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Abstruct-Fault detection and isolation is a crucial and chal- 
lenging task in the automatic control of large complex systems. 
We propose a discrete-event system (DES) approach to the prob- 
lem of failure diagnosis. We introduce two related notions of 
diagnosability of DES’s in the framework of formal languages 
and compare diagnosability with the related notions of observ- 
ability and invertibility. We present a systematic procedure for 
detection and isolation of failure events using diagnosers and 
provide necessary and sufficient conditions for a language to 
be diagnosable. The diagnoser performs diagnostics using on- 
line observations of the system behavior; it is also used to state 
and verify off-line the necessary and sufficient conditions for 
diagnosability. These conditions are stated on the diagnoser or 
variations thereof. The approach to failure diagnosis presented in 
this paper is applicable to systems that fall naturally in the class of 
DES’s; moreover, for the purpose of diagnosis, most continuous 
variable dynamic systems can be viewed as DES’s at a higher 
level of abstraction. In a companion paper [20], we provide a 
methodology for building DES models for the purpose of failure 
diagnosis and present applications of the theory developed in this 
paper. 

I. INTRODUCTION 

N this paper, we study the diagnosability of discrete-event I systems. The property of diagnosability is introduced in 
the context of the failure diagnosis problem. Failure detection 
and isolation is an important task in the automatic control 
of large complex systems. The increasingly stringent require- 
ments on performance and reliability of complex man-made 
systems have necessitated the development of sophisticated 
and systematic methods for the timely and accurate diagnosis 
of system failures. The problem of failure diagnosis has 
received considerable attention in the literature, and a wide 
variety of schemes have been proposed. These include: i) 
quantitative methods based on mathematical models (see [ 11, 
[ 5 ] ,  [7 ] ,  [23], and references therein), ii) expert systems and 
other AI-based methods (see [6], [18], and references therein), 
and iii) discrete-event systems (DES’s) methods (see [2], 
[8], [lo], [ l l] ,  [21], and [22]). The quantitative methods 
employ analytical models of the physical process, which allow 
for comparison of sensor measurements with their predicted 
values. The AI-based methods incorporate the knowledge of 
human experts and reasoning mechanisms into the diagnostic 
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system. Methods combining these two approaches have also 
been proposed [ 5 ] ,  [7]. 

We propose in this paper and in the companion paper [20] 
a DES approach to the problem of failure diagnosis that 
expands on the work in [21]. This approach is applicable to 
systems that fall naturally in the class of DES’s; moreover, 
for the purpose of diagnosis, continuous variable dynamic 
systems can often be viewed as DES’s at a higher level of 
abstraction. The states of the discrete-event model reflect the 
normal and the failed status of the system components while 
the failure events form part of the event set. The problem is 
to detect the occurrence of these events. The major advantage 
of this approach is that it does not require detailed in-depth 
modeling of the system to be diagnosed and hence is ideally 
suited for diagnosis of systems which are difficult to model. 
Typical examples include large and/or complex systems like 
heating, ventilation, and air conditioning (HVAC) units, power 
plants, and semiconductor manufacturing equipment. In [20], 
we discuss in detail discrete-event modeling of systems for 
failure diagnosis and illustrate our approach with several 
examples. Comparisons are also made between our approach 
and alternative approaches to failure diagnosis. 

The focus of this paper is to develop the underlying theory 
for our approach. The system behavior is modeled as a 
regular language and is represented by a finite state machine 
(FSM). We propose two related notions of diagnosability in the 
framework of formal languages. Roughly speaking, a language 
is said to be diagnosable if it is possible to detect (with 
finite delay) occurrences of certain distinguished unobservable 
events, namely the failure events. We present a systematic 
procedure for detection and isolation of failure events using 
diagnosers. The diagnoser is an FSM built from the FSM 
model of the system. This machine performs diagnostics when 
it observes on-line the behavior of the system; states of the 
diagnoser carry failure information and occurrences of failures 
can be detected (with a finite delay) by inspecting these states. 
We provide necessary and sufficient conditions for a language 
to be diagnosable. These conditions are stated on the diagnoser 
or variations thereof. Thus, the diagnoser serves two purposes: 
i) on-line detection and isolation of failures and ii) off-line 
verification of the diagnosability properties of the system. 

In Section 11, we introduce the notion of diagnosability 
of DES’s. We first present the system model and introduce 
the necessary notation. Next, we formally define the no- 
tions of diagnosability and I-diagnosability and illustrate these 
definitions by means of simple examples. This is followed 
by a comparison with related work in the DES literature, 
namely, other approaches to diagnosability, and the problems 
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of observability and invertibility. In Section 111, we present 
the construction procedure of the diagnoser and illustrate 
this procedure with an example. Necessary and sufficient 
conditions for diagnosability and I-diagnosability are presented 
in Section IV. In Section V we discuss on-line diagnosis of 
failures in diagnosable systems using the diagnoser introduced 
in Section 111. Finally, in Section VI we provide a brief 
summary of the main results of this paper. A summary of 
some of the results in this paper can be found in [19]. 

11. THE NOTION OF DIAGNOSABILITY 

A. The System Model 

generator 
The system to be diagnosed is modeled as an FSM or 

where X is the state space, C is the set of events, 6 is the partial 
transition function, and 20 is the initial state of the system. The 
model G accounts for the normal and failed behavior of the 
system. The behavior of the system is described by the prefix- 
closed language [17] L(G)  generated by G. Henceforth, we 
shall denote L(G) by L. L is a subset of C*, where C* denotes 
the Kleene closure of the set C [9]. 

Some of the events in C are observable, i.e., their occurrence 
can be observed, while the rest are unobservable. Thus the 
event set C is partitioned as C = CO UC,, where CO 
represents the set of observable events and C,, represents 
the set of unobservable events. The observable events in the 
system may be one of the following: commands issued by the 
controller, sensor readings immediately after the execution of 
the above commands, and changes of sensor readings. The 
unobservable events may be failure events or other events that 
cause changes in the system state not recorded by sensors (see 
[201). 

