An efficient approach for on-line diagnosis of discrete event systems

F. Basile¹ P. Chiacchio¹ G. De Tommasi²

¹Università di Salerno, Italy ²Università di Napoli "Federico II", Italy

MED Conference 2007, Athens, Greece, 27-29 June 2007

- Safety issue plays an important role for the reliability of complex systems
- Fault detection is crucial for the safety systems and operators
- When a fault is detected and identified, the control law can be modified in order to continue the operations (increasing the *robustness* of the control systems)
- Fault detection for DES has been issued since the mid 80s, and it is still an *hot topic*
- The standard approach is based on the *diagnoser* automata (Sampath et al., IEEE Trans. Aut. Contr., 1995)
- All possible unobservable events that may occur from a given state have to be considered

- Safety issue plays an important role for the reliability of complex systems
- Fault detection is crucial for the safety systems and operators
- When a fault is detected and identified, the control law can be modified in order to continue the operations (increasing the *robustness* of the control systems)
- Fault detection for DES has been issued since the mid 80s, and it is still an *hot topic*
- The standard approach is based on the *diagnoser* automata (Sampath et al., IEEE Trans. Aut. Contr., 1995)
- All possible unobservable events that may occur from a given state have to be considered

- A number of approaches based on a Petri net model of the plant have been proposed
- Faults are associated to unobservable transitions
- These approaches need to estimate the current state of the net

Explosion of the state space estimation

- A number of approaches based on a Petri net model of the plant have been proposed
- Faults are associated to unobservable transitions
- These approaches need to estimate the current state of the net

Explosion of the state space estimation

Explosion of the state space estimation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

 $\mathbf{m}_0 = \begin{bmatrix} 2 \ 0 \ 0 \ 2 \ 0 \ 0 \end{bmatrix}^{\mathrm{T}}$ - t_1 fires.

Explosion of the state space estimation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

$$\begin{split} \mathbf{m}_1 &= \begin{bmatrix} 1 \ 2 \ 0 \ 2 \ 0 \ 0 \ 0 \end{bmatrix}^{\mathrm{T}} \\ \mathbf{m}_2 &= \begin{bmatrix} 1 \ 0 \ 1 \ 2 \ 0 \ 1 \ 0 \end{bmatrix}^{\mathrm{T}} \text{- if } t_2 \text{ has fired} \\ \mathbf{m}_3 &= \begin{bmatrix} 1 \ 0 \ 1 \ 2 \ 0 \ 0 \ 1 \end{bmatrix}^{\mathrm{T}} \text{- if } t_2 \text{ and } t_6 \text{ have fired} \end{split}$$

Contribution

In order to cope with the problems related with the state space estimation explosion:

- we propose a fault detection algorithm based on the on-line solution of programming problems
- the proposed approach is based on the new concept of generalized marking of a P/T net
- at each step the estimated generalized marking is always unique
- the proposed approach is very efficient in terms of requested memory

- Outline

Outline

1 PNs notation

- 2 Generalized marking
- **3** Unobservable explanations
- 4 Fault detection algorithm
- 5 Example
- 6 Conclusion & future works

-PNs notation

Place/Transition nets - 1

P/T net

A *Place/Transition* net is a 4-tuple N = (P, T, Pre, Post).

Marking of a net

 $\mathbf{m}: P \to \mathbb{N}$

It is usually represented with a vector $\mathbf{m} \in \mathbb{N}^m$.

Enabling and firing of a transition

- A transition $t \in T$ is enabled at **m** iff $\mathbf{m} \geq \mathbf{Pre}(\cdot, t)$ and it is denoted as $\mathbf{m}[t)$.
- An enabled transition t may fire yielding the marking $\mathbf{m}' = \mathbf{m} + \mathbf{C}(\cdot, t)$ and this is denoted as $\mathbf{m}[t]\mathbf{m}'$.

-PNs notation

Place/Transition nets - 2

Firing sequences and firing vectors

Given a firing sequence $\sigma = t_1 \dots t_k$, the function

$$\boldsymbol{\sigma}: T \to \mathbb{N},$$

is called *firing count vector* of the fireable sequence σ .

State equation

If $\mathbf{m}_0[\sigma]\mathbf{m}$, then it is possible to write in vector form

$$\mathbf{m} = \mathbf{m}_0 + \mathbf{C} \cdot \boldsymbol{\sigma}$$
 .

