
From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

1

From Simulink to RT tools

June 15, 2010

June 15, 2010 - EFDA Feedback Control Working Group
Meeting

G. De Tommasi1 A. Barbalace2 A. Neto3 F. Sartori4

L. Zabeo5 and EFDA-JET PPCC contributors
1EURATOM-ENEA-CREATE, Università di Napoli Federico II

2Consorzio RFX
3Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear

4Fusion For Energy 5ITER Organization



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

2

Outline

Motivations

A brief history

From Simulink to Real-Time Environments



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

3

Motivations

Main aim

I Reduction of the time needed for commissioning
on the machine

I Reduction of the risk on the plant



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

4

Requirements

Requirements for the RT framework

I Standard architecture for real-time control systems

I Complete separation between the algorithmic part of a
real-time application from the plant-interface software

Requirements for the design environment

I Model based design

I Validation via simulation

I Tools for the rapid prototyping of the real-time
application



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

5

Design aided with modeling, simulation and rapid
prototyping tool



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

6

The JET eXtreme Shape Controller 2002–2003

Development phase

I The design and validation of the control algorithm was carried out in
Matlab/Simulink environment (XSC Tools [1])

I The control algorithm were coded “by-hands” in the JETRT
framework [2] (MARTe ancestor)

I During the implementation phase the control algorithm was revised

I The XSC Tools were updated in order to take into account these
changes!

I The final version the XSC Tools allows the user to generate an XSC
scenario (i.e. the file that is loaded by the session leader when preparing
the experiment)

G. De Tommasi et al.,

XSC Tools: a software suite for tokamak plasma shape control design and validation
IEEE Transactions on Plasma Science, vol. 35(3), Jun. 2007

G. De Tommasi et al.,

A flexible software for real-time control in nuclear fusion experiments
Control Engineering Practice, vol. 14(11), Nov. 2006



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

7

The JET eXtreme Shape Controller 2002–2003

Commissioning phase

I Each time a new XSC scenario has been released the
tuning of the controller parameters and its validation
has been performed in the Matlab/Simulink
environment with the XSC Tools

I The real-time boundary reconstruction code
(XLOC/Felix) has been plugged in the Simulink scheme
in order to minimize the differences between the offline
and the real-time environment

I In this case we “embedded” the real-time code
into Simulink



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

8

From real-time environment to Simulink

“Embedding RT code into Simulink”

I In most of the cases to check the real-time version of the
controller it is convenient to run it against the plant model in
the Simulink environment.

I The real-time version and the Simulink version of the system
can be run in parallel in order to perform the validation



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

9

Lessons learned from the XSC experience

Wishes

I Avoid implementation by-hands → automatic real-time code
generation

I Allow to perform closed–loop validation with the real-time
code

Limitations

I JETRT didn’t provide a real separation between the
algorithmic part of a real-time application from the
plant-interface software

I JETRT didn’t allow the user to plug in a plant model in
order to perform closed–loop validation of the real-time
system



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

10

Further development of the JETRT framework 2005–2007

I In 2005–2007 a first attempt to automatically generate
user application starting from Simulink was carried out
in collaboration with ENEA

I This activity was abandoned due to licensing problems
at JET

I The development of the JETRT framework stopped
since we moved to MARTe, which provides a real
separation between the algorithmic part of a real-time
application from the plant-interface software



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

11

The new JET Vertical Stabilization System 2008–2009

Development phase

I The design and validation phases were still carried out in
Matlab/Simulink environment

I The control algorithm was still coded “by-hands” as a
Generic Application Module (GAM) in MARTe [1]

I Validation of the real-time code were performed by
closed–loop simulations GAMifying the CREATE plasma
model [2]

A. C. Neto et al.,

MARTe: a Multi-Platform Real-Time Framework,
IEEE Transactions on Nuclear Science, vol. 57(2), Apr. 2010

T. Bellizio et al.,

A MARTe based simulator for the JET vertical stabilization system,

submitted to 26th Symposium on Fusion Technology (SOFT’10), 2010



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

12

Something is still pending!

I Within MARTe we still need automatic code generation
tools!

I We would like to exploits the Mathworks Real-Time
Workshop to automatically generate GAMs starting
from Simulink schemes



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

13

We would like to make it easy!

We would like to just press a button and generate the code
for real-time



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

14

Automatic code generation

Automatic code generation is used for rapid prototyping in
different fields:

I Automotive industry

I Aerospace industry

I Electrical drives

I . . .

Many commercial tools are available:

I Mathworks Real-Time Workshop

I dSpace

I Labview Simulation Interface Toolkit (which partially exploits
Mathworks Real-Time Workshop)

I . . .

but there are also open source tools:

I Scilab/Scicos (compatible RTAI)

I Ptolemy/Kepler

I . . .



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

15

Target Hardware

I Generally these tools generate either a general purpose
code or they are tailored for a specific HW platform

I Thanks to MARTe architecture GAMs code is not
linked to any specific HW platform

I Within MARTe the automatic code generation can be
performed regardless of the HW platform



From Simulink to
RT tools

G. De Tommasi

Outline

Motivations

A brief history

From Simulink to
RT

16

From Simulink to GAM

Matlab/Simulink environment is a standard de facto for the
design of control algorithms

Possible activity

Automatic GAM generation starting from Simulink can be
done:

I Exploiting the Real-Time Workshop Target Language
Compiler (TLC) to generate a new target for the
MARTe GAMs, which is HW independent

I Generating a general purpose C/C++ code with the
Real-Time Workshop and then wrap it into a GAM (a
similar solution is currently adopted by RFX)


	Outline
	Motivations
	A brief history
	From Simulink to Real-Time Environments