Let Cf C C denote the set of failure events which are 
to be diagnosed. We assume, without loss of generality, that 
C f  C E,,, since an observable failure event can be trivially 
diagnosed. Our objective is to identify the occurrence, if 
any, of the failure events, given that in the traces generated 
by the system, only the events in C, are observed. In this 
regard, we partition the set of failure events into disjoint sets 
corresponding to different failure types 

Cf = Cf ,  U . . . U Cf,. (2)  

Let IIf denote this partition. The partition IIf is motivated by 
the following considerations: 

1) Inadequate instrumentation may render it impossible to 
diagnose uniquely every possible fault. 

2)  We may not be required to identify uniquely the oc- 
currence of every failure event. We may simply be 
interested in knowing if one of a set of failure events 
has happened as, for example, when the effect of the set 
of failures on the system is the same. 

Hereafter, when we write that “a failure of type Fi has 
occurred,” we will mean that some event from the set C f i  has 
occurred. 

We make the following assumptions on the system under 
investigation: 

Al)  The language L generated by G is live. This means 
that there is a transition defined at each state 2 in X ,  
i.e., the system cannot reach a point at which no event 
is possible. 

A2) There does not exist in G any cycle of unobservable 
events, i.e., 

3n, E lN such that Vus t  E L, s E C;, + llsll 5 no 

where I lsl l is the length of trace s. 

The liveness assumption on L is made for the sake of 
simplicity. With slight modifications, all of the main results of 
this paper hold true when the liveness assumption is relaxed. 
Assumption A2) ensures that observations occur with some 
regularity. Since detection of failures is based on observable 
transitions of the system, we require that G does not generate 
arbitrarily long sequences of unobservable events. 

In [20], we discuss in detail discrete-event modeling of sys- 
tems for failure diagnosis. Suppose the system to be diagnosed 
consists of several distinct physical components and a set of 
sensors. We first build FSM models of the individual compo- 
nents. These models account for both the normal and the faulty 
behavior of the components. Consider, for example, a simple 
HVAC system consisting of a pump, valve, and controller. 
Fig. 1 depicts the component models for this system. Starting 
from the component models and sensor maps, we then generate 
a composite model which captures the interactions between 
the components and also incorporates in it the sensor maps. 
This composite model is the system G on which we perform 
diagnostics. 

We conclude this section on the system model with some 
notation and the construction of the generator G’ that will be 
used later. 

I )  Notation: The empty trace is denoted by E .  Let 5 denote 
the prefix-closure of any trace s E E*. We denote by L / s  the 
postlanguage of L after s ,  i.e., 

(3) 

We define the projection P: C* 4 Cz in the usual manner 

L / s  = {t  E C*I st E L} .  

~ 7 1  

P(E) = E  

P(u)  = o  if (T E CO 
P ( 0 )  = E  if o E E,, 

P(s(T) =P(s)P((T) s E e*, u E E. (4) 

Thus, P simply “erases” the unobservable events in a trace. 
The inverse projection operator Pi1 is defined as 

(5 )  P&) = { s  E L : P ( s )  = ?J}. 

Let sf denote the final event of trace s. We define 

@(Cfi) = {SOf E L:Of E Cfi} (6) 
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START-PUMP, STOP-PUMP 

MP-FAILED-OFF-2 

VALVE STARl-PUMP, STOP-PUMP 
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Fig. 1. Component models for a simple HVAC system. 

i.e., 9 (Cf i )  denotes the set of all traces of L that end in a 
failure event belonging to the class Cf;. Consider (T E C and 
s E E’. We use the notation (T E s to denote the fact that (T is 
an event in the trace s .  With slight abuse of notation, we write 
C f ,  E s to denote the fact that a f  E s for some of E Cf;, 
or, formally, r~ n Q?(Cfi)  # 0. 

We define 

X ,  = {zg} U {x E X: :r has an observable event into it}. 

(7) 

Let L(G, x) denote the set of all traces that originate from 
state x of G. We define 

L,(G, X) = {S E L(G, z): s = t j g ,  U E E:,, (T E CO} (8) 

(9) 
and 

L,(G, X )  = {S E L,(G, x): .sf = (T}. 

L,(G, z) denotes the set of all traces that originate from state 
z and end at the first observable event. L,  (G, z) denotes those 
traces in L,(G, z) that end with the particular observable 
event 0. 

2) The Generator G’: In the following sections, we will 
need to use a specially constructed generator G’ of the 
language 

P ( L )  = { t : t  = P ( s )  for some s E L} .  (10) 

G’ will in general be nondeterministic, and it is constructed 
as follows 

where X,, CO, and xo are as defined previously. The transition 
relation of G’ is given by SQ C_ (X, x C x X,) and is defined 
as follows 

(z> (T, z’) E 6Gf 

if 6(~, s) = x’ for some s E L,(G, x). (12) 

It is straightforward to verify that L(G’) = P(L).  Figs. 4-6 
illustrate the construction of G’ from G for three different 
systems. 

B. Approaches to DeJining Diagnosability 

We are now ready to define the notion of diagnosability. 
Roughly speaking, a language L is diagnosable if it is possible 
to detect with a finite delay occurrences of failures of any 
type using the record of observed events. We now present 
two definitions of diagnosability, with the first definition more 
stringent than the second. We shall henceforth refer to the 
first notion as diagnosability and to the second one as I- 
diagnosability . 

I )  Diagnosability: Formally, we define diagnosability as 
follows. 
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Fig. 2. Example of a system with multiple failures. 

Definition 1: A prefix-closed and live language L is said 
to be diagnosable with respect to the projection P and with 
respect to the partition nf on C f  if the following holds 

( V i  E nf)(3n7 E W)[Vs E *(Ef%)](Vt E L / s )  

[Iltll L ni =+ Dl 

where the diagnosability condition D is 

w E P,-l[P(st)] =+ C f i  E w. 

The above definition of diagnosability means the following. 
Let s be any trace generated by the system that ends in a 
failure event from the set C f i ,  and let t be any sufficiently 
long continuation of s. Condition D then requires that every 
trace belonging to the language that produces the same record 
of observable events as the trace st should contain in it 
a failure event from the set C f i .  This implies that along 
every continuation t of s one can detect the occurrence 
of a failure of the type F; with a finite delay, specifically 
in at most n; transitions of the system after s. Alternately 
speaking, diagnosability requires that every failure event leads 
to observations distinct enough to enable unique identification 
of the failure type with a finite delay. 

