Brief history of the MARTe framework

CODAC MARTe Meeting Barcelona, September 30, 2013

> G. De Tommasi¹ ¹CREATE, Università di Napoli Federico II

MARTe History

G. De Tommasi

Outline

Where we started from

JETRT

From JETRT to MARTe

Conclusions

1

MARTe History

G. De Tommasi

Outline

Where we started from

From JETRT to MARTe

Conclusions

Where we started from - JETRT JETRT

From JETRT to MARTe

Conclusions

2

PPCC systems for plasma magnetic control

The two main systems run at JET by the Plasma Position and Current Control Group were (and still are!):

Shape Controller (SC) C code deployed on a VxWorks/VME/Motorola68k platform

the Vertical Stabilization System (VS) C code deployed on 4 Texas Instruments DSPs

- The code was tailored for the specific platform
- Lack of modularity
- Different software solutions to interface with the JET software infrastructure (pre-pulse system configuration, post-pulse data collection,...)

Fus. Eng. Design, vol. 48(1-2), Aug. 2000

G. De Tommasi

Outline

Where we started from

JETRT

From JETRT to MARTe

A new framework for RT applications

- In 2001/2002 the revamping of the SC was planned in order to add the eXtreme Shape Controller algorithm (XSC)
- Within the PPCC group, it was decided to move to a common framework for the development of real-time applications

MARTe History

G. De Tommasi

Outlin

Where we started from

JETRT

From JETRT to MARTe

A new framework for RT applications

- In 2001/2002 the revamping of the SC was planned in order to add the eXtreme Shape Controller algorithm (XSC)
- Within the PPCC group, it was decided to move to a common framework for the development of real-time applications

Aims (User Requirements)

- Standardize the development of real-time applications
- Increase the code reusability
- Separate (as much as possible) the user application from the software required to interface with the plant infrastructure
- Reduce the time needed for commissioning

MARTe History

G. De Tommasi

Outlin

Where we started from

JETRT

From JETRT to MARTe

A new framework for RT applications

- In 2001/2002 the revamping of the SC was planned in order to add the eXtreme Shape Controller algorithm (XSC)
- Within the PPCC group, it was decided to move to a common framework for the development of real-time applications

Aims (User Requirements)

- Standardize the development of real-time applications
- Increase the code reusability
- Separate (as much as possible) the user application from the software required to interface with the plant infrastructure
- Reduce the time needed for commissioning

High Level System Requirements

The new framework would have been:

- portable (multi-OS and multi-platform)
- modular the user application would have been easily plugged into an executor of real-time application
- written in C++ (object oriented approach)

MARTe History

G. De Tommasi

Outlin

Where we started from

JETRT

From JETRT to MARTe

MARTe History

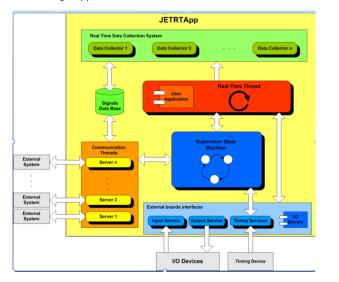
G. De Tommasi

Outlin

Where we started from

JETRT

From JETRT to MARTe


Conclusions

Why we want to separate application from infrastructure software?

- Scientists (process experts) can abstract from the plant interfaces
- Increase code reusability
- Achieve standardization

JETRT

The JETRT framework was developed in 2002/2003 to deploy the XSC
JETRT is based on the cross-platform BaseLib library (developed within the PPCC group)

MARTe History

G. De Tommasi

Outline

Where we started rom JETRT

From JETRT to MARTe

MARTe History

G. De Tommasi

Outline

Where we started from

From JETRT to MARTe

Conclusions

1. Identification of the services

- 1. Identification of the services
- 2. Definition of the servers interface

G. De Tommasi

Outline

Where we started rom

From JETRT to MARTe

- 1. Identification of the services
- 2. Definition of the servers interface
- 3. Implementation (technological solutions)

