^{2} + c_{3} \cdot (LGM_{t} - LGM(K_{v}, K_{lC}, \tau_{1}, \tau_{2}))^{2}$ 

### where

- PM is the phase margin
- UGM and LGM are the upper and lower gain margins
- c<sub>1</sub>, c<sub>2</sub> and c<sub>3</sub> are positive weighting coefficients
- *PM<sub>t</sub>*, *UGM<sub>t</sub>* and *LGM<sub>t</sub>* are the desired values (*targets*) for the stability margins

ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

Given N (different) plasma equilbria, it is possible to design the VS gains by solving the following multi-objective optimization problem

$$\begin{split} \min_{\substack{K_{\nu}, K_{lC}, \tau_{1}, \tau_{2}}} \mu \\ \text{s.t. } \mathcal{F}(K_{\nu}, K_{lC}, \tau_{1}, \tau_{2}) - \mu \cdot \mathbf{w} \leq \mathbf{0} \,, \end{split}$$

where  ${\mathcal F}$  is a vector function

$$\mathcal{F}(K_{v}, K_{lC}, \tau_{1}, \tau_{2}) = (\mathcal{F}_{1}(K_{v}, K_{lC}, \tau_{1}, \tau_{2}) \ldots \mathcal{F}_{N}(K_{v}, K_{lC}, \tau_{1}, \tau_{2}))^{T},$$

where w is a vector of weights.

#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

(1)

Given N (different) plasma equilbria, it is possible to design the VS gains by solving the following multi-objective optimization problem

$$\begin{split} \min_{\substack{K_{\boldsymbol{v}}, K_{lC}, \tau_1, \tau_2}} \mu \\ \text{s.t. } \mathcal{F}(K_{\boldsymbol{v}}, K_{lC}, \tau_1, \tau_2) - \mu \cdot \boldsymbol{w} \leq \boldsymbol{0} \,, \end{split}$$

where  ${\mathcal F}$  is a vector function

$$\mathcal{F}(K_{v}, K_{lC}, \tau_{1}, \tau_{2}) = \left(\mathcal{F}_{1}(K_{v}, K_{lC}, \tau_{1}, \tau_{2}) \ldots \mathcal{F}_{N}(K_{v}, K_{lC}, \tau_{1}, \tau_{2})\right)^{T},$$

where w is a vector of weights.

Problem (1) can be solved using a sequential quadratic programming method (matlab function fgoalattain)

#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

(1)

ODS 2017 Sorrento

G. De Tommasi



Introduction Plasma vertical stabilizatio

Multi-objective optimization approach

Conclusions



60938@6.06s efit\_east 64204@3.503s efitrt\_east 52444@3.0s efit\_east 46530@3.0s efit\_east Table : Main plasma parameters of the consideredEAST equilibria.

| Equilibrium | Shape type        | I <sub>peq</sub> [kA] | $\gamma [\mathrm{s}^{-1}]$ |
|-------------|-------------------|-----------------------|----------------------------|
| 46530       | Double-null       | 281                   | 137                        |
| 52444       | Limiter           | 230                   | 92                         |
| 60938       | Upper single-null | 374                   | 194                        |
| 64204       | Lower single-null | 233                   | 512                        |

**Table :** Maximum real part of the closed loop eigenvalues computed by applying to the *j*-th equilibrium the gains obtained with the single-objective approach for the *i*-th one, with  $i \neq j$ .

|                         | 46530  | 52444  | 60938  | 64204  |
|-------------------------|--------|--------|--------|--------|
| single-objective #46530 | -      | -0.365 | -0.088 | 255.99 |
| single-objective #52444 | -0.360 | _      | -0.358 | 897.01 |
| single-objective #60938 | -0.360 | -0.364 | -      | 153.57 |
| single-objective #64204 | -0.360 | -0.365 | -0.358 | _      |

ODS 2017 Sorrento

G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

# The considered case study - 3/3



**Figure :** Comparison of the stability margins obtained by using the multi-objective approach and the ones obtained by using the VS parameters given by the a single-objective approach for the EAST pulse #64204.

#### ODS 2017 Sorrento

#### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

- A robust design procedure for VS systems based on multi-objective optimization has been presented in this paper
- The proposed approach can be effectively used to vertically stabilize tokamak plasmas under different scenarios, without the need of online adaptive algorithms

#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

- A robust design procedure for VS systems based on multi-objective optimization has been presented in this paper
- The proposed approach can be effectively used to vertically stabilize tokamak plasmas under different scenarios, without the need of online adaptive algorithms
- Differently from other model-based robust approaches, the proposed one to directly specify the requirements in terms of stability margins

#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

- A robust design procedure for VS systems based on multi-objective optimization has been presented in this paper
- The proposed approach can be effectively used to vertically stabilize tokamak plasmas under different scenarios, without the need of online adaptive algorithms
- Differently from other model-based robust approaches, the proposed one to directly specify the requirements in terms of stability margins
- The effectiveness of the proposed design procedure has been shown by applying it to the design of the ITER-like VS system deployed at the EAST tokamak

#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach

- A robust design procedure for VS systems based on multi-objective optimization has been presented in this paper
- The proposed approach can be effectively used to vertically stabilize tokamak plasmas under different scenarios, without the need of online adaptive algorithms
- Differently from other model-based robust approaches, the proposed one to directly specify the requirements in terms of stability margins
- The effectiveness of the proposed design procedure has been shown by applying it to the design of the ITER-like VS system deployed at the EAST tokamak

# Thank you!

#### ODS 2017 Sorrento

### G. De Tommasi



Introduction Plasma vertical stabilization

Multi-objective optimization approach