The case of multiple failures from the same set of the 
partition deserves special attention. When more than one 
failure of the same type, say, F;, occurs along a trace s of 
L, the above definition of diagnosability does not require that 
each of these occurrences be detected. It suffices to be able 
to conclude, within finitely many events after the occurrence 
of the first failure, that along s, a failure from the set C f i  
happened. In later sections we shall see how this feature 
distinguishes the case of possible multiple failures from the 
case of no multiple failures from any set of the partition. 

We illustrate by a simple example the above notion of di- 
agnosability. Consider the system represented in Fig. 2. Here, 
a, 0, 7, and 6 are observable events, au0 is an unobservable 
event while afl, a f 2 ,  and af3 represent failure events. Let 
the initial state 20 of the system be state 1. If one chooses the 
partition C f ,  = { a f l ,  a f 2 }  and C f 2  = {afa} ,  i.e., it is not 
required to distinguish between failures ay1 and a f 2 ,  then the 
above system is diagnosable with n1 = 2 and n2 = 1. On the 
other hand, if the partition is Cfl = {afl}, C f 2  = {a fn} ,  and 
C f ,  = {cf3}, then the system is not diagnosable since it is 
not possible to deduce the occurrence of failure a f 2 .  

2) I-Diagnosability: The preceding definition of diagnos- 
ability requires condition D to hold for all traces of L 
containing a failure event. We now propose a relaxed definition 
of diagnosability (termed I-diagnosability) that requires the 
diagnosability condition D to hold not for all traces containing 
a failure event, but only for those in which the failure event 
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is followed by certain indicator observable events associated 
with every failure type. This modification is motivated by 
the following physical consideration. Consider, for example, 
an HVAC system with a controller unit. In normal mode of 
operation, the controller responds by issuing the command 
“open valve” whenever it senses a heating load on the system. 
Likewise, it issues the command “close valve’’ when the load 
is removed. Assume that when the controller fails, it does 
not sense the presence of any load on the system and hence 
does not issue any commands to the valve. Suppose that during 
operation, the controller does fail, and suppose further that it is 
possible for the system to execute an arbitrarily long sequence 
of events, which does not involve any of the valve commands. 
Under such conditions, it is obvious that one cannot diagnose 
any failure of the valve. Such a system is considered not 
diagnosable according to the previous definition. In the case 
of the modified definition, we associate as indicator events, 
“open valve” and “close valve,” respectively, with the valve 
failure events, “stuck-closed” and “stuck-open,’’ and require 
the system to execute the “open valve” event or the “close 
valve” event before deciding on its diagnosability. The sys- 
tem is considered diagnosable if after the execution of the 
corresponding indicator events it is possible to detect valve 
failures, while it is termed not diagnosable if even after the 
indicator event is executed the corresponding valve failure 
remains undetectable. To summarize, I-diagnosability requires 
detection of failures only after the occurrence of an indicator 
event corresponding to the failure. 

We first associate to every failure event in Cf one or more 
observable indicator events. Let C I  G CO denote the set of 
indicator events, and let I f :  C f  + 2’’ denote the indicator 
map. Next we choose a partition f l y  on C f  such that 

U E f i = C f  
i€nf  

as before, with the additional constraint that for each i = 
1, ’ ” )  m 

O f l ,  a f 2  E C f i  =+ I f ( a f 1 )  = I f ( O f 2 )  

I ( C f i )  = If(af) for any cf E C f i .  (13) 

and define 

We now have a set of observable indicator events I ( C f i )  
associated with each failure type Fi. (See [20] for more details 
on the choice of indicator events for physical systems.) 

We now propose the following definition of I-diagnosability. 
Definition 2: A prefix-closed and live language L is said to 

be I-diagnosable with respect to the projection P, the partition 
ITf on C f ,  and the indicator map I if the following holds 

( V i  E nf)(3ni  E W)(Vs E @(Cfi) 

(V’t l t2  E Lis: S t l  E @ [ m f i ) ] )  [IltllI 2 * D] 

w E P i 1 [ P ( S t l t 2 ) ]  =+ Cfi E w .  

where the diagnosability condition D is 

Note that !P[I(Efi)] denotes the set of all traces of L that 
end in an observable event from the set I ( C f i ) .  Therefore, in 
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the case of the I-diagnosability, we require that occurrences of 
failure events of the type Fi should be detected in at most n; 
transitions of the system after the occurrence of an indicator 
event from the set I ( C f i ) .  

Consider the system represented in Fig. 2. Suppose that 
the indicator events are chosen as follows: I ( C f 1 )  = {y}, 
I ( C f 2 )  = {S}, and I ( C f 3 )  = {S}. Let the desired partition be 
Cf1 = {afl}. C f 2  = {af2} ,  and Cf3 = {uf3} .  This system 
is I-diagnosable with nl = 0 and n3 = 0. It is to be noted 
that although it is not possible to deduce the occurrence of 
failure ap, the indicator event corresponding to a f 2 ,  i.e., 6 
does not follow this failure event and hence the diagnosability 
condition is not violated. 

C. Comparison with Related Work 
Partial observation problems in DES’s have been investi- 

gated by several researchers. While the problem of diagnos- 
ability itself has not been studied in detail, the related notions 
of observability, observability with delay, and invertibility 
have been the subject of several papers, among them [3], [4], 
and [ 121-[ 161. Though closely related to these other problems, 
diagnosabiwy is a &&net@ &i%xe& m h n  €or the f d k w h g  
reasons: partitioning of the failure events, need to identify 
every failure type with a finite delay, possibility of multiple 
failures, possible presence of unobservable events other than 
the failure events, no requirement of diagnosis or detection 
during normal system operation, and absence of “locking-on” 
phenomenon (explained below). In this section, we first discuss 
other approaches to diagnosability that have been proposed in 
recent DES literature [2], [IO]. Afterward, we discuss briefly 
the differences between diagnosability and the other notions 
mentioned above. 