G. De Tommasi

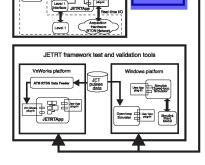
Outline

Where we started rom

From JETRT to MARTe

MARTe History

G. De Tommasi


Outline

Where we started from JETRT

From JETRT to MARTe

Conclusions

The **Real-time Application Plug-in** that can be used to:

RT Plug-in

A Generic JETRT Real-Time Application

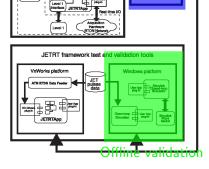
In the JET environment

External systems

MARTe History

G. De Tommasi

Outline


Where we started from JETRT

From JETRT to MARTe

Conclusions

The **Real-time Application Plug-in** that can be used to:

 perform offline validation against a plat model

RT Plug-in

A Generic JETRT Real-Time Application

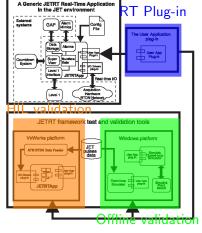
In the JET environment

External systems

MARTe History

G. De Tommasi

Outline


Where we started from JETRT

From JETRT to MARTe

Conclusions

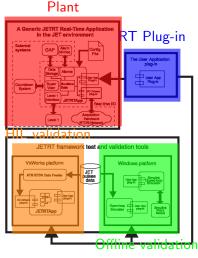
The **Real-time Application Plug-in** that can be used to:

- perform offline validation against a plat model
- perform real-time validation with hardware-in-the-loop

MARTe History

G. De Tommasi

Outline


Where we started from JETRT

From JETRT to MARTe

Conclusions

The **Real-time Application Plug-in** that can be used to:

- perform offline validation against a plat model
- perform real-time validation with hardware-in-the-loop
- run the real-time system on the plant

- The new SC (including the XSC) was deployed on a 400 MHz G4 PowerPC running VxWorks
- 2 ms control loop (but it can easily run at 1 ms)

Commissioning of the JETRT framework and of the XSC

- Thanks to portability, an exhaustive debug of both the JETRT framework and the XSC was performed
 - offline, on a Windows-based platform

G. De Tommasi

Outline

Vhere we started rom JETRT From JETRT to

- The new SC (including the XSC) was deployed on a 400 MHz G4 PowerPC running VxWorks
- 2 ms control loop (but it can easily run at 1 ms)

Commissioning of the JETRT framework and of the XSC

- Thanks to portability, an exhaustive debug of both the JETRT framework and the XSC was performed
 - offline, on a Windows-based platform
 - in lab, with a mockup of the JET timing system and of the I/O

MARTe History

G. De Tommasi

Outline

Vhere we started rom JETRT

MARTe

- The new SC (including the XSC) was deployed on a 400 MHz G4 PowerPC running VxWorks
- 2 ms control loop (but it can easily run at 1 ms)

Commissioning of the JETRT framework and of the XSC

- Thanks to portability, an exhaustive debug of both the JETRT framework and the XSC was performed
 - offline, on a Windows-based platform
 - in lab, with a mockup of the JET timing system and of the I/O
- Only 3 days of testing on the plant were needed for the commissioning of the new system

MARTe History

G. De Tommasi

Outline

Vhere we started rom JETRT

MARTe - The origins (Fall Winter 2004/05)

MARTe History

G. De Tommasi

Outline

Where we started from

JETRT

From JETRT to MARTe

JETRT didn't provide a real separation between the user application from the plant-interface software!

MARTe History

G. De Tommasi

Outline

Where we started from

JETRT

From JETRT to MARTe

- JETRT didn't provide a real separation between the user application from the plant-interface software!
- In 2011, about 1 ppm was needed to include the Current Limit Avoidance system in SC!

G. De Tommasi

Outline

Where we started from

JETRT

From JETRT to MARTe

- JETRT didn't provide a real separation between the user application from the plant-interface software!
- In 2011, about 1 ppm was needed to include the Current Limit Avoidance system in SC!

