Real-time control systems: an application to fusion experimental devices

Università degli Studi di Salerno, April 21, 2016

G. De Tommasi¹ ¹DIETI, Università di Napoli Federico II Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

Real-time systems

Real-time for control

Fusion and Tokamaks

Magnetic control in a tokamak device

A real-time framework for control systems in fusion devices

JETRT From JETRT to MARTe Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic control

- A real-time system is a system (hardware+software) subject to "real-time constraints".
- In a real-time system, the result of a computation is correct if
 - ▶ is correct (!)...
 - ... AND meets specified time constraints the so called "deadlines"

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

Example of non-real-time algorithm

}

Functional requirement: Given the two weights w1 and w2, compute the weighted sum of the two inputs u1 and u2

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

Example of Real-time algorithm

- Functional requirement: Given the two weights w1 and w2, compute the weighted sum of the two inputs u1 and u2
- Non-functional requirement: perform the computation in at most 1 ms

```
Now writing...
```

}

...is no more sufficient to fulfill the requirements! We should exploit (indirectly) the hardware architecture and (directly) the operating system, in order to meet the time constraint Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

A computation must be performed every X time units

 is a *periodic* activity (task), and the time constraint must be met with a given accuracy (*jitter*)

Examples

- "the control action to be applied by the aerosurfaces of an aircraft must be computed every 5 ms"
- "System A must send a message to system B every 10 s"
 - Remember: real-time does not necessarily means "fast"!

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic control

A computation must be completed within Y time units after its triggering

▶ is a task with a *deadline* (*cyclic* or *event-based*)

Examples

- "the cyclic execution of a PLC must terminates within 200 ms"
- "stop the cruise control within 50 ms after the break press"
- Note: usually a periodic task should also meet a deadline

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic control

Hard and soft real-time

- Hard real-time systems
 - Missing (even a single) deadlines means system failure (!)
- Safety critical systems
 - Missing deadlines can cause serious loss
- Soft real-time systems
 - Deadlines may be missed and mainly cause a deterioration of the QoS
- Real world (real-time) systems have a mix of hard/soft components
- The distinction between hard and soft real-time is somewhat subjective
- Soft real-time is not Non-real-time (!)

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic control

Assess schedulability

- Given n real-time tasks...
- ...given the correspondent time constraints (deadlines)...
- ...given the hardware (and software) architecture...
 - ▶ is it possible to meet all the timing requirements, i.e. is it possible to schedule the tasks?
 - Are the deadlines met for all the cyclic and event-driven tasks?

 $End_time(task_k)-Start_time(task_k) \le Deadline(task_n)$

- Are the periodic tasks executed with the required accuracy? Do they meet their deadlines?
- There exist formal methods that permits to assess schedulability (under given assumptions)

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

Real-time operating systems (RTOS)

- Interrupts/Polling
- Multitasking (concurrency)
- Timer support
- Static scheduling/Preemptive scheduling (priorities)
- Task Segregation
- ▶ ...

Some RTOS

- WindRiver VxWorks
- QNX Neutrino
- RTAI (Linux patch)
- FreeRTOS
- Windows CE

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

Example - Continuous control system 1/2

Controller

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic control

RT systems in fusion devices JETRT From JETRT to MARTe

The plant

r(t)

$$G(s) = \frac{2.5 \cdot 10^5}{(s+10)(s^2+80s+2500)}$$

u(t)

G(s)

|d(t)|

y(t)

n(t)

 $G_d(s)$

+

Example - Continuous control system 2/2

The continuous-time controller

$$C(s) = rac{2.24(s+25)^2}{s(s+200)}$$

Open-loop step response

Real-time control systems

G. De Tommasi

Outlin

(1)

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic control

The discrete-time controller

Given the sampling frequency $f_s = 200$ Hz, the Tustin approximation of the controller (1) is

$$\hat{C}_d(z) = rac{1.686(z-0.882)^2}{(z-1)(z-1/3)}$$

- Implementing the discrete-control law (2) means
 - Functional requirement: to write a task that computes the correspondent difference equation
 - Non-functional requirement: to execute the task every 5 ms (assuming negligible execution time)

Real-time control systems

G. De Tommasi

Outline

(2)

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

To meet or not to meet (the deadlines)?

Use Simulink...

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic control

To meet or not to meet (the deadlines)?

...with Fixed time-step solver...

Configuration Parameters: examp		
Select:	Simulation time	
Solver Data Import/Export Data Import/Export Hardware Implementation Model Referencing Simulation Target Code Generation HDL Code Generation	Start time: 0.0	Stop time: 1.2
	Solver options	
	Type: Fixed-step	Solver: ode3 (Bogacki-Shampine)
	Fixed-step size (fundamental sample time):	Т
	Tasking and sample time options	
	Periodic sample time constraint:	Unconstrained
	Tasking mode for periodic sample times:	Auto
	$\hfill\square$ Automatically handle rate transition for data transfer	
	Higher priority value indicates higher task priority	

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

... changing the time step

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic control

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

```
Fusion and
Tokamaks
```

Magnetic control

RT systems in fusion devices JETRT From JETRT to MARTe

Main Aim

Production of energy by means of a fusion reaction

$$D + T \rightarrow {}^{4}\mathrm{He} + r$$

Plasma

- High temperature and pressure are needed
- ▶ Fully ionised gas → Plasma
- Magnetic field is needed to confine the plasma

What is a Tokamak?

A tokamak is an electromagnetic machine containing a fully ionised gas (plasma) at about 100 million degrees within a torus shaped vacuum vessel. Poloidal and toroidal field coils, together with the plasma current, generate a spiralling magnetic field that confines the plasma.

