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Motivations

Advanced Tokamak Scenarios

AT plasmas

An Advanced Tokamak (AT) plasma is a plasma with:

high plasma kinetic pressure;

a large fraction of self-induced current;

a good particle and energy confinement.

AT scenarios are aimed at allowing steady-state operation
without a large amount of externally driven current.

AT scenarios are aimed to increase the efficiency of a tokamak
reactor.
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Motivations

Plasma shape control in AT scenarios

To achieve AT plasma performance, accurate
shape control is needed:

to obtain the shapes required to achieve
high β;

to optimize the coupling with the
additional heating systems;

to optimize divertor shape for pumping;

. . ..
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Motivations

Plasma profile control in AT scenarios

Control of the plasma internal pressure and
current profiles in AT regimes is needed:

to improve the energy confinement;

to increase the noninductive current
fraction (bootstrap current).

One way to increase the boostrap fraction
is to generate an internal transport
barrier (ITB), which also causes a
reduction of turbulence and therefore an
increase of confinement.

ITB triggering strongly depends from the
current density profile.
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Motivations

Plasma boundary flux control

Steady-state scenarios should in principle be fully
noninductive, and zero loop voltage should be maintained at
the plasma boundary.

Obtaining effective and routine boundary flux control is an
essential step in AT regime.

An integrated approach for the control of the plasma
shape and boundary flux has been developed at JET,
and it has been tested on ITER-relevant plasmas.
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Plasma Shape Control – the eXtreme Shape Controller

The JET Tokamak

A simplified plasma linearized model relates the
variations of the currents in the poloidal field (PF)
coils to the variations of the geometrical descriptors
around a given equilibrium:

δẋ(t) = Aδx(t) + Bδu(t),

Ipeq δg(t) = C δIPF (t),

where:

δx(t) =
[
δIT

PF (t) δIp(t)
]T

includes the
currents in the eight PF circuits available for
shape control, and the plasma current Ip ;

δu(t) =
[
δVT

PF (t) 0
]T

is the input voltages
vector;

δg(t) are the shape descriptors variations;

Ipeq is the equilibrium value of the plasma
current.
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Plasma Shape Control – the eXtreme Shape Controller

The eXtreme Shape Controller - 1

The eXtreme Shape Controller (XSC) controls the whole
plasma shape, specified as a set of 32 geometrical descriptors,
calculating the PF coil current references.

Let IPFN
(t) be the PF currents normalized to the equilibrium

plasma current, it follows that

δg(t) = C δIPFN
(t).

It follows that the plasma boundary descriptors have the same
dynamic response of the PF currents.

The XSC design has been based on the C matrix. Since the
number of independent control variables is less than the
number of outputs to regulate, it is not possible to track a
generic set of references with zero steady-state error.
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Plasma Shape Control – the eXtreme Shape Controller

The eXtreme Shape Controller - 2

The XSC has then been implemented introducing weight matrices both
for the geometrical descriptors and for the PF coil currents.

The determination of the controller gains is based on the SVD of the
following weighted output matrix:

C̃ = Q̃ C R̃
−1

= Ũ S̃ Ṽ
T
,

where Q̃ and R̃ are two diagonal matrices.

The XSC minimizes the cost function

J̃1 = lim
t→+∞

(δgref − δg(t))T Q̃
T

Q̃(δgref − δg(t)) ,

using n̄ < 8 degrees of freedom, while the remaining 8− n̄ degrees of
freedom are exploited to minimize

J̃2 = lim
t→+∞

δIPFN (t)T R̃
T

R̃δIPFN (t) .
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Plasma Shape Control – the eXtreme Shape Controller

XSC - control scheme
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Plasma Shape Control – the eXtreme Shape Controller

XSC - experimental results

(a) JET pulse 68953 -
plasma shape at t = 46.5s.

(b) JET Pulse 68953 - plasma
shape descriptors time traces.

Figure: JET pulse 68953.
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Plasma Boundary Flux Control

Plasma Boundary Shape Control at JET with XSC

The boundary flux controller for the JET tokamak has been
implemented using the XSC architecture.

The actuator that has been chosen to control the plasma
boundary flux ψb is the current in the P1 circuit. The other
circuits are much less efficient and therefore it is much worth
to use them for the shape control.

When controlling ψb, the control of the P1 current is released
to the XSC. A new actuator is then available to the XSC and
it is used to control ψb, with negligible influence on the shape.

When the XSC controls ψb the plasma current is not
controlled, and it is left floating between given bounds.
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Plasma Boundary Flux Control

Plant model

Plant model

In order to design the plasma boundary flux controller, a SISO
model in the form

δψb(s) = W (s)δIP1(s), (1)

is needed.

To obtain a model in the form (1):

1 the loop consisting of the XSC and the plant model has been
considered.

2 a model order reduction has been performed so that a
low-order model is obtained. (A balanced model reduction has
been performed, arriving to a model of the fourth order).
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Plasma Boundary Flux Control

XSC with boundary flux control
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Experimental Results

Constant vloop
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Experimental Results

vloop modulation
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Experimental Results

Simulation vs. experiment

(a) Plasma boundary flux ψb(t). (b) Plasma current Ip(t).

Figure: Simulation of the plasma loop voltage modulation experiment.
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Experimental Results

vloop modulation - plasma shape
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Conclusion

Future works

In the future, the XSC with boundary flux control will be integrated in a more
general scheme with the objective of obtaining a centralized controller for the
plasma shape, boundary flux, current and pressure profiles.
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