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1CREATE, Università di Napoli Federico II
detommas@unina.it



Plasma magnetic
control

in Tokamaks

G. De Tommasi

Outline

Introduction

Plasma Magnetic
Modeling

Plasma Vertical
Stabilization
Problem

Plasma Shape
Control Problem

Plasma Current
Control problem

Plasma Position
and Shape Control
at JET

XSC

CLA

Experiments

References

2

Outline

Introduction

Plasma Magnetic Modeling

Plasma Vertical Stabilization Problem

Plasma Shape Control Problem

Plasma Current Control problem

Plasma Position and Shape Control at JET
eXtreme Shape Controller
Current Limit Avoidance System
Experimental results



Plasma magnetic
control

in Tokamaks

G. De Tommasi

Outline

Introduction

Plasma Magnetic
Modeling

Plasma Vertical
Stabilization
Problem

Plasma Shape
Control Problem

Plasma Current
Control problem

Plasma Position
and Shape Control
at JET

XSC

CLA

Experiments

References

4

Nuclear Fusion for Dummies

Main Aim

Production of energy by means of a
fusion reaction

D + T → 4He + n

Plasma

I High temperature and pressure are needed

I Fully ionised gas 7→ Plasma

I Magnetic field is needed to confine the plasma
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What is a Tokamak ?

A tokamak is an electromagnetic machine containing a fully
ionised gas (plasma) at about 100 million degrees within a
torus shaped vacuum vessel. Poloidal and toroidal field coils,
together with the plasma current, generate a spiralling
magnetic field that confines the plasma.
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The JET tokamak - 1

I The Joint European Torus (JET) is an example of
successful European collaboration.

I JET is still the world’s largest tokamak

I JET has been built in the early eighties, and it was
designed to allow the exploration of the plasma regimes
in proximity of break-even, the condition at which the
ratio between produced fusion power and input heating
power is unity

I At the time of its construction, JET was a large step in
scale from existing experiments
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The JET tokamak - 2
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Motivation

I Plasma control is the crucial issue to be addressed in order to achieve
the high performances envisaged for future tokamak devices

I Plasma magnetic axisymmetric control (shape and position) is an
essential feature of all tokamaks

I High performance in tokamaks is achieved by plasmas with elongated
poloidal cross section, which are vertically unstable

I If high performance and robustness are required, then a model-based
design approach is needed

This presentation

1. focuses on plasma shape control and the vertical stabilization problems

2. presents the eXtreme Shape Controller (XSC) and the Current Limit
Avoidance systems deployed at the JET tokamak
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Plasma axisymmetric model - 1

Model Inputs

The input variables are:

I The voltage applied to the active coils v

I The plasma current Ip
I The poloidal beta βp
I The internal inductance li

Ip , βp and li

Ip , βp and li are used to specify the current density
distribution inside the plasma region.
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Plasma axisymmetric model - 2

Model outputs

Different model outputs can be chosen:

I fluxes and fields where the magnetic
sensors are located

I currents in the active and passive
circuits

I plasma radial and vertical position
(1st and 2nd moment of the plasma
current density)

I geometrical descriptors describing the
plasma shape (gaps, x-point and
strike points positions)
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Lumped parameters approximation

By using finite-elements methods, nonlinear lumped parameters approximation
of the PDEs model is obtained

d

dt

[
M
(
y(t), βp(t), li (t)

)
I(t)
]

+ RI(t) = U(t) ,

y(t) = Y
(
I(t), βp(t), li (t)

)
.

where:

I y(t) are the output to be controlled

I I(t) =
[
ITPF (t) ITe (t) Ip(t)

]T
is the currents vector, which includes the

currents in the active coils IPF (t), the eddy currents in the passive
structures Ie(t), and the plasma current Ip(t)

I U(t) =
[
UT

PF (t) 0T 0
]T

is the input voltages vector

I M(·) is the mutual inductance nonlinear function

I R is the resistance matrix

I Y(·) is the output nonlinear function
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Plasma linearized model