1) Other Approaches to Diagnosability: Lin, in [lo] (also 
see [ 1 l]), proposes a state-based approach to diagnosability. 
He assumes partial state information available via an output 
function. He addresses separately the problems of off-line 
and on-line diagnosis. In off-line diagnosis, the system to be 
diagnosed is not in normal operation and can be thought of 
as being in a “test-bed.’’ The diagnostic procedure involves 
issuing a sequence of test commands, observing the resulting 
outputs, and drawing inferences on the set of possible states 
the system could be in. The off-line diagnosis problem can 
be considered equivalent to the problem of “verification.” In 
on-line diagnosis, the system is assumed to be in normal 
operation. The goal of diagnostics, as before, is to issue a 
sequence of commands and identify uniquely, up to a partition, 
the state of the system. Unlike the case of off-line diagnosis, 
however, one now has to account for the possible occurrences 
of other uncontrollable events during the diagnostic process. 
The author gives an algorithm for computing a diagnostic 
control or a sequence of test commands for diagnosing system 
failures. This algorithm is guaranteed to converge if the system 
is indeed on-line diagnosable. 

In [2], Bavishi and Chong study extensions of the above 
work. In particular, they consider testability of DES’s (which 
is equivalent to the off-line diagnosability problem studied in 
[lo]) and present algorithms i) for determining the optimal set 

of sensors which would ensure testability of a given system 
and ii) given a fixed set of sensors, for determining the infimal 
partition of the state space, with respect to which the system 
is testable. 

2)  Related Notions in DES’s: 
Language Observability: Lin and Wonham study in [12] 

the supervisory control problem with partial event observa- 
tions. They introduce a language-based definition of observ- 
ability and state conditions for the existence of a solution to 
the supervisory control problem in terms of observability and 
controllability of languages. The control problem addressed 
there does not require explicit determination of the occurrences 
of unobservable events or identification of the system state. 
Thus, the notion of observability introduced there is different 
from the problem of diagnosability. 

Observability of State Machines: In his paper on observ- 
ability of DES’s [ 161, Ramadge explicitly addresses the prob- 
lem of state identification for discrete-event systems. In his 
framework, the system is modeled by a nondeterministic 
automaton with full event observability and partial state ob- 
servability via an output map defined on the states (as in a 
Moore automaton). The problem is to reconstruct exactly the 
state af the system after the occurrence of every event. The 
motivation for the observability problem addressed there is 
an observer-state feedback approach to controller synthesis. 
The work in [16] is set in a different framework and is 
incomparable with the diagnosability problem studied here. 

Ozveren and Willsky adopt in [ 131 a slightly different notion 
of observability from that of Ramadge. They assume a partial 
event observation model with no direct state observations. A 
system is termed observable if, using a record of observable 
events, it is possible to determine the current state exactly 
at intermittent (but not necessarily fixed) points in time, 
separated by a bounded number of events. An observer is 
a DES which produces estimates of the state of the system 
after the occurrence of every observable event. In [13], the 
authors also address the problem of observability with delay. 
A system is said to be observable with delay, if, at intermittent 
points in time, it is possible to have perfect knowledge not 
of the current state of the system but of the state some 
finite number of transitions into the past. In our framework, 
diagnosability is posed as an event detection problem. When 
viewed as a problem of state identification, diagnosability 
is a stronger notion than observability with delay since the 
former requires that every failure state should be identifiable 
uniquely (up to a partition). In contrast, in [13], there is no 
notion of a particular state or set of states being observable. 
A system is observable (or observable with delay) as long as 
there exists at least one state which is uniquely identifiable at 
intermittent points in time. On the other hand, diagnosability 
only requires that the failure states be identifiable with finite 
delay; there are no similar requirements on the normal states. 
Thus, a system could execute arbitrarily long sequences of 
events, while in normal (failure-less) operation, with no single 
state being uniquely determinable even with delay. Further, 
a system could fail to be observable (with or without delay) 
if in the post-failure operation, there exists no state that is 
uniquely identifiable. This system could still be diagnosable, 
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however, since we require unique identification not of every 
failure state but only of every set of the partition. See Appendix 
A of this paper for examples illustrating differences between 
diagnosability and observability with delay. 

In [3], Caines et aZ. study the state estimation problem for 
partially observed automata. The system is modeled as input- 
state-output automaton with partial state information available 
via an output function. A state output automaton is taken to 
be a special case of the above automaton where the input set 
is a singleton. They address the problems of initial state ob- 
servability and current state observability using two different 
kinds of observers: classical dynamical observers and logic- 
based dynamical observers. The classical dynamic observer is 
a finite state automaton which takes for its input the observed 
system behavior, namely, the sequence of input-output pairs, 
and generates a sequence of state estimates (either of the initial 
state or of the current state). The logic-based observer, on the 
other hand, is a logic-based dynamical system built in the 
framework of predicate calculus. This observer generates a 
sequence of logic propositions which describe the properties 
of the system. An interesting feature of these logic-based 
observers is their adaptability to changes in the system model. 
Observability as studied in [3] and observability as discussed 
in [16] and [13] differ in the following important aspect. In [3], 
the authors assume that once the current state of the system 
is determined, then it is known for all future time, i.e., once 
the observer estimate converges to the true state of the system, 
it will thenceforth stay locked on and will always provide the 
correct system state as its output, for all observed input-output 
behavior. 

Invertibility: In [14], Ozveren and Willsky introduce the 
concept of invertibility which is closely related to the problem 
of diagnosability. A language is said to be invertible if, at 
any time, using knowledge of the observed event sequence 
up to that time, we can reconstruct the full event sequence 
(corresponding to this observed sequence) up to a finite, 
bounded number of events in the past. Invertibility is a stronger 
notion than diagnosability. For a system to be diagnosable, we 
do not require reconstruction of entire event sequences: we 
are interested in identifying the occurrence of specific failure 
events only. Further, when the failure events are partitioned 
into sets, one is interested only in identifying if one of 
a set of events has happened. Also, as mentioned before, 
in the case of multiple failures from the same set of the 
partition, diagnosability does not require detection of every 
single occurrence of these failures; it is enough to be able 
to conclude that a failure event from that set has occurred 
at least once. Hence, a system that is diagnosable could be 
noninvertible. We present in Appendix A an example of a 
noninvertible system which is diagnosable. 

The problem of eventual invertibility of timed DES’s mod- 
eled by generalized semi-Markov schemes is addressed by 
Park and Chong in [15]. In this modeling framework, the 
timed behavior of a system is described by an automaton in 
conjunction with a set of event lifetimes. Partial state as well 
as partial event information is assumed available. In addition, 
all transition firing times are assumed to be observable. The 
problem of eventual invertibility is to determine from observa- 

tions of events, states, and transition epochs, the corresponding 
event lifetimes up to a finite time in the past. The authors 
establish in [I51 the equivalence between the problem of 
extracting event lifetimes and that of constructing the event 
trajectory from observations of the system behavior. 