-PNs notation

Induced subnets

T'-Induced subnet

Given a net $N = (P, T, \mathbf{Pre}, \mathbf{Post})$, and a subset $T' \subseteq T$, the T'-induced subnet on N, denoted with $N' \prec_{T'} N$, is the 4-tuple $N' = (P', T', \mathbf{Pre}', \mathbf{Post}')$, where $P' = {}^{\bullet} T' \cup T'^{\bullet}$, while \mathbf{Pre}' and \mathbf{Post}' are the restrictions of \mathbf{Pre} and \mathbf{Post} to P' and T'.

The subnet $N' \prec_{T'} N$ can be obtained from N removing all the places which are not connected with any transition in T', and all the transitions in $T \setminus T'$.

PNs notation

Induced subnets - Example

Figure: Example of induced subnet.

PNs notation

Assumptions

1 Each transition is associated to an event and two different transitions cannot share the same event.

- 2 The net N has $T = T_o \cup T_{uo}$, with $T_o \cap T_{uo} = \emptyset$, and $T_f \subseteq T_{uo}$.
- **3** $N_{uo} \prec_{T_{uo}} N$ is acyclic.

Generalized marking

Generalized marking μ

A generalized marking is a function

$$\mu: P \to \mathbb{Z}$$

A transition t is enabled at μ iff:

ia)
$$t \in T_o$$
,
iia) $t \in T_{uo}$ and $\exists \sigma \in T^*_{uo}$ s.t. $\mu' = \mu + \mathbf{C}\sigma \ge \mathbf{0}, t \in \sigma$,
with $\sigma = \pi(\sigma)$.

The notation $\mu[t\rangle$ denotes that t is enabled at μ . A transition t may fire if:

> ib) $t \in T_o$ is enabled and its firing has been observed. iib) $t \in T_{uo}$ is enabled,

When a transition t fires, it yields the generalized marking $\mu' = \mu + \mathbf{C}(\cdot, t)$, this is denoted as $\mu[t\rangle\mu'$.

Generalized marking

Negative markings

- The negative components of µ represent the tokens that are needed to explain:
 - the firing of an observed transition;
 - the firing of an unobservable transition that must have fired.
- As far as the fault diagnosis is concerned, μ allows to store in a compact way all the needed information about the state space estimation.

Unobservable explanations

Unobservable explanations

Given a generalized marking $oldsymbol{\mu} \in \mathbb{Z}^m$

$$\Sigma(N, \mu) = \{ \sigma \in \mathcal{T}_{uo}^* \mid \mu \big[\sigma \rangle \mu' \text{ s.t. } \mu' \ge 0 \}$$

is the set of all the unobservable explanations enabled at μ and

$$\Sigma_f(N, \boldsymbol{\mu}, t_f) = \{ \sigma \in T^*_{uo} \mid \boldsymbol{\mu}[\sigma \rangle \boldsymbol{\mu}' \text{ s.t. } \boldsymbol{\mu}' \geq 0 \\ \text{and } \boldsymbol{\sigma}(t_f) \neq 0, \text{ with } \boldsymbol{\sigma} = \pi(\sigma) \}$$

is the set of all the *faulty unobservable explanations* which includes the fault t_f enabled at μ .

The sets

$$\Sigma(N,\mu) = \{ \sigma \in \mathbb{N}^n \mid \exists \ \sigma \in \Sigma(N,\mu) \text{ s.t. } \pi(\sigma) = \sigma \}$$

and

$$\sum_{f} (N, \mu, t_{f}) = \{ \sigma \in \mathbb{N}^{n} \mid \exists \sigma \in \sum_{f} (N, \mu, t_{f}) \\ \text{s.t. } \pi(\sigma) = \sigma \}$$

Unobservable explanations

Unobservable explanations - Results 1

Theorem 1

Given a net N with $T = T_o \cup T_{uo}$. Let μ be a generalized marking, $t_f \in T_f \subseteq T_{uo}$ a fault transition, then

$$|\mathbf{\Sigma}(N,\mu)| = |\mathbf{\Sigma}_f(N,\mu,t_f)| \iff \min_{\sigma\in\mathbf{\Sigma}(N,\mu)} \sigma(t_f) \neq 0.$$

Corollary 1

Given a net N with $T = T_o \cup T_{uo}$. Let μ be a generalized marking, $t_f \in T_f \subseteq T_{uo}$ a fault transition, then

$$|\mathbf{\Sigma}(N, \mu)| = |\mathbf{\Sigma}_f(N, \mu, t_f)| \iff \begin{array}{c} orall \ \sigma \in \mathbf{\Sigma}(N, \mu) \,, \\ \sigma(t_f) \neq 0 \,. \end{array}$$