Starting from the nonlinear lumped parameters model, the following plasma
linearized state space model can be easily obtained:

δẋ(t) = Aδx(t) + Bδu(t) + Eδẇ(t), (1)

δy(t) = C δIPF (t) + Fδw(t), (2)

where:

I A, B, E, C and F are the model matrices

I δx(t) =
[
δITPF (t) δITe (t) δIp(t)

]T
is the state space vector

I δu(t) =
[
δUT

PF (t) 0T 0
]T

are the input voltages variations

I δw(t) =
[
δβp(t) δli (t)

]T
are the βp and li variations

I δy(t) are the output variations

The model (1)–(2) relates the variations of the PF currents to the variations

of the outputs around a given equilibrium
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Vertical Stabilization Problem

Objectives

I Vertically stabilize elongated plasmas in order to avoid
disruptions

I Counteract the effect of disturbances (ELMs, fast
disturbances modeled as VDEs,. . .)

I It does not control vertical position but it simply
stabilizes the plasma

I The VS is the essential magnetic control system!
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The plasma vertical instability

Simplified filamentary model

Consider the simplified electromechanical model with three
conductive rings, two rings are kept fixed and in symmetric
position with respect to the r axis, while the third can freely
move vertically.

If the currents in the two fixed rings
are equal, the vertical position z = 0
is an equilibrium point for the
system.



Plasma magnetic
control

in Tokamaks

G. De Tommasi

Outline

Introduction

Plasma Magnetic
Modeling

Plasma Vertical
Stabilization
Problem

Plasma Shape
Control Problem

Plasma Current
Control problem

Plasma Position
and Shape Control
at JET

XSC

CLA

Experiments

References

17

Stable equilibrium - 1

If sgn(Ip) 6= sgn(I )
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Stable equilibrium - 2

If sgn(Ip) 6= sgn(I )
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Unstable equilibrium - 1

If sgn(Ip) = sgn(I )
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Unstable equilibrium - 2

If sgn(Ip) = sgn(I )
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Plasma vertical instability

I The plasma vertical instability reveals itself in the
linearized model, by the presence of an unstable
eigenvalue in the dynamic system matrix

I The vertical instability growth time is slowed down by
the presence of the conducting structure surrounding
the plasma

I This allows to use a feedback control system to stabilize
the plasma equilibrium, using for example a pair of
dedicated coils

I This feedback loop usually acts on a faster time-scale
than the plasma shape control loop
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Plasma Shape Control

I The problem of controlling the plasma
shape is probably the most understood
and mature of all the control problems in
a tokamak

I The actuators are the Poloidal Field coils,
that produce the magnetic field acting on
the plasma

I The controlled variables are a finite
number of geometrical descriptors chosen
to describe the plasma shape

Objectives

I Precise control of plasma boundary

I Counteract the effect of disturbances (βp
and li variations)

I Manage saturation of the actuators
(currents in the PF coils)
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Plasma current control

I Plasma current can be controlled by using the current
in the PF coils

I Since there is a sharing of the actuators, the problem of
tracking the plasma current is often considered
simultaneously with the shape control problem

I The PF coils have to generate a magnetic flux in order
to drive ohmic current into the plasma

I Shape control and plasma current control are
compatible, since it is possible to show that generating
flux that is spatially uniform across the plasma (but
with a desired temporal behavior) can be used to drive
the current without affecting the plasma shape.
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Control scheme

I The scenario is usually specified in terms of
feed-forward currents IFF (t).

