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The vertical stabilization problem

Design a VS system
A state-space based approach
A multi-objective optimization approach
A input-output based approach
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Vertical stabilization problem (do you remember?)

Objectives

I Vertically stabilize elongated
plasmas in order to avoid
disruptions

I Counteract the effect of
disturbances (ELMs, fast
disturbances modelled as
VDEs,. . .)

I It does not necessarily
control vertical position but
it simply stabilizes the
plasma

I The VS is the essential
magnetic control system!
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ITER PF system (as a reference)

I External
superconductive coils

I Single coil
circuits

I Imbalance
circuits

I Internal copper coils
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Imbalance circuits for vertical stability

The ITER VS1 circuit
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The proposed control approach

VVS3 = L−1 [Fvs(s)] ∗ (K1ż + K2IVS3)

VVS1 = K3IVS3

I The vertical stabilization controller receives, as input,
the centroid vertical speed, and the current flowing in
the in-vessel coil (VS3) circuit (an in-vessel coil set)

I It generates, as output, the voltage references for
VS3 and for the imbalance circuit (VS1)

I Let us first assume

Fvs(s) = 1 ,

which implies

VVS3 = K1ż + K2IVS3

VVS1 = K3IVS3
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How to design the control gains?

VVS3 = K1ż + K2IVS3

VVS1 = K3IVS3

I The proposed approach includes (just) three gains (number)
I the speed gain K1
I the gain on the in-vessel current K2
I the gain on the imbalance current K3

I the proposed structure is rather simple, i.e. there are few
parameters to be tuned against the operational scenario

I such a structure permits to envisage effective adaptive
algorithms, as it is usually required in operation

I . . .but how to design these (few) gains?. . .
I . . .and how to adapt (tune) them in real-time?
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The state-space model

Σ :

{
ẋ(t) = Ax(t) + Bu(t) , x(0) = x0

y(t) = Cx(t)

where
I x(t) =

(
xT

pf (t) xic(t) xT
ec(t) xip (t)

)T ∈ RnPF +nEC +2 is the state
vector

I u(t) =
(
uic(t) uimb(t)

)T ∈ R2 are the input voltages

I y(t) =
(
y1(t) y2(t)

)T
=

(
xic(t) żp(t)

)T ∈ R2 is the output vector
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Modeling VDE for controller design

I A Vertical Displacement Event (VDE) is an uncontrolled growth of the
plasma unstable vertical mode

I Although, the plasma is always vertically controlled, these uncontrolled
growths can occur for different reasons:

I fast disturbances acting on a time scale which is outside
the control system bandwidth

I delays in the control loop
I wrong control action due to measurement noise, when

plasma speed is almost zero
I VDEs represent one of the worst disturbances to be rejected by the VS

system

I From the VS point of view a VDE is equivalent to a sudden and almost
instantaneous change in plasma position, which causes an almost
instantaneous change of the currents in x(t)⇒

i) a VDE can be modeled as instantaneous change of the
state vector

ii) the response of the plant to a VDE can be studied
considering the evolution of Σ for a the initial state
x(0) = xVDE
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Control problem

Problem

Given the plant Σ, and four positive scalars θmin , θmax ,T , L , find a static
output feedback

uic(t) = k1y1(t) + k2y2(t) , (1a)

uVS(t) = k3y1(t) , (1b)

such that the closed-loop system

Σcl :

{
ẋ(t) =

(
A + BKC

)
x(t)

y(t) = Cx(t) ,

with

K =

(
k1 k2
k3 0

)
,

i) is asymptotically stable;

ii) has a decay rate θmin < θ < θmax;

iii) if x(0) = xVDE then it must be

‖y1‖T =

[∫ T

0
‖y1(t)‖2dt

] 1
2

< L . (2)
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Design parameters

I θmin and θmax permit to guarantee that the closed-loop poles
belong to a given stripe of the complex plane

I This region is chosen on the basis of desired closed-loop
bandwidth

I The constraint (2) on the rms value of the on the in-vessel
current is computed over an appropriate time interval of length
T , whose value depends on the specification on the time
required to reject the VDE disturbance

I This specification in turn takes into account limitations on
voltage, current and power available on the plant.

I The parameter L is related to the thermal constraint, which limits
the rms value of the current in the in-vessel coil in presence of a
VDE.
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Controller structure

K =

(
k1 k2

k3 0

)
I The structure of K reflects the fact that we want to stabilize the

plasma only with the in-vessel coils, while the VS1 circuit is
employed to reduce the rms value of the current in the in-vessel
coils

I The in-vessel coils response promptly to a plasma vertical
displacement, being not shielded by the passive structures.

