Erratum to "An efficient approach for online diagnosis of discrete event systems"

This brief note corrects a minor mistake and a typo in [1].

In particular, Proposition 1 and the corresponding proof correctly read as follows.

Proposition 1: Let $s \in \Psi(t_{f_i})$, if there exists $q \in L/s$, such that

$$\min_{\boldsymbol{\epsilon}\in\boldsymbol{\Sigma}(N,\boldsymbol{\mu})}\boldsymbol{\epsilon}(t_{f_i})>0$$

with $\mu_0[z]\mu$, and z = Pr(sq), then t_{f_i} is diagnosable.

Proof: Consider $s \in \Psi(t_{f_i})$ and suppose that there exists $q \in L/s$ such that

$$\min_{\boldsymbol{\epsilon}\in\boldsymbol{\Sigma}(N,\boldsymbol{\mu})}\boldsymbol{\epsilon}(t_{f_i})=0\,,$$

Now suppose, *ad absurdum*, that t_{f_i} is not diagnosable, then it exists at least one unobservable explanation $\epsilon' \in \Sigma(N, \mu)$ such that $\epsilon'(t_{f_i}) = 0$, hence

$$\min_{\boldsymbol{\epsilon}\in\boldsymbol{\Sigma}(N,\boldsymbol{\mu})}\boldsymbol{\epsilon}(t_{f_i})=0\,,$$

which contradicts the hypothesis.

Furthermore, due to an error during the proof reading process, conditions **1a**) and **1b**) in Proposition 3 correctly read as follows

- 1a) $\mu \not\ge 0$ and $|\Sigma(N, \mu)| = |\Sigma_f(N, \mu, t_f)| > 0 \Rightarrow t_f$ has occurred;
- **1b)** $\mu \not\ge 0$ and $\min_{\epsilon \in \Sigma(N,\mu)} \epsilon(t_f) \neq 0 \Rightarrow t_f$ has occurred;

Finally, condition 1c) in Proposition 4 reads

1c) $\mu_{|P|(t_f)} \not\ge 0$ and $\min_{\epsilon' \in \Sigma(\mathcal{N}(t_f), \mu_{|P|(t_f)})} \epsilon'(t_f) \neq 0 \Rightarrow t_f$ has occurred

The authors would like to thank Dr. Alban Grastien for having pointed out these minor problems.

REFERENCES

F. Basile, P. Chiacchio, G. De Tommasi, "An efficient approach for online diagnosis of discrete event systems," *IEEE Trans Automat. Control*, vol. 54, no. 4, pp. 748–759, Apr. 2009.