Fault diagnosis and prognosis in Petri Nets by using a single generalized marking estimation

F. Basile¹ P. Chiacchio¹ G. De Tommasi²

¹Università di Salerno, Italy ²Università di Napoli "Federico II", Italy

IFAC SAFEPROCESS 2009, Barcelona, Spain

Outline

Outline

1 Preliminaries

2 Motivation

3 Contribution Examples

4 Ongoing works

- Preliminaries

Backgrounds

- Fault detection for DES has been issued since the mid 80s, and it is still an *hot topic*
- The standard approach is based on the *diagnoser* automata (Sampath et al., IEEE Trans. Aut. Contr., 1995)
- All possible unobservable events that may occur from a given state have to be considered
- A number of approaches based on a Petri net (PN) models have been proposed

Preliminaries

Backgrounds (cont'd)

- In the PNs framework, a possible approach to fault diagnosis provides to associate the faults to unobservable transitions
- These approaches need to estimate the current state of the net (Genc and Lafortune, IEEE Trans. Automat. Sci. Eng., 2007 – Giua and Seatzu, 44th IEEE CDC, Boel and Jiroveanu, 16th Symp. Math Theory Networks Syst.)
- Explosion of the state space estimation

Preliminaries

Explosion of the state space estimation

 $\mathbf{m}_0 = \begin{bmatrix} 2 \ 0 \ 0 \ 2 \ 0 \ 0 \end{bmatrix}^{\mathrm{T}}$ - t_1 fires.

Preliminaries

Explosion of the state space estimation

 $\begin{array}{l} \textit{Unobservable Reach} \text{ (as called in Genc and Lafortune)} \\ \textbf{m}_{1} = \begin{bmatrix} 1 \ 2 \ 0 \ 2 \ 0 \ 0 \ 0 \end{bmatrix}^{\mathrm{T}} \\ \textbf{m}_{2} = \begin{bmatrix} 1 \ 0 \ 1 \ 2 \ 0 \ 1 \ 0 \end{bmatrix}^{\mathrm{T}} \text{- if } t_{2} \text{ has fired} \\ \textbf{m}_{3} = \begin{bmatrix} 1 \ 0 \ 1 \ 2 \ 0 \ 0 \end{bmatrix}^{\mathrm{T}} \text{- if } t_{2} \text{ and } t_{6} \text{ have fired} \end{array}$

Preliminaries

A unique PN state estimation: the generalized marking

- In (Basile et al, WODES 2008) the authors have introduced generalized markings to avoid state space explosion.
- Generalized markings can have negative components
- The negative components record how many tokens are missing in the input places of observable transitions, whose firings have not been explained yet.
- Using the generalized marking the fault diagnosis problem is formulated in terms of ILP problems
- Given the *local* representation of the state in PNs, for each fault the ILPs are solved on a subnet which is *smaller* than the whole plant model.

Preliminaries

Generalized marking: example

If t7 fires we reach

$$oldsymbol{\mu} = egin{bmatrix} 1 & 2 & 0 & 2 & 0 & 0 & -1 \end{bmatrix}^{ ext{T}}$$

As far as the fault diagnosis is concerned, μ stores in a compact way all the needed information about the state space estimation.

Preliminaries

Fault detection algorithm: remarks

- The problem of diagnosability, i.e. to decide a priori if a given fault can be detected, is not addressed by the proposed algorithm.
- It is assumed that the fault events assumed to be unobservable - can be detected.
- The proposed approach is mainly aimed to improve the efficiency in terms of memory requirements.

- Motivation

Motivation

Motivation

We had the feeling that diagnosability was sufficient to perform *diagnosis* using a single generalized marking estimation, but we must prove that!

Remark

Diagnosability is obviously necessary!

- Motivation

Motivation (cont'd)

 $\mu_0 = \mathbf{m}_0 = [0 \ 0 \ 1 \ 1]^T$ $t_1, t_2, t_3 \text{ are observable transitions}$ $t_4, t_5 \text{ and } t_6 \text{ are unobservable transitions}$ $t_4 = t_{f_1} \text{ and } t_6 = t_{f_2} \text{ model faults}$

- Motivation

Motivation

After the firing of $\sigma = t_2$, the generalized marking estimation becomes $\mu_1 = [-1 \ 0 \ 1 \ 1]^T$. The negative component of μ_1 means that either t_1 or t_2 show

The negative component of μ_1 means that either t_4 or t_5 should have fired in order to explain the observed firing.

- Motivation

Motivation - (cont'd)

If t_3 does not fire, it is impossible to find any sufficiently long continuation of σ that permits to distinguish between the firing of t_4 and t_5 , then the language associated with the net is not diagnosable (we will show that it is also not detectable).

- Motivation

Motivation - (cont'd)

Let $\Sigma(\mu_1)$ be the set of all the possible firing count vectors ϵ corresponding to sequences of unobservable transitions enabled under μ_1 ,

$$\max_{\varepsilon\in\boldsymbol{\Sigma}(\boldsymbol{\mu}_1)}\boldsymbol{\epsilon}(t_{f_2})=0\,,$$

meaning that the fault t_{f_2} has not occurred for sure (and it cannot occur in the future).

- Motivation

Motivation - (cont'd)

Moreover t_{f_2} cannot occur anymore, since either t_4 or t_5 has fired, disabling t_{f_2} without any possibility to enabled it once again.

- Motivation

Motivation - (cont'd)

If the firing of t_1 is observed $\mu_2 = \mu_0$ is reached we erroneously get

$$\max_{oldsymbol{\epsilon}\in \mathbf{\Sigma}(oldsymbol{\mu}_2)}oldsymbol{\epsilon}(t_{f_2})=1\,,$$

meaning that t_{f_2} may occur.

- Contribution

Contribution

We have found the conditions under which a single g-marking estimation can be used to distinguish both

- between "a fault has occurred for sure" and "a fault may not have occurred" (*diagnosis*)
- between "a fault may have occurred/occur" and "a fault has not occurred for sure" (prognosis)

- Contribution

Preliminaries

The notion of detectable prefix-closed and live language is given starting from the definition of diagnosability given in Sampath et al., IEEE Trans. Aut. Contr. 2005.

- N = (P, T, Pre, Post) is a net with $T = T_{uo} \cup T_o$, and $T_f \subseteq T_{uo}$.
- s̄ is the prefix-closure of any trace s ∈ T*. We denote by L/s the post-language of L after s.
- Pr: T^{*} → T^{*}_o is the usual projection which "erases" the unobservable events in a trace s.
- Pr_L^{-1} is the inverse projection operator defined as

$$Pr_L^{-1}(r) = \left\{s \in L \text{ s.t. } Pr(s) = r\right\}.$$

If \dot{t} is the final event of trace s, we define

$$\Psi(t_{f_i}) = \left\{ s\dot{t} \in L \text{ s.t. } \dot{t} = t_{f_i} \right\}.$$

- Contribution

Diagnosable language - Definition

A prefix-closed and live language L is said to be diagnosable w.r.t. T_f if

 $\forall t_{f_i} \exists h_i \in \mathbb{N}$ such that the following holds

 $\forall s \in \Psi(t_{f_i}) \text{ and } \forall q \in L/s$

 $||q|| \geq h_i \Rightarrow D$

where ||q|| is the length of trace q, and the diagnosability condition D is

$$r \in Pr_L^{-1}(Pr(sq)) \Rightarrow t_{f_i} \in r$$
.

Let *s* be any trace generated by the system that ends in a failure event t_{f_i} , and let *q* be any sufficiently long continuation of *s*. Condition *D* implies that along every continuation *q* of *s* it is possible to detect the occurrence of t_{f_i} with a finite delay, specifically in at most h_i transitions of the system after *s*.

- Contribution

Detectable language

Definition

A prefix-closed and live language L is said to be detectable w.r.t. T_{uo} if it is diagnosable w.r.t. T_{uo} .

Remarks

- detectability implies diagnosability
- undetectability does not necessarily implies undiagnosability
- undiagnosability implies undetectability

€.

- Contribution

Main result - 1

Theorem

Let L be diagnosable w.r.t. T_f . If $s \in \Psi(t_{f_i})$ then exists $q \in L/s$, such that

$$\min_{\in \mathbf{\Sigma}(N,\boldsymbol{\mu})} \boldsymbol{\epsilon}(t_{f_i}) > 0\,,$$

with $\mu_0[z
angle\mu$, and z=Pr(sq).

- Contribution

Main result - 2

Theorem

Let *L* be detectable w.r.t. T_{uo} . If *s* is a sequence which enables the firing of t_{f_i} and $t_{f_i} \notin s$, then it exists $h \in \mathbb{N}$ such that for all sequences $q \in L/s$ whose firing does not enable t_{f_i} , and ||q|| > h, $t_{f_i} \notin q$, it holds that

$$\max_{\epsilon \in \mathbf{\Sigma}(N, \boldsymbol{\mu}'')} \epsilon(t_{f_i}) = 0 \,,$$

with $\mu_0[\beta \rangle \mu''$, and $\beta = Pr(sq)$.

- Contribution

- Examples

Undiagnosable and undetectable net

- Contribution
 - Examples

Diagnosable and undetectable net

- It is still not possible to distinguish between the firing of t₃ and t₄, hence the language is undetectable.
- The language is diagnosable. Indeed after the firing of t_f all the possible continuations are given by ... t_f t₆(t₁t₂)*.

- Contribution
 - Examples

Detectable net

Ongoing works

Ongoing works

- An updated version of the fault detection algorithm based on g-markings, which includes the present results, has been published in Basile et al., IEEE Trans. Aut. Contr., Apr. 2009
- We have proposed a new approach for fault diagnosis based on ILPs without using the g-markings (see Basile et al., IFAC DCSD 2009, Jun. 2009). In this case the detectability assumption is no more needed
- We are now working on the identification issue to face the problem of fault diagnosis when the fault are not modeled (see Basile et al., 14th IEEE ETFA, Sep. 2009)

Ongoing works

... The End

Thank you!