I It is convenient that the SC generates current references

I A PF currents controller must be designed
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Plasma shape control at the JET tokamak

Two different shape controllers are available at the JET
tokamak

I the standard Shape Controller (SC). This controller can
be set in full current control mode (acting as a PF
currents controler)

I the eXtreme Shape Controller (XSC)
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JET Shape Controller - Controller Scheme
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JET Shape Controller Design

Plasmaless model

VPF =


L1 M12 . . . M1N

M12 L2 . . . M2N

. . . . . . . . . . . .
M1N M2N . . . LN

 dIPF
dt

+


R1 0 . . . 0
0 R2 0 0
. . . . . . . . . . . .
0 0 . . . RN

 IPF

Resistive compensation

VPFref = R̂IPF + K(Yref − Y)

Static relationship between PF coils current and controlled variables

Y = TIPF

Control Matrix

K = M̂T−1Λ−1 with Λ diagonal matrix
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JET Shape Controller

Closed-loop system

MT−1Ẏ + RIPF = MT−1Λ−1(Yref − Y) + RIPF ⇒
⇒ Ẏ = Λ−1(Yref − Y)

By a proper choice of the T matrix it is possible to achieve:

I current control mode

I plasma current control mode

I gap control mode

F. Sartori, G. De Tommasi, F. Piccolo

The Joint European Torus

IEEE Control Systems Magazine, April 2006
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JET Shape Controller

I Each circuit is used to control a single variable (current,
gap, flux)

I Up to 9 different variables can be controlled

I Since plasma current is always controlled, up to 8 gaps
can be controlled
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XSC “philosophy”

I To control the plasma shape in JET, in principle 8
knobs are available, namely the currents in the PF
circuits except P1 which is used only to control the
plasma current

I As a matter of fact, these 8 knobs do not practically
guarantee 8 degrees of freedom to change the plasma
shape

I Indeed there are 2 or 3 current combinations that cause
small effects on the shape (depending on the considered
equilibrium).

I The design of the XSC is model-based. Different
controller gains must be designed for each
different plasma equilibrium, in order to achieve
the desired performances
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eXtreme Shape Controller

SC in current control mode

The XSC exploits the standard JET Shape Controller
architecture. In particular it sets:

I the P1 circuit in plasma current control mode

I the other 8 PF circuits in current control mode

Model of the current controlled plant

δg(s) =
C̃

1 + sτ
· δIPFREF

(s)

IP
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XSC - Controller scheme
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eXtreme Shape Controller (XSC)

I The eXtreme Shape Controller (XSC) controls the
whole plasma shape, specified as a set of 32 geometrical
descriptors, calculating the PF coil current references.

I Let IPFN
(t) be the PF currents normalized to the

equilibrium plasma current, it is

δg(t) = C δIPFN
(t).

It follows that the plasma boundary descriptors have the
same dynamic response of the PF currents.

I The XSC design has been based on the C matrix. Since
the number of independent control variables is less than
the number of outputs to regulate, it is not possible to
track a generic set of references with zero steady-state
error.

δIPFNreq
= C†δgerror
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eXtreme Shape Controller (XSC)

I The XSC has then been implemented introducing weight matrices
both for the geometrical descriptors and for the PF coil currents.

I The determination of the controller gains is based on the Singular
Value Decomposition (SVD) of the following weighted output
matrix:

C̃ = Q̃ C R̃
−1

= Ũ S̃ Ṽ
T
,

where Q̃ and R̃ are two diagonal matrices.

I The XSC minimizes the cost function

J̃1 = lim
t→+∞

(δgref − δg(t))T Q̃
T

Q̃(δgref − δg(t)) ,

using n̄ < 8 degrees of freedom, while the remaining 8 − n̄ degrees
of freedom are exploited to minimize

J̃2 = lim
t→+∞

δIPFN (t)T R̃
T

R̃δIPFN (t) .
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XSC - Gap controller
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Shape Controller

SC

I The desired shape is achieved
controlling few shape
descriptors with dedicated
coils (e.g. ROG with P4 and
strike points with D1-D4)
and by precalculating the
remaining currents

I This gives a good tracking of
the references on the
controlled shape descriptors
(e.g. ROG and strike points)
but the whole shape cannot
be controlled precisely