This concludes the comparison of our notion of diagnos- 
ability with other related notions that have appeared in the 
literature. 

111. THE DIAGNOSER 

We now introduce the diagnoser which is an FSM built 
from the system model G. This machine is used to perform 
diagnostics when it observes on-line the behavior of G. 
The diagnoser is also used to state necessary and sufficient 
conditions for diagnosability. While the “basic” diagnoser 
presented in this section is adequate for the purpose of 
diagnosis, additional modifications as presented in Section 
IV are necessary to test for diagnosability. In this section 
we present the construction procedure of the diagnoser. On- 
line diagnosis of failures in diagnosable systems using this 
diagnoser is discussed in Section V. 

Construction: We define the set of failure labels A, = 
{ P I ,  F2, . . .  F,} where IITf( = m and the complete set of 
possible labels 

(14) 

Here N is to be interpreted as meaning “normal,” A as 
meaning “ambiguous” (to be explained shortly), and Fi, i E 
( 1 , s . .  ,m)  as meaning that a failure of the type Fi has 
occurred. Recall from Section 11-A-1) the definition of X ,  
and define 

(15) 

A = { N }  U 2{Afu{A)}. 

Qo = 2 ” o X A  

The diagnoser for G is the FSM 

Gd = ( Q d :  Eo, d d ,  Qo) (16) 

where Qd, E,, Sd,  and qo have the usual interpretation. The 
initial state of the diagnoser qo is defined to be {(zo, { N } ) } .  
The transition function dd of the diagnoser is constructed as 
explained below. The state space Q d  is the resulting subset of 
Q, composed of the states of the diagnoser that are reachable 
from qo under Sd. Since the state space Q d  of the diagnoser 
is a subset of Q,, a state qd of Gd is of the form 

qd = {(Zlr el), ‘ * ’ ,  (Zn, en)} 
where zi E X, and & E A, i.e., & is of the form ti = 

Fi,,..-,Fik} where in the last two cases ( 2 1 ,  22,~..,2k} 
{ N j ,  li = { A ) ,  ti = {Fi,Fi,,...lPi,}, or ei = { A , F i ,  

{ 1 1 2 1 . .  . , m } .  
An observer for G (see [13]) gives estimates of the current 

state of the system after the occurrence of every observable 
event. The diagnoser Gd can be thought of as an extended 
observer where we append to every state estimate a label of 
the form mentioned above. The labels attached to the state 
estimates carry failure information and failures are diagnosed 
by checking these labels. We assume the system G is normal 
to start with, hence we define qo = {(xo, { N } ) } .  
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Before defining the transition function Sd of the diagnoser, 
we define the following three functions: the label propagation 
function LP, the range function R, and the label correction 
function LC. 

Definition 3: The label propagation function LP:  X, x A x 
C” + A. 

Given .T E X,, I E A. and s E L,(G, x), LP propagates 
the label 1 over s ,  starting from x and following the dynamics 
of G, i.e., according to L(G, T ) .  It is defined as follows 

LP(2, e, s) = 
if C =  { N }  AV’z[Cf, 4 s] 
if C = { A }  AVi[C,, $! s] 
otherwise. { F z :  F, E e V Cfz E s }  

To summarize, the diagnoser Gd is constructed as follows. 
Let the current state of the diagnoser (i.e., the set of estimates 
of the current state of C with their corresponding labels) be 
41, and let the next observed event be U .  The new state of the 
diagnoser q 2  is computed following a three-step process: 

1) For every state estimate z in 41, compute the reach due 
to o, given by S ( x ,  o) = {6(x ,  so) where s E CL,}. 

2) Let x‘ E S(z, o) with S(x,  so)  = 2’. Propagate the 
label e associated with x to the label C’ associated with 
x’ according to the following rules: 
a) If 1 = { N )  and s contains no failure events, then 

b) If = { A }  and s contains no failure events, then 
the label C’ is also { N } .  

the label !’ is also { A } .  
c) If e = { A ,  Fi} and s contains no failure events, 

d) If C = { N )  or { A ]  and s contains failure events 

Definition 4: The range function R: &, x C, -+ Qo is 
then the label 1’ is {Fi} .  defined as follows 

. ,  . ,  
R(ql o) = U U { (S ( .T ,  .y), LP(xl e. c$))}- from C f , ,  C f J ,  then C’ = { F z .  F 3 } .  

( x . t ) € q  sEL,(G,z)  e) If C = {Ftl F3} or { A ,  F,, F j )  and s contains 
failure events from C f k ,  then e’ = {Fzl F3, Fk}. 

3) Let q2 be the set of all (z’, e‘) pairs computed following 
Steps 1) and 2) above, for each (x, e) in 91. Replace by 
(x‘, A ,  F,, F3) all (x’, e’)> (z’, t”) E q 2  such that F, 
and F3 are components of both f’ and C”. That is, if 
the same state estimate x’ appears more than once in q 2  

with different labels, we associate with x’ all common 
components of these labels, and in addition, we attach 

Definition 5: The label correction function LC: Q, -+ Q, 
is defined as follows 

LG( q )  = { ( 2 ,  e) E q:  a: appears only once in all 
the pairs inq} U {(x. { A }  U1,1 fl . . .  f l C z k )  

whenever 3 two or more pairs 

( T .  P L 1 ) .  . . . . ( x ,  P Z k )  in q } .  

The use of the label correction function LC and the label 
A is explained as follows. The label acquired by any state 
x along a trace s indicates the occurrence or otherwise of a 
failure when the system moves along trace s and transitions 
into state z. Suppose that there exist two pairs (x, 1) ,  (2, e’) 
in R(q, o) for some state q of the diagnoser. Then this implies 
that the state z could have resulted from a failure event of a 
particular type, say F,, or not. Under this condition, we attach 
the label A to z to denote the fact that there is an ambiguity. In 
other words, the A label is to be interpreted as meaning “either 
F, or not F,” fori E { 1, . . . . m). It is to be noted here that we 
do not distinguish between cases “F, or Fj,” “F3 or Fk,” “ N  
or F,,” and so on. In all of these situations, we simply use the 
label A .  While this may lead to loss of information necessary 
for determining diagnosability of a language, it is adequate 
for the purpose of diagnosis to treat alike all cases mentioned 
above. We will explain this in more detail in Sections IV and 
V. 

