Real-time Systems in Tokamak Devices. A case study: the JET Tokamak May 25, 2010

May 25, 2010 - $17^{\rm th}$ Real-Time Conference, Lisbon

G. De Tommasi¹ D. Alves² T. Bellizio¹ R. Felton³ A. C. Neto² F. Sartori⁴ R. Vitelli⁵ L. Zabeo⁶ R. Albanese¹ G. Ambrosino¹ P. J. Lomas³ and EFDA-JET PPCC contributors ¹Assoc. EURATOM-ENEA-CREATE, Università di Napoli Federico II ²Assoc. EURATOM-IST, ³EURATOM-CCFE Fusion Association, ⁴Fusion for Energy, ⁵Università di Roma Tor Vergata, ⁶ITER Organization

JET RT

G. De Tommasi

Outline

Introduction

JET RT Infrastructure RTDN MARTe

Model-based desgin XSC

Outline

Introduction

Overview of the JET Real-Time Infrastructure Real-Time Data Network The MARTe Real-Time Framework

Model-based Design and Validation of Real-Time Systems

The eXtreme Shape Controller Experience

JET Real-Time Systems: Examples

The new Vertical Stabilization System The Error Field Correction Coils Controller The BetaLi Diagnostic

JET RT

G. De Tommasi

Outline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

- Today's tokamak reactors are experimental devices
- The achievement of the required performance is strictly dependent on the flexibility and reliability of the real-time systems that operate the plant
- There are some common requirements that have to be taken into account during the design of the real-time infrastructure

...but the main aim...

is to reduce the time needed for the commissioning of new real-time systems on the plant

G. De Tommasi

Outline

Introduction

JET RT Infrastructure RTDN MARTe

Model-based desgin

Hardware side

- cope with the unavoidable hardware obsolescence and maintenance requirements (experiments last several decades)
- be as hardware independent as possible
- be scalable to manage the increase in computational requirements
- share resources between the processing nodes (e.g. to share the plant measurements and the outputs of each processing node)

Software side

- ▶ establish strict and well defined boundaries between the application algorithm and the interfaces with other plant systems → facilitate testing and validation
- Support model-based development → software validation against plant models → minimization of the risks and of commissioning/debugging efforts
- guarantee low latency and low jitter in control cycle

JET RT

G. De Tommasi

Outline

Introduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

Magnetic Control

Plasma Position and Current Control (PPCC)

Density Control

- Plasma Density Control
- Gas Introduction plant

Additional Heating & Current Drive Control

Plant systems of:

- Neutral Beam Injection
- Ion Cyclotron Heating
- Lower Hybrid Current Drive

have been recently modified to switch from open-loop to closed-loop control of power requests.

Plant Safety Systems

System for the protection of the investments (e.g. WALLS for thermal protection of the tokamak first wall)

G. De Tommasi

Outline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

- The systems are large and complex
- The signal processing in many systems is itself quite complex.
- The processing is distributed among different nodes

This distribution of the calculations over separate systems has benefits for basic functionality, minimizing impact on other systems when internal changes are performed in an individual node

G. De Tommasi

Outline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin XSC

Each system is designed to have:

- 1. **high cohesion** it has everything it needs in its own domain and does not overlap other domains
- 2. **low coupling** it has all the inputs and outputs essential for the global operation

G. De Tommasi

Outline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

Real-Time Data Network (RTDN)

- The present real-time network was setup about 10 years ago
- It is an ATM/AAL5 communications on 155 MHz fibre-optic
- Each system sends application specific datagrams into the network, known as the Real-Time Data Network
- Cross-platform interoperability is guaranteed
- The network switch distributes the datagrams
- The ATM network provides one-to-many connections
- Currently there are more than 30 systems, 40 datagram types, and a total of more than 500 signals
- ► Typical latency is in the order of 100 µs, which is sufficient for JET fastest cycle time of 2 ms

JET RT

G. De Tommasi

Outline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

A new framework for RT applications

Motivation

- In 2001/2002 the revamping of the SC was planned in order to add the eXtreme Shape Controller algorithm (XSC)
- Within the PPCC group, it was decided to move to a common framework for the development of real-time applications

Aims

- Standardize the development of real-time applications
- Increase the code reusability
- Give the possibility to separate the user application from the software required to interface with the plant infrastructure
- Reduce the time needed for commissioning.