From JETRT to MARTe

- More modularity → Generic Application Modules (GAMs)
- ► Real separation → Dynamic Data Buffer (DDB)

G. De Tommasi

Outline

Where we started

JETRT

From JETRT to MARTe

- JETRT didn't provide a real separation between the user application from the plant-interface software!
- In 2011, about 1 ppm was needed to include the Current Limit Avoidance system in SC!

From JETRT to MARTe

- More modularity → Generic Application Modules (GAMs)
- ► Real separation → Dynamic Data Buffer (DDB)
- ... what happened after is a well-known story

G. De Tommasi

Outline

Where we started

JETRT

From JETRT to MARTe

- I need to know very few things about the framework to write my GAMs
- I can make the functional tests in my office without any specific hardware
- I'm sure that the code I'm writing will be the one deployed on the plant
- I can easily build a web-based HMI that will not affect the system performance
- If someone develops something interesting, I can easily use it in my project

MARTe History

G. De Tommasi

Outline

Where we started from

rom IETR

MARTe History

G. De Tommasi

Outline

Where we started from

JEIRI

From JETRT to MARTe

Conclusions

Writing the config files by hand!

G. De Tommasi

Outline

Where we started from

JETRT

From JETRT to MARTe

Conclusions

Writing the config files by hand!

Lack of tools that facilitate the system setup

- Writing the config files by hand!
 - Lack of tools that facilitate the system setup
- Although some of effort has been done so far...
 - ...documentation is one of the weakest point for MARTe

MARTe History

G. De Tommasi

Outline

Where we started from

JETRT

From JETRT to MARTe

ITER is an international project and people from all over the world will contribute to the development of real-time systems (control systems and diagnostics)

MARTe History

G. De Tommasi

Outline

Where we started from

JETRT

From JETRT to MARTe

ITER is an international project and people from all over the world will contribute to the development of real-time systems (control systems and diagnostics)

They will contribute coming on-site

MARTe History

G. De Tommasi

Outline

Where we started from

JETRT

From JETRT to MARTe

ITER is an international project and people from all over the world will contribute to the development of real-time systems (control systems and diagnostics)

- They will contribute coming on-site
- They will contribute developing new features at their home lab

MARTe History

G. De Tommasi

Outline

Where we started from

JETRT

From JETRT to MARTe

ITER is an international project and people from all over the world will contribute to the development of real-time systems (control systems and diagnostics)

- They will contribute coming on-site
- They will contribute developing new features at their home lab
- Definition of the APIs for all the services (I/O drivers, data collection, communication services, etc.)

MARTe History

G. De Tommasi

Outline

Where we started from

JEIRI

From JETRT to MARTe

ITER is an international project and people from all over the world will contribute to the development of real-time systems (control systems and diagnostics)

- They will contribute coming on-site
- They will contribute developing new features at their home lab
- Definition of the APIs for all the services (I/O drivers, data collection, communication services, etc.)
- Separation between the user application and the infrastructure

G. De Tommasi

Outline

Where we started from

JETRT

From JETRT to MARTe

ITER is an international project and people from all over the world will contribute to the development of real-time systems (control systems and diagnostics)

- They will contribute coming on-site
- They will contribute developing new features at their home lab
- Definition of the APIs for all the services (I/O drivers, data collection, communication services, etc.)
- Separation between the user application and the infrastructure
- Possibility of testing the real-time software with a simple PC (no need of special DAQ hardware)

MARTe History

G. De Tommasi

Outline

Where we started from

From JETRT to MARTe

ITER is an international project and people from all over the world will contribute to the development of real-time systems (control systems and diagnostics)

- They will contribute coming on-site
- They will contribute developing new features at their home lab
- Definition of the APIs for all the services (I/O drivers, data collection, communication services, etc.)
- Separation between the user application and the infrastructure
- Possibility of testing the real-time software with a simple PC (no need of special DAQ hardware)
- Automatic code generation(?)

MARTe History

G. De Tommasi

Outline

Where we started from

JEIRI

From JETRT to MARTe