The transition function of the diagnoser 6 d :  Q0 x E, -+ Q, 
is now defined as 

to x the ambiguous label A .  
Note that in cases c), d), and e) above, we do not propagate 

the A label from one state to the next. While this leads to a 
reduction in the state space of the diagnoser, it leads to no loss 
of information necessary for determining the diagnosability 
properties of a language or for implementing diagnostics. The 
reasons for this will become evident in the subsequent sections. 

We now give a simple example illustrating the construction 
of the diagnoser. Fig. 3 illustrates a system G and its diagnoser 
Gd. Here Q: p: y, 6, and (T are observable events while 
o,,, oj1, o j 2 ,  and of2/ are unobservable. Cf l  = { o f l }  
and E p  = {of*, of2,). In all illustrations that follow, we 
represent ( 2 ,  e) pairs simply as xC for clarity. Also, the initial 
state 20 of G is chosen to be state 1. 

Remark: In the above construction procedure we have 
assumed knowledge of the initial state of the system, since the 
diagnoser is assumed to run in parallel with the system from 
the start of operation. It is to be noted that the above procedure 
remains valid, however, even in the case of unknown initial 
state. 

q2 =&i(q1, 0) e q2 = L C [ R ( q 1 ,  .)I (17) Iv .  NECESSARY AND SUFFICIENT 
CONDITIONS FOR DIAGNOSABILITY 

with (T E e d ( q l )  where 
In this section, we present necessary and sufficient condi- 

tions for a language L to be diagnosable, followed by similar 
conditions for L to be I-diagnosable. These conditions are 
stated on the diagnoser Gd or variations thereof. To test for 
these conditions, we use, in addition to the diagnoser, the 
machine G’ introduced in Section 11-A-2). 

(18) ed(q1)  = U { P ( s ) : s  E L,(G, x)). 

In words, ed(q1) is the active event set of Gd at q1, i.e., the 
set of all possible transitions of the diagnoser at the state q l .  

( x ,  q € q l  
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a 

THE SYSTEM G 

"€IE DIAGNOSER Gd 

Fig. 3. Example illustrating construction of the diagnoser Gd.  

A. Conditions for Diagnosability S l f ,  SZf E C O ,  qzo, 31) = 2 1 ,  6 ( 2 0 ,  52) = $2 

We investigate separately the case of no multiple failures 
of the same type and that of possible multiple failures of 
the same type. The former corresponds to the situation where 
along every trace s of L, no more than one failure from the 
same set of the partition can occur; the latter corresponds to 
the situation where it is possible to have multiple failures from 
the same set of the partition occurring along any trace s. The 
reason for the separate investigation of these two cases will 
become apparent as we proceed. 

I )  The Case of No Multiple Failures: 
Properties and Definitions of the Diagnoser: We now state 

a few properties of the diagnoser that follow from its con- 
struction. These properties and the definitions that follow will 
be used subsequently to state and prove the conditions for 
diagnosability . 

PI) By construction, any 2, E X ,  appears in at most one 

P2) Let q E Q d .  Then 
pair ( x z r  e,) in any state of Q d .  

and 

P(S1)  = P(s2) .  

P3) Let 4 1 ,  42 E Qd and s E E* such that ($1, C1) E q1, 

($2, C2) E q 2 ,  6(zi, S )  = 22 ,  and bd[Qi, P(S)] 4 2 .  
Then 

(Fi 4 e , )  A ( A  4 C2) =+ Fa 4 C l .  

Property P3) above simply states that the failure labels Fi 
propagate from state to state, unless replaced by the A label 
as a consequence of the label correction function LC. Hence, 
along any trace s of L, if a state z receives an Fi label, every 
successor z' of z also carries the F; label, unless ambiguity 
arises, in which case, z' receives the A label. Also note that 
if along a trace s E L, a state z carries the label N ,  then so 
do all of its predecessors. 

Definition 6: 
1) A state q E Qd is said to be Fa-certain if V(2, C) E q,  

F~ E e. 
(21, el) ,  ( 5 2 ,  C Z )  E 4 e 391, sz E L 2) A state q E Qd is said to be Fi-uncertain if 3 (z, C), 

such that (y, C') E q, such that Fi E C and F, 4 e'. 
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3) A state q E Qd is said to be ambiguous if 3 (z, e )  E q, 

Note that in the above definition of an Fi-uncertain state, 
z # y by Property Pl) .  Also note that if a state q is not Fi- 
uncertain, it does not necessarily imply that q is Fi-certain, 
since a state q E Q d  such that V(z ,  e) E q ,  Fi $! 1 is neither 
Fi-certain nor Fi-uncertain. The following results are a direct 
consequence of the construction of the diagnoser. 

such that A E 1. 

Lemma 1: 
i) Let Sd (40, U )  = q. If q is Fi-certain, then [V w E PL1 ( U ) ]  

Cfi E w. 
ii) If a state q E Qd is Fi-uncertain, then 3 5-1, s2 E L such 

that: C f i  E SI, C f i  $! sz, P(s1) = ~ ( s z ) ,  &[qo,  p(.31)] 
= q, and ~ ( x o ,  S I )  # ~ ( z o ,  .qz). 

iii) If a state q E Q d  is ambiguous, then 3 1 ,  s 2  E L and 
3i E nf such that: Cf, E SI, Cfi $ SZ, P(s~)  = 
P(sz ) ,  &[qo,  P(3l)l = q: and qzo, s1) = S(z0, sz). 

From the definition of an F,-certain state and the above 
lemma, it is obvious that if the current state of the diagnoser 
is Fi-certain, then we can conclude that a failure of the type 
Fi has occurred, regardless of what the current state of G 
is. This is precisely the type of diagnosis that is addressed 
in this paper. On the other hand, presence of an Fi-uncertain 
state in Gd corresponds to the situation where there are two 
traces s1 and .s2 in L such that s 1  contains a failure event of 
type Fi while s 2  does not and in addition, the traces s1 and 
s 2  produce the same record of observable events. Whenever 
the diagnoser hits an Fi-uncertain state, we conclude that a 
failure of the type Fi may have occurred but it is not possible 
to ascertain from the observed event sequence up to that point 
whether the failure has indeed occurred. Finally, the presence 
of an ambiguous state in Gd corresponds to the situation where 
there are two traces S I  and s 2  in L such that the set of all 
possible continuations of s1 in L is the same as that of s2, 
s1 contains a failure event of a particular type, say Fi, while 
s z  does not, and in addition the traces s1 and s 2  produce the 
same record of observable events. We shall henceforth refer 
to such traces as Fi -ambiguous traces. 