Requirements

The new framework would have been:

- portable (multi-OS and multi-platform)
- modular the user application would have been easily *plugged* into an executor of real-time application
- written in C++ (at that time C++ was not a JET standard)

JET RT

G. De Tommasi

Dutline

Introduction

JET RT Infrastructure RTDN MARTe

Model-based desgin

The MARTe framework is:

- Multi-platform C++ middleware
- Modular
 - Clear boundary between algorithms, hardware interaction and system configuration
 - Reusability and maintainability
 - Simulation
- Minimize constraints with the operational environments (portability)
- Data driven
- Provide live introspection tools
 - Without sacrificing RT

A. C. Neto et al.,

MARTe: a Multi-Platform Real-Time Framework, IEEE Transactions on Nuclear Science, vol. 57(2), Apr. 2010

G. De Tommasi

Outline

Introduction

JET RT Infrastructure RTDN MARTe

Model-based desgin XSC

Modeling in real-time system design and validation

Modeling helps you ...

- to define control system requirements
- to design the control algorithms
- to make performance analyses
- to validate real-time implementation of the control systems
- to perform offline analyses to forecast experimental behaviour

JET RT

G. De Tommasi

Outline

Introduction

JET RT Infrastructure RTDN MARTe

Model-based desgin

Plasma Shape Control

- The problem of controlling the plasma shape is probably the most understood and mature of all the control problems in a tokamak
- The actuators are the Poloidal Field coils, that produce the magnetic field acting on the plasma
- The controlled variables are a finite number of geometrical descriptors chosen to describe the plasma shape

Objectives

- Precise control of plasma boundary
- Counteract the effect of disturbances (β_p and l_i variations)
- Manage saturation of the actuators (currents in the PF coils)

JET RT

G. De Tommasi

Outline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

XSC "philosophy"

- To control the plasma shape in JET, in principle 8 knobs are available, namely the currents in the PF circuits except P1 which is used only to control the plasma current
- As a matter of fact, these 8 knobs do not practically guarantee 8 degrees of freedom to change the plasma shape
- Indeed there are 2 or 3 current combinations that cause small effects on the shape (depending on the considered equilibrium).
- The design of the XSC is model-based. Different controller gains must be designed for each different plasma equilibrium, in order to achieve the desired performances

JET RT

G. De Tommasi

Dutline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

SC

- A few geometric parameters are controlled, usually one gap (Radial Outer Gap, ROG) and two strike points
- The desired shape is achieved precalculating the needed currents and putting these currents as references to the SC
- This gives a good tracking of the references on ROG and on the strike points but the shape cannot be guaranteed precisely
- Shape modifications due to variations of β_p and I_i cannot be counteracted

XSC

- The shape to be achieved can be chosen
- The XSC receives the errors on 36 descriptors of the plasma shape and calculates the "smallest" currents needed to minimize the error on the "overall" shape
- The controller manages to keep the shape more or less constant even in the presence of large variations of β_p and l_i

JET RT

G. De Tommasi

Outline

Introduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

Model-based approach: the XSC example

- XSC design is based on a plasma linearized model
- ► the XSC is optimized for each given scenario → the controller parameters are different for different operative scenarios
- Thanks to the model-based design approach, XSC functionalities have been easily extended in order to include strike-points sweeping and plasma boundary flux control

G. Ambrosino et al.

Design and Implementation of an Output Regulation Controller for the JET Tokamak IEEE Transactions on Control Systems Technology, vol. 16(6), November 2008

G. De Tommasi et al.

XSC Tools: a software suite for tokamak plasma shape control design and validation *IEEE Transactions on Plasma Science*, vol. 35(3), June 2007

M. Ariola et al.

Integrated plasma shape and boundary flux control on JET tokamak Fusion Science and Technology, vol. 53(3) April 2008

G. Ambrosino et al.

Plasma strike-point sweeping on JET tokamak with the eXtreme Shape Controller IEEE Transactions on Plasma Science, vol. 36(3), June 2008

JET RT

G. De Tommasi

Outline

ntroduction

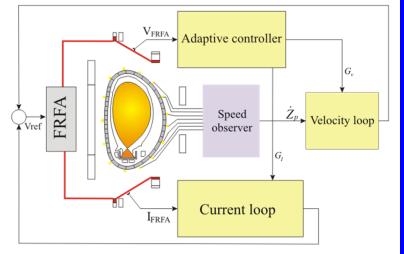
JET RT Infrastructure RTDN MARTe

Model-based lesgin xSC

Objectives

- Vertically stabilize elongated plasmas in order to avoid disruptions
- Counteract the effect of disturbances (ELMs, fast disturbances modelled as VDEs,...)
- It does not control vertical position but it simply stabilizes the plasma
- The VS is the essential magnetic control system!