I Shape modifications due to
variations of βp and li are
usually counteracted by the
precalculated current
waveforms
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eXtreme Shape Controller

XSC

I Allows to directly specify the
target shape, without
specifying the PF current
waveforms

I The PF current waveforms
are automatically computed
by the control algorithm as
the “smallest” currents
needed to minimize the error
on the shape in least mean
square sense

I The controller manages to
keep the shape “constant”
(in least mean square sense)
even in the presence βp and li
variations
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XSC and CLA

I The XSC allows the SLs to
directly specify the target
shape, without specifying the
PF current waveforms

I The PF current waveforms
are automatically computed
by the model-based control
algorithm

I The PF currents may saturate
during the experiment

I The Current Limit Avoidance
System (CLA) has been
recently designed and
implemented to avoid
current saturations in the PF
coils when the XSC is used
to control the plasma shape
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The Current Limit Avoidance System - 1

I The CLA uses the redundancy of the PF coils system to
automatically obtain almost the same plasma shape
with a different combination of currents in the PF coils

I In the presence of disturbances (e.g., variations of the
internal inductance li and of the poloidal beta βp), it
tries to avoid the current saturations by “relaxing” the
plasma shape constraints

I Thanks to the CLA safe operations can be
guaranteed
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The Current Limit Avoidance System - 2

XSC Plant

Alloc. P ?

uc yc u y

δyδuu

r +

+ +

+

+

+

−

−

d

e−
−

I The proposed current allocation scheme aims keeping
the value of the plant inputs (PF currents) inside a
desirable region, meanwhile ensuring a small tracking
error on the plasma shape at steady state

I P? is the plant steady-state gain
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The Current Limit Avoidance System - 3

The allocator equations are given by

ẋa = −KBT
0

[
I
P?

]T
(∇J)T

∣∣∣
(u ,e)

, (3a)

δu = B0xa, (3b)

δy = P?B0xa (3c)

I J(u? , e?) is a continuously differentiable cost function
that penalizes (at steady-state)

I large PF currents
I large plasma shape error

I The key property of the current allocator algorithm (3)
is that, for each constant current request of the XSC, it
has a unique globally asymptotically stable equilibrium
x?a coinciding with the unique global minimizer J(· , ·)
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Comparison between SC and XSC

The following pulses are considered in order to compare the
behavior of the two plasma shape controllers during the Ip
ramp-up

I #83011 – with SC

I #83014 – with XSC

while the comparison during the Ip ramp-down is done
considering the pulses

I #72203 – with SC

I #83014 – with XSC
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Pulses #83011 and #83014 - Ip ramp-up
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#83011 - Shape tracking during the ramp-up with SC

@43s @44s @44.5s
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#83011 - Comments

I Bad shape control in the inner side.

I This is mainly due to the fact that P4 is used to control
ROG, while RIG is not controlled
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#83014 - Shape tracking during the ramp-up with XSC

@43s @44s @44.5s
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#83014 - Comments

I The biggest error in shape control is in the top outer
region (remember the XSC minimizes the shape error in
least mean square sense!)

I This error could be reduced by increasing the error in a
different region (i.e. in the divertor region)

I Good shape tracking in both RIG and ROG regions, and
good tracking of strike points and x-point position
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Plasma surface and q95
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Pulse #72203 - Ip ramp-down with SC
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#72203 - Shape tracking during the ramp-down with SC

@55s @57s @59s
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Pulse #83014 - Ip ramp-down with XSC
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#83014 - Shape tracking during the ramp-down with SSC

@55s @56s @58s
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Change of elongation during the plasma current
ramp-down
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Conclusions

I An overview of the three basic magnetic control
problems has been given:

I Vertical Stabilization
I Shape Control
I Plasma Current Control

I The solution adopted at the JET tokamak for plasma
current and shape control have been introduced

If you like it...

...you can have more at

I http://wpage.unina.it/detommas/ijs.html

http://wpage.unina.it/detommas/ijs.html
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