Unobservable explanations

Unobservable explanations - Results 2

Theorem 2

Given a net N with $T = T_o \cup T_{uo}$. Let μ be a generalized marking, $t_f \in T_f \subseteq T_{uo}$ a fault transition, then

$$|\mathbf{\Sigma}_f(N, \mu, t_f)|
eq 0 \iff \max_{\sigma \in \mathbf{\Sigma}(N, \mu)} \sigma(t_f)
eq 0.$$

Corollary 2

Given a net N with $T = T_o \cup T_{uo}$. Let μ be a generalized marking, $t_f \in T_f \subseteq T_{uo}$ a fault transition, then

$$|\mathbf{\Sigma}_f(N, \mu, t_f)|
eq 0 \iff \exists \ \boldsymbol{\sigma} \in \mathbf{\Sigma}(N, \mu) \,, \, \boldsymbol{\sigma}(t_f)
eq 0 \,,$$

and

$$|\mathbf{\Sigma}_f(N, \mu, t_f)| = 0 \iff \forall \ \boldsymbol{\sigma} \in \mathbf{\Sigma}(N, \mu) \,, \, \boldsymbol{\sigma}(t_f) = 0 \,.$$

Fault detection algorithm - 1

Given a net N with $T = T_o \cup T_{uo}$. Let $t_f \in T_f \subseteq T_{uo}$ and μ a generalized markings. As far as the detection of t_f is concerned, the following three conditions have to be checked:

1a) $|\mathbf{\Sigma}(N, \mu)| = |\mathbf{\Sigma}_f(N, \mu, t_f)| \iff t_f$ has occurred 2a) $|\mathbf{\Sigma}_f(N, \mu, t_f)| = 0 \iff t_f$ has not occurred 3a) $|\mathbf{\Sigma}_f(N, \mu, t_f)| \neq 0 \iff t_f$ may be occurred

The three conditions listed above are equivalent to:

1b) $\min_{\sigma \in \Sigma(N,\mu)} \sigma(t_f) \neq 0 \iff t_f \text{ has occurred}$ **2b)** $\max_{\sigma \in \Sigma(N,\mu)} \sigma(t_f) = 0 \iff t_f \text{ has not occurred}$ **3b)** $\max_{\sigma \in \Sigma(N,\mu)} \sigma(t_f) \neq 0 \iff t_f \text{ may be occurred}$

Fault detection algorithm - 2

1 $\mu = \mu_0 = \mathbf{m}_0$ (* Initialization *) **2** for all $t_{f_i} \in T_f$ do **2.1** if $\min_{\sigma \in \Sigma(N,\mu)} \sigma(t_{f_i}) = F \neq 0$, then (* t_{f_i} has occurred F times *) **2.1.1** report that t_{f_i} has occurred **2.1.2** $\mu_{|P_{uo}|} = \mu_{|P_{uo}|} + C_{uo}(\cdot, t_{f_i})F$ (* Update μ^{*}) 2.1.3 go to Step 2 (* Restart the for cycle *) **2.2** if $\max_{\sigma \in \Sigma(N,\mu)} \sigma(t_{f_i}) = G \neq 0$, then report that t_f, may be occurred (* t_{f_i} may be occurred G times *) **2.3** else report that t_{f_i} has not occurred yet 3 end for 4 if $C_{uo}\sigma_{|T_{uo}} \geq -\mu_{|P_{uo}}$ admits only one solution $\sigma^*_{|T_{uo}}$, then $\mu_{|P_{uo}} = \mu_{|P_{uo}} + C_{uo}\sigma^*_{|T_{uo}}$ (* Update μ *) **5** wait for a new observed transition $\overline{t} \in T_{o}$ **6** $\mu = \mu + \mathbf{C}(\cdot, \overline{t})$ (* Update μ *) 7 go to Step 2

Compute min and max - 1

Since
$$N_{uo} \prec_{T_{uo}} N$$
 is *acyclic*, then:

$$\boldsymbol{\Sigma}(N,\boldsymbol{\mu}) = \left\{\boldsymbol{\sigma} \in \mathbb{N}^n \mid \boldsymbol{\mathsf{C}}_{uo}\boldsymbol{\sigma}_{\mid \boldsymbol{\mathsf{T}}_{uo}} \geq -\boldsymbol{\mu}_{\mid \boldsymbol{\mathsf{P}}_{uo}} \text{ and } \boldsymbol{\sigma}_{\mid \boldsymbol{\mathsf{T}}_o} = \boldsymbol{0}\right\},$$

thus $\min_{\sigma \in \Sigma(N,\mu)} \sigma(t_f)$ and $\max_{\sigma \in \Sigma(N,\mu)} \sigma(t_f)$ can be computed by solving an Integer Linear Programming (ILP) problem.