Definition 7: A set of states 51, :CZ, . . . , x, E X is said to 
form a cycle in G if 3 s E L(G,  z1) such that s = I T ~ I T ~  . . . IT, 

and S(z1, IT/) = z ( l+l )modn,  1 = 1. 2, . . . ,  n. 
The following definition of an Fi-indeterminate cycle is 

based upon examination of cycles in Gd and G‘. 
Definition 8: A set of Fi-uncertain states q1, 42, . . - , qn E 

Q d  is said to form an F,-indeterminate cycle if 
1) 41, q 2 :  . . . :  Q, form a cycle in Gd with S d ( q l ,  m )  = 

ql+l : l=  1. . - . ,  n,-l,6d(qn, IT,) = q l , w h e r e ~  E C O ,  
1 = 1, . . . ,  n, and 

$1, ( y ~ ,  6) E ql, 1 = 1, . “ ,  n, IC = I ,  . . . ,  m, 
and T = 1, . . . , m’ such that 
a) F, E e;.  F, $! 6 for all 1:  k ,  and r ;  
b) The sequences of states {xf }, 1 = 1, . . . , n, k = 

1, . . . ,  m and {TJ;}, 1 = 1, ’ . . ,  n, r = 1, . . . ,  m’ 
form cycles in G’ with 

2 )  

and 

In other words, an F,-indeterminate cycle in Gd is a cycle 
composed exclusively of F,-uncertain states for which there 
exist: 

1) A corresponding cycle (of observable events) in G’ 
involving only states that carry F, in their labels in the 
cycle in Gd (this is the sequence {xf}) and 

2) A corresponding cycle (of observable events) in G’ 
involving only states that do not carry F, in their labels 
in the cycle in Gd (this is the sequence {y;}). 

Observe that in the above definition, m and m’ denote the 
number of times the cycle ql, 42, . . . , q, in Gd is completed 
before the cycle in G’ is completed, i.e., nm and nm’ are the 
cycle lengths in G’ for { z! ) and { yr ), respectively. 

An Fa-indeterminate cycle in Gd indicates the presence in 
L of two traces s1 and s2 of arbitrarily long length, such that 
they both have the same observable projection, and s1 contains 
a failure event from the set E,, while s2 does not. The notion 
of an F,-indeterminate cycle is the most crucial element in 
the development of necessary and sufficient conditions for 
diagnosability. We now present examples to better illustrate 
this notion. 

Figs. 4 and 5 depict two different systems and their cor- 
responding diagnosers. The diagnoser in Fig. 4 has a cycle 
of F1-uncertain states, with the corresponding event sequence 
pyb.  Corresponding to this cycle in the diagnoser, there are 
two cycles in the state machine G’: the first involves states 3-5 
which appear with an F1 label in the cycle in the diagnoser 
and the second involves states 7, 11, and 12 which carry a N 
label in the cycle in the diagnoser. Thus the cycle in Gd is a 
F1-indeterminate cycle with m = m’ = 1, = 3, xi = 4, 
xi = 5 ,  and y; = 7, y: = 11, yk = 12. The diagnoser 
in Fig. 5 also has a cycle of F1-uncertain states. In fact, on 
closer inspection, one sees that the diagnosers of the systems 
in Figs. 4 and 5 are identical. This time the cycle is not F1- 
indeterminate, however, as there is no corresponding cycle in 
G’ involving states that carry the F1 label in the cycle in Gd, 
namely states 3-5, 9, and 10. 

In the above examples, the cycle in Gd corresponds directly 
to a cycle in G’, in the sense that the loop in G’ is completed 
with just one completion of the loop in the diagnoser G d ,  
i.e., m = m’ = 1. We now give an example of a system 
where more than one traversal of the loop in Gd is required to 
complete the loop in G’. In Fig. 6, the set { x f }  in Definition 8 
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Fig. 4. Example of a system with an Fi-indeterminate cycle in its diagnoser Gd.  

6 s 
m S Y m G  G' 

b 

TBE DUGNOSER Ca 

Fig. 5 .  Example of a system with a cycle of Fi-uncertain states in its diagnoser Gd. 

B 
lEEDIAGMSEXGd 

Fig. 6. Another example of a system with an F1-indeterminate cycle in its diagnoser. 

is (3, 4) while the set (y;} is ( 5 ,  6, 8, 9) (or, (8, 9, 5 ,  6 ) ) .  
Here m = 1 and m' = 2. 

We are now ready to state the necessary and sufficient 
conditions for diagnosability in the case of no multiple failures. 
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Necessary and Sufficient Conditions: 
Theorem 1: A language L without multiple failures of the 

same type is diagnosable if and only if its diagnoser Gd 
satisfies the following two conditions: 

C1) There are no F,-indeterminate cycles in Gd, for all 

C2) No state q E Qd is ambiguous. 

Necessity: We first prove that if L is diagnosable, then 
it satisfies Condition Cl). By contradiction, assume there 
exist states ql, q z ,  ... , qn E Qd such that they form an 
F,-indeterminate cycle and let f i d ( q , ,  a ,)  = q( ,+ l ) , , d , .  Let 

r = 1, . . . , m‘ form corresponding cycles in G’ with F, E e!, 
F, 6 5. Then we have 

failure types F,. 

Proofi 

(zf, L f ) .  (y:, 6) E g l ,  1 = 1. . . . ,  72, IC = 1, . ” ,  m, and 

S($ sfa l )  =-xtz+l). 1 = I ,  . . . , n - 1, 

IC = I ,  - ” ,  m -  I, 
k =  1, . . . ,  m, 

~ ( z k ,  ska,) =x;+l, 
6(ZT, Sra,) =xi 

and 
q y ; ,  BT.1) =y;l+l), 1 = 1, . . . , n - 1, 

qy;, s;.,) = y/T+1, T = 1, ’ .  . , m’ - 1 
r = 1, ... 1 m‘, 

and 
qy,”, sn”on) =?/: 

where 

m, m‘ E IN, s: E L(G, xf), 3.; E L(G, 9:) 
and 

s:, 5; E E;,. 