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks

Magnetic control

The JET tokamak

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks

Magnetic control

Magnetic control in tokamaks

- In tokamaks, control of the plasma is obtained by means of magnetic fields produced by the external active coils
- In order to obtain good performance, it is necessary to have a plasma with vertically elongated cross section ⇒ vertically unstable plasmas
- It is important to maintain adequate plasma-wall clearance during operation

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

Real-time control systems

G. De Tommasi

Real-time for control systems

Fusion and Tokamaks Magnetic contro

A JET discharge

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

Example of magnetic control system - A proposal for the ITER tokamak

Real-time control systems

G. De Tommasi

Example of magnetic control system - The JET tokamak

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

PPCC systems for plasma magnetic control

The two main systems run at JET by the Plasma Position and Current Control Group were (and still are!):

Shape Controller (SC) C code deployed on a VxWorks/VME/Motorola68k platform

the Vertical Stabilization System (VS) C code deployed on 4 Texas Instruments DSPs

- The code was tailored for the specific platform
- Lack of modularity
- Different software solutions to interface with the JET software infrastructure (pre-pulse system configuration, post-pulse data collection,...)

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

A new framework for RT applications

- In 2001/2002 the revamping of the SC was planned in order to add the eXtreme Shape Controller algorithm (XSC)
- Within the PPCC group, it was decided to move to a common framework for the development of real-time applications

Aims (User Requirements)

- Standardize the development of real-time applications
- Increase the code reusability
- Separate (as much as possible) the user application from the software required to interface with the plant infrastructure
- Reduce the time needed for commissioning

High Level System Requirements

The new framework would have been:

- portable (multi-OS and multi-platform)
- modular the user application would have been easily plugged into an executor of real-time application
- written in C++ (object oriented approach)

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic control

Why we want to separate application from infrastructure software?

- Scientists (process experts) can abstract from the plant interfaces
- Increase code reusability
- Achieve standardization

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contr

JETRT

The JETRT framework was developed in 2002/2003 to deploy the XSC
 JETRT is based on the cross-platform BaseLib library (developed within the PPCC group)

Real-time control systems

G. De Tommasi

Real-time for control systems Fusion and Tokamaks Magnetic control RT systems in fusion devices JETRT Form JETRT to be

- 1. Identification of the services
- 2. Definition of the servers interface
- 3. Implementation (technological solutions)

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

Real-time application plug-in

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

RT systems in fusion devices JETRT From JETRT to MARTe

The **Real-time Application Plug-in** that can be used to:

- perform offline validation against a plat model
- perform real-time validation with hardware-in-the-loop
- run the real-time system on the plant

- The new SC (including the XSC) was deployed on a 400 MHz G4 PowerPC running VxWorks
- ▶ 2 ms control loop (but it can easily run at 1 ms)

Commissioning of the JETRT framework and of the XSC

- Thanks to portability, an exhaustive debug of both the JETRT framework and the XSC was performed
 - offline, on a Windows-based platform
 - in lab, with a mockup of the JET timing system and of the I/O
- Only 3 days of testing on the plant were needed for the commissioning of the new system

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

The JET XSC control system

- VME architecture
- PowerPC 400 MHz
- 512 MB RAM
- ATM (for real-time comms) and Ethernet (for non-real-time comms) network interfaces
- VxWorks OS
- Sampling frequency 500 Hz

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

- JETRT didn't provide a real separation between the user application from the plant-interface software!
- In 2011, about 1 ppm was needed to include a new component in the XSC (the Current Limit Avoidance system)!

From JETRT to MARTe

- More modularity → Generic Application Modules (GAMs)
- ► Real separation → Dynamic Data Buffer (DDB)

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic control

MARTe

- To solve the existing problems, the JETRT framework evolved into MARTe
- MARTe allows to exploit tasks (thread) segregation on multi-core architectures in order to achieve hard-real-time also with a vanilla Linux!
- First used in 2008 to implement the JET vertical stabilization system (sampling frequency 20 kHz, with jitter < 1 μs)
- MARTe is currently used in different fusion laboratories – JET (UK), COMPASS (Czech Republic), KSTAR (South Corea), FTU (Italy), RFX (Italy), ISTTOK (Portugal)
- MARTe is distributed under EU open-source licence → http://efda-marte.ipfn.ist.utl.pt/

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

The Vertical Stabilization at JET 1/3

- Bus architecture based on ATCA+PCle
- Multi-core processor (Inter Core2 Quad)
- Linux+RTAI OS
- 192 signals acquired by ADCs (18 bits 2 MHz) and transferred at each cycle
- 50 μs control loop cycle time with jitter < 1 μs
- Always in real-time (24 hours per day)
 - 1.728×10^9 50 μs cycles/day

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

The Vertical Stabilization at JET 2/3

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic control

The Vertical Stabilization at JET 3/3

Real-time control systems

G. De Tommasi

Outline

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

Conclusive remarks

- Real-time systems are required whenever time constraints are included within the requirements
- The implementation of control/automation systems always call for real-time systems
- The deployment of a real-time systems usually requires a detailed knowledge of both the hardware architecture and of the software infrastructure (mainly the OS)
- For specific application, the developer can abstract from the underlying architecture
 - PLC development environments
 - Microcontroller SDKs
 - ▶ ...
 - Frameworks for specific applications (e.g. the nuclear fusion control applications)
- Multi-processor/multi-core architectures allows to achieve real-time behavior without necessarily relying on RTOS

Real-time control systems

G. De Tommasi

Outlin

Real-time systems

Real-time for control systems

Fusion and Tokamaks Magnetic contro

RT systems in fusion devices JETRT From JETRT to MARTe

Thank you!