I The imbalance circuit can be effectively used to “drain” current
from the in-vessel coil, in order to reduce its rms value
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Design of the controller - 1/3

Theorem

Given the plant Σ and four positive scalars θmin , θmax ,T , L , then K is a
solution of Problem 1 if there exist

I a positive definite matrix P
I a positive definite matrix-valued function Π(t)
I a positive scalar θ

that solve the Differential Bilinear Matrix Inequality (D-BMI) feasibility
problem (

A + BKC
)T P + P

(
A + BKC

)
< −2θP ,

θmin < θ < θmax (3a)

˙Π(t) +
(
A + BKC

)T
Π(t)

+ Π(t)
(
A + BKC

)
+ ciccT

ic ≤ 0 , ∀ t ∈
[
0,T

]
(3b)

Π(0) < γ̂(L)2I (3c)

where cT
ic =

(
0 1 0

)
is the output row vector corresponding the

in-vessel current.
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Design of the controller - 2/3

I Differential BMI constrains can be recasted to standard BMI
constraints, by discretizing in time

I Optimization tools are available to solve BMI feasibility problems
(e.g, http://www.penopt.com/penbmi.html)

I Solving BMIs is computational demanding (NP-hard
problem)

I Offline solution of (3) on a full order linear model (about one
hundred states) can be a problem

I Two possible ways to ease the solution

1. use a reduced order model (up to 4th/5th order
model)

2. reduce the number of DoF when solving (3)
I more conservative :(
I less demanding :)



Padova - Jun ’19

G. De Tommasi

The VS problem

Design a VS
system
State-space approach

Multi-objective optimization
approach

Input-output approach

References

15

Design of the controller - 3/3

Theorem

Given the plant Σ and four positive scalars θmin , θmax ,T , L , then K is a
solution of Problem 1 if there exist

I two positive definite matrices P1 and P2

I a positive scalar θ

that solve the Bilinear Matrix Inequality (BMI) feasibility problem(
A + BKC

)T P1 + P1
(
A + BKC

)
< −2θP1 ,

θmin < θ < θmax (4a)(
A + BKC

)T P2 + P2
(
A + BKC

)
+ ciccT

ic ≤ 0 , (4b)

P2 < γ̂2(L)I (4c)
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Simulations for the ITER tokamak - 1/4

I Equilibrium: Īp = 15 MA, β̄p = 0.1, l̄i = 1.0
I VDE: 10 cm
I Given the values of the maximum allowable currents and

voltages on the in-vessel coils, a reasonable compromise
between control effort and closed-loop performance is to choose
T = 1 s

I θmin = 8 and θmax = 16
I Given the thermal constraint on the ITER in-vessel coils,

L = 40 kA
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Simulations for the ITER tokamak - 2/4

I Given the design parameters both (3) and (4) admit a solution
with γ̂ = 80

I Reduced order models of the plant have been used

I 2nd order model in order to solve D-BMIs (3)
I 4th order model in order to solve BMIs (4)

I K1 = KDBMI =

(
3.6 · 10−3 −478
3.5 · 10−2 0

)
, θ1 = 9.4

I K2 = KBMI =

(
3.9 · 10−3 −470
3.9 · 10−2 0

)
, θ2 = 8.3



Padova - Jun ’19

G. De Tommasi

The VS problem

Design a VS
system
State-space approach

Multi-objective optimization
approach

Input-output approach

References

18

Simulations for the ITER tokamak - 3/4

I Controller validation carried out using the full-order model of a
different plasma equilibrium (different linear model)

I In simulation, the model (26) has been completed adding the
models of the power supplies and of the diagnostic systems
(neglected in the design phase)
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Simulations for the ITER tokamak - 4/4

Figure: Closed-loop response to a 10 cm VDE. The solid traces show the
behavior obtained with the K1 controller, while the dashed traces refer to the
behavior obtained with K2.

‖y1‖T = 38.92 kA with K1
‖y1‖T = 39.45 kA with K2 (ITER requirement→ 40 kA).
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ITER-like VS for the EAST tokamak

UICref (s) =
1 + sτ1

1 + sτ2
·
(

Kv · Īpref ·
s

1 + sτz
· Zc(s) + KIC · IIC(s)

)



Padova - Jun ’19

G. De Tommasi

The VS problem

Design a VS
system
State-space approach

Multi-objective optimization
approach

Input-output approach

References

21

SISO stability margins

I The single-input-single-output (SISO) transfer function obtained by
opening the control loop in correspondence of the control output is
exploited to compute the stability margins (gain and phase margins)

I Given the i-th plasma linearized model, it is possible to define the
objective function

Fi = c1 · (PMt − PM(Kv ,KIC , τ1 , τ2))2

+c2·(UGMt − UGM(Kv ,KIC , τ1 , τ2))2+c3·(LGMt − LGM(Kv ,KIC , τ1 , τ2))2 ,

I where
I PM is the phase margin
I UGM and LGM are the upper and lower gain margins
I c1 , c2 and c3 are positive weighting coefficients
I PMt ,UGMt and LGMt are the desired values (targets) for the

stability margins
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Multi-objective optimization

Given N (different) plasma equilbria, it is possible to design the VS
gains by solving the following multi-objective optimization problem

min
Kv ,KIC ,τ1 ,τ2

µ

s.t. F(Kv ,KIC , τ1 , τ2)− µ · w ≤ 0 ,

where F is a vector function

F(Kv ,KIC , τ1 , τ2) = (F1(Kv ,KIC , τ1 , τ2) . . . FN(Kv ,KIC , τ1 , τ2))T ,

where w is a vector of weights.
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The EAST case study - 1/3

Table: Main plasma parameters of the considered
EAST equilibria.

Equilibrium Shape type Ipeq [kA] γ [s−1]
46530 Double-null 281 137
52444 Limiter 230 92
60938 Upper single-null 374 194
64204 Lower single-null 233 512
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The EAST case study - 2/3

Table: Maximum real part of the closed loop eigenvalues
computed by applying to the j-th equilibrium the gains obtained
with the single-objective approach for the i-th one, with i 6= j .

46530 52444 60938 64204
single-objective #46530 – -0.365 -0.088 255.99
single-objective #52444 -0.360 – -0.358 897.01
single-objective #60938 -0.360 -0.364 – 153.57
single-objective #64204 -0.360 -0.365 -0.358 –
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The EAST case study - 3/3

Figure: Comparison of the stability margins obtained using the
multi-objective approach and by using the VS parameters
obtained using a single-objective approach for the EAST
pulse #64204.
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Stabilizing the EAST plasma using a SISO controller - 1/2

Σ :

{
ẋ(t) = Ax(t) + Bu(t) , x(0) = x0

y(t) = Cx(t)

I From Σ it is possible to derive the input-output relationship
between the vertical speed Vp(s) and the voltage applied to the
in-vessel coil UIC(s) (the plasma)

Wp(s) =
Vp(s)

UIC(s)

I The IC power supply is modeled as

UIC(s) =
e−δpss

1 + sτps
· UICref (s) ,

with UICref (s) the voltage requested by the
controller, δps = 550 µs, τps = 100 µs

I At EAST the plasma vertical speed Vp(s) is estimated by means
of a derivative filter applied on Zp(s), i.e.

Vp(s) =
s

1 + sτv
· Zp(s) ,

with τv = 1 ms.
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Stabilizing the EAST plasma using a SISO controller - 2/2

I Putting everything together we get

Wplant (s) =
s

(1 + sτv )(1 + sτps)
·Wp(s) · e−δpss .

I The 550 µs time delay of the IC power supply can be replaced by
its third order Padé approximation

−(s − 8444)(s2 − 1.34 · 104s + 8.54 · 107)

(s + 8444)(s2 + 1.34 · 104s + 8.54 · 107)

I The only way to vertically stabilize EAST with a SISO stable
controller (SISO strong stabilizability) is to include an
integral action on the vertical speed (i.e., the vertical
position zp should be fed back

I The reason is that the plasma unstable pole is trapped between
two non minimum phase zeros
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Parity-Interlacing-Property (PIP)

Theorem

A linear plant W (s) is strongly stabilizable if and only if the number of
poles of W (s) between any pair of real zeros in the right-half-plane
(RHP) is even.

D. C. Youla, J. J. Bongiorno Jr., C. N. Lu
Single-loop feedback stabilization of linear multivariable
dynamical plants
Automatica, vol. 10, no. 2, pp. 159–173, Mar. 1974
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Stabilizing with a MIMO controller - 1/2

By closing the loop on IIC(s) we introduce another unstable pole in the
uic − żp channel

(a) Root locus of the uic − żp

channel, when the loop on the IC
current is closed.

(b) Bode diagrams of the full-
order and reduced-order versions
of transfer function for the uic − żp

channel, when the loop on the IC
current is closed.
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Stabilizing with a MIMO controller - 2/2

Closing a stable controller on the vertical speed is now possible to
stabilize the EAST plasma

Figure: Root locus of the uic − żp channel, when the loop on the IC
current is also closed.



Padova - Jun ’19

G. De Tommasi

The VS problem

Design a VS
system
State-space approach

Multi-objective optimization
approach

Input-output approach

References

31

Conclusive remarks

I The VS gains need to be adjusted/adapted during the pulse
I The plasma speed gain must be scaled with Ip EASY :)
I The gains should be also scheduled as function of the growth

rate HARD :(

I Whatever adaption technique is used. . .

I gain scheduling
I real adaptive control (model-based)

I . . . an estimation of the growth rate in real-time is needed!
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