Compute min and max - 2

ILP problems have NP-hard complexity, but:

- **1** If $N_{uo} \prec_{T_{uo}} N$ is TS1 or TS2 then the calculation of $\min_{\sigma \in \Sigma(N,\mu)} \sigma(t_f)$ and $\max_{\sigma \in \Sigma(N,\mu)} \sigma(t_f)$ to the evaluation of algebraic functions of net generalized marking (see Li and Wonham, Trans. Autom. Contr., 1994).
- **2** If C_{uo} is totally unimodular, then $\min_{\sigma \in \Sigma(N,\mu)} \sigma(t_f)$ and $\max_{\sigma \in \Sigma(N,\mu)} \sigma(t_f)$ are solutions of a *linear programming problem*, which has polynomial complexity. If $N_{uo} \prec_{T_{uo}} N$ is a *Marked Graph*, then C_{uo} is totally unimodular.

3 ...

- Example

Example

・ロト・ 日本・ エー・ トー 日 うらつ

Let $\mu_0 = \begin{bmatrix} 2 \ 0 \ 0 \ 2 \ 0 \ 0 \end{bmatrix}^{\mathrm{T}}$, and $T_f = \{t_5\}$.

- Example

Example

The $N_{uo} \prec_{T_{uo}} N$ subnet is TS2, thus the ILP problems $\min_{\sigma \in \Sigma(N,\mu)} \sigma(t_5)$ and $\max_{\sigma \in \Sigma(N,\mu)} \sigma(t_5)$ admit the following closed - form solutions:

$$\min_{oldsymbol{\sigma}\in\mathbf{\Sigma}(N,oldsymbol{\mu})} oldsymbol{\sigma}(t_5) = \max\left(-\mu_{|p_6} - \mu_{|p_7} - \left\lfloor rac{\mu_{|p_2}}{2}
ight
floor, 0
ight), \ \max_{oldsymbol{\sigma}\in\mathbf{\Sigma}(N,oldsymbol{\mu})} oldsymbol{\sigma}(t_5) = \mu_{|p_5}.$$

Example

Example

Action	μ	$\min_{\boldsymbol{\sigma} \in \boldsymbol{\Sigma}(N, \boldsymbol{\mu})} \boldsymbol{\sigma}(t_5)$	$\max_{oldsymbol{\sigma}\in oldsymbol{\Sigma}(N,oldsymbol{\mu})}oldsymbol{\sigma}(t_5)$
Initialization	$\begin{bmatrix} 2 & 0 & 0 & 2 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$	0	0
t ₁ fires	$\begin{bmatrix} 1 \ 2 \ 0 \ 2 \ 0 \ 0 \ 0 \end{bmatrix}^{\mathrm{T}}$	0	0
t ₄ fires	$\begin{bmatrix} 1 \ 2 \ 0 \ 1 \ 1 \ 0 \ 0 \end{bmatrix}^{\mathrm{T}}$	0	1
t7 fires	$\begin{bmatrix} 1 \ 2 \ 0 \ 2 \ 1 \ 0 \ -1 \end{bmatrix}^{\mathrm{T}}$	0	1
t7 fires	$\begin{bmatrix} 1 \ 2 \ 0 \ 3 \ 1 \ 0 \ -2 \end{bmatrix}^{\mathrm{T}}$	1	1
Update μ (Step 2.1.2)	$\begin{bmatrix} 1 \ 2 \ 0 \ 3 \ 0 \ 1 \ -2 \end{bmatrix}^{\mathrm{T}}$	0	0
Update μ (Step 4)	$egin{bmatrix} 1 & 0 & 1 & 3 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$	0	0

Conclusion & future works

Conclusion & future works

- Generalized markings have been introduced and used to perform fault diagnosis of DES modeled as Petri nets.
- The estimated generalized marking is always unique.
- Efficient on-line implementation in terms of memory request.
- In general the proposed approach request the resolution of ILP problems.

Future works

- Further research is ongoing to rewrite ILP problems into an equivalent one, which are formulated only on the subnets that influence the occurrence of the observed event.
- Add timing information to improve fault diagnosis (paper submitted to IEEE CASE 2007)

Conclusion & future works

Conclusion & future works

- Generalized markings have been introduced and used to perform fault diagnosis of DES modeled as Petri nets.
- The estimated generalized marking is always unique.
- Efficient on-line implementation in terms of memory request.
- In general the proposed approach request the resolution of ILP problems.

Future works

- Further research is ongoing to rewrite ILP problems into an equivalent one, which are formulated only on the subnets that influence the occurrence of the observed event.
- Add timing information to improve fault diagnosis (paper submitted to IEEE CASE 2007)

An efficient approach for on-line diagnosis of discrete event systems

Conclusion & future works

Thank you!