Since (xi, e : ) ,  (y13 e:) E ql, 3 s 0 ,  Bo E L such that 6 ( ~ ,  
so) = z:, S ( ~ / O ,  B o )  = yi and P(s0) = P(90) from Property 
P2). Further, since F, E e:, then C,, E so and since F, 4 lf, 
we have that Cf, 4 SO and Cf, # Bf for all I ,  r. 

Consider the two traces 

w = so(s;a1s;az . . . s;ons:a1s;oz . . . 
s i g n  . . s;nff1syffz . . . s:an)k” 

ij = Bo(B;alS;a2 * .  . B~onB:ols;02 * * * 

L&Tn . . . B;n‘a&2 . . . B:’on)km 

for arbitrarily large k. We have that w ,  ij E L,  P ( w )  = P(G) 
= P(so)(ai~z . . .  an)’”’, and Cfz E w while Cf, # G. Let 
s E 30 be such that s E @(Cf,), and let t E L / s  be such 
that w = st. By choosing IC to be arbitrarily large, we can get 
I It1 I > n for any given n E IN. Thus, we have CJ E Pi1 [P(s t ) ]  
and Cf, 6 &. Therefore, the chosen s violates the definition 
of diagnosability for F,. Hence L is not diagnosable. 

We now prove that if L is diagnosable, then it satisfies 
Condition C2). By contradiction, let q E Qd be ambiguous. 
Then for some i E IIf, 3 F,-ambiguous traces SI ,  sz E L 
satisfying Lemma 1-iii). Let S(z0, sl) = 2. Since ~ ( x o ,  SI) = 
~ ( x o ,  s ~ ) ,  t E Llsl  iff t E L/sa. Since, by assumption, 

multiple failures from the same set of the partition do not 
occur, and since C f i  E SI, Cf; # t Vt E L/s l .  Hence, 
s2t E PL1[P(s1t)] and E,; $ szt V t  E L/s l .  Choosing 
s = s1 and w = szt, we see that Definition 1 is violated and 
L is not diagnosable. 

Sufficiency: Assume that the diagnoser Gd for L satisfies 
Conditions C1) and C2). Pick any s E L and any F; such 
that s E @ ( C f i )  and let ~ ( z o ,  s )  = 5.  Pick any tl E Lo 
(G,  z). From Assumption A2) of a finite bound no on the 
length any sequence of unobservable events in L, ((tlI( 5 
no. Let 6(xo, stl) = 5 1  and correspondingly in Gd, let 
6 d [ q O ,  P(stl)] = 41. Since C f i  E s t l ,  and since we assume 
that there are no ambiguous states in Gd, we have ( q , l l )  E q1 

with Fi E 11. 

We now have two distinct cases to consider: I) q1 is Fi- 
certain and 11) q1 is Fi-uncertain. 

Case I: Suppose q1 is Fi-certain. Then, by Lemma 1-i) 

(Vw E Pi’[P(Stl)]) Cfi E w .  

Hence L is diagnosable for Fi with ni = no. Since this is true 
for any Fi, L is diagnosable. 

Case ZI: Suppose q1 is Fi-uncertain. Consider any (z, e )  E 
q1 such that Fi E L .  We shall then refer to z as an “2-state” of 
41. Likewise, if (2, a’) E q1 such that Fi # e‘, then we shall 
denote z’ as a “y-state” of 41. We have assumed that there 
are no Fi-indeterminate cycles in Gd. Recalling the definition 
of an Fi-indeterminate cycle, this assumption means that one 
of the following is true: i) there are no cycles of Fi-uncertain 
states in Gd, or ii) there exists one or more cycles of Fi- 
uncertain states ql, qz, . - . , qn in Gd but corresponding to any 
such cycle in Gd, there do not exist two sequences {zt} and 
{y[}, 1 = 1, ..., n, and IC, T E IN such that both of these 
form cycles in G’, where the sequence {xf} is composed 
of “z-states” of ql, and the sequence {y[} is composed of 
“y-states” of q l ,  1 = 1, . . . ~ n. 

Case i): Suppose that there are no cycles of Fi-uncertain 
states in Gd. Then this implies that every Fi-uncertain state 
should lead to an Fi-certain state in a bounded number of 
transitions by Condition C2) and by Property P3) of label 
propagation. 

Case ii): Suppose that there exists a cycle of Fi-uncertain 
states (11, q 2 ,  . * , qn in Gd as in ii) above. We now show that 
whenever a failure happens, i.e., when the true state of the 
system is an “2-state,” it is not possible to loop for arbitrarily 
long in this cycle in Gd and thereby never detect the failure. 

Pick any “y-state: yl E 91, and le! the corresponding label 
be e, .  Since Fi # el, the pair (yl, e l )  E ql could only have 
resulted from a pair (yl-1, &I) E ql-1 such that Fi # .&-I 
and not from any (zl-1, & I )  E qt-1 where Fi E &-I, 
because of Condition C2) and Property P3). That is, the “y- 
state” yl cannot be a successor of any “,-state” zl-l along 
the corresponding trace in G’. Thus, by backward induction, 
we can always build a cycle of states in G’ involving some 
or all of the “y-states” of 91, 1 = 1, . . . , n. These “y-states” 
then constitute the sequence {yf}. But since the cycle of Fi- 
uncertain states ql, qz, . . . , qn is not Fi-indeterminate, there 
cannot be a corresponding cycle in G’ involving the “z-states” 
of ql,  i.e., there cannot exist a sequence {xf} of “2-states” 
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that form a cycle in G’. Hence, if we pick any ‘‘,-state” 21 in 
any state ql in the cycle in Gd, then a sufficiently long trace 
p E L(G,  21) [guaranteed by the liveness Assumption Al)] 
will leave the cycle of Fi-uncertain states. Specifically, let 1” 
be the number of “x-states” in any 91, 1 = 1, . . . , n. Then, 
we can stay in the cycle formed by states q1, q2 , . . . , q,  for 
as long as E;“=, I” transitions of Gd, before leaving it. Since 
this is true for any cycle of Fi-uncertain states in Gd, we can 
conclude that we will eventually hit an Fi-certain state from 41. 

Therefore, for both situations i