G. De Tommasi


Outline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin XSC

JET VS Control Scheme

JET RT

G. De Tommasi

Dutline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin

The **Plasma Control Upgrade (PCU)** project has increased the capabilities of the JET **Vertical Stabilization (VS)** system so as to meet the requirements for future operations at JET (ITER-like wall, tritium campaign, ...).

The PCU project aims to enhance the ability of the VS system to recover from large perturbation.

This is especially true for future operation at JET with the beryllium ITER-like wall.

JET RT

Dutline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin XSC

Within the PCU project, the design of the new VS system has included

- 1. the design of the new power supply for the RFA circuit
- 2. the assessment of the best choice for the number of turns for the coils of the RFA circuit
- 3. the design of the new VS software, so as to deliver to the operator an high flexible architecture

JET RT

G. De Tommasi

Outline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

- Better fusion performance in tokamaks are achieved with highly elongated plasmas in presence of large perturbations
- In these extreme scenarios a general purpose controller cannot guarantee the requirements
- To push the performance up to the desired level, it is usual to rely on a model based design approach which assures the needed control performance (e.g. XSC)
- ► To optimize the system behavior in each advanced plasma scenario, it should be possible to choose
 - different estimations of the plasma vertical velocity
 - different adaptive algorithms for the controller gains

JET RT

G. De Tommasi

Outline

Introduction

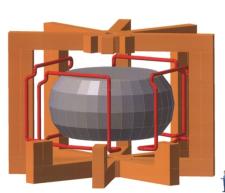
JET RT Infrastructure RTDN MARTe

Model-based desgin XSC

The new Vertical Stabilization

- It is a MARTe-based system
- 192 signals acquired by ADCs and transferred at each cycle
- 50 μs control loop cycle time with jitter < 1 μs</p>
- Always in real-time (24 hours per day)
 - 1.728 × 10⁹ 50 μs cycles/day
 - Crucial for ITER very long pulses

JET RT


G. De Tommasi

- Outline
- Introduction
- JET RT Infrastructure RTDN MARTe
- Model-based desgin XSC
- JET Real-Time Systems: Examples VS EFCC BetaLi

EFCC Voltage Controller - Introduction

- EFCCs, what do they do?
 - They change magnetic field topology at the plasma boundary
- Why is it important?
 - Instability mitigation and ELM control
- How?
 - By controlling the current in the EFCCs we can control the magnetic field
- Who?
 - The session leader sets the required current waveforms

G. De Tommasi

Outline

Introduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

New EFCC Controller

Motivation

- Performance limitations of the amplifiers restrict the effective system bandwidth
- A new controller with the ability to improve the amplifiers response has been designed and implemented using the MARTe framework

Design Approach

- The new control algorithm exploits the amplifier model
- It is based on an *anticipation* approach of the current reference waveform. This anticipation is adapted during the experiment in order to maximize the performance

Implementation

The controller has been implemented using:

- a FeedForward module which incorporates the amplifier model and implements the adaptation logic generating the feedforward signal for the amplifier
- a PID module which implements the standard PID controller

JET RT

G. De Tommasi

Outline

ntroduction

JET RT Infrastructure RTDN MARTe

Model-based desgin

- The BetaLi real-time code provides a large set of plasma parameters
 - plasma poloidal β
 - plasma internal inductance l_i
 - ▶ ...
- It is routinely used for many different real-time feedback controls
- Its software architecture has been recently redesigned exploiting the MARTe framework, in order to improve its performance and precision

	(management)	
DB	(*************************************	2
	;	כ נ
		
	Contraction of the local sectors	

G. De Tommasi

Outline

Introduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

G. De Tommasi

Outline

Introduction

JET RT Infrastructure RTDN MARTe

Model-based desgin

- Thanks to its new flexible architecture new diagnostics can be easily included to extend the set of plasma parameters computed by the system
- The system is presently running with a time resolution of 2 ms on a standard PC

G. De Tommasi

Outline

Introduction

JET RT Infrastructure RTDN MARTe

Model-based desgin xsc

JET Real-Time Systems: Examples VS EFCC BetaLi

THE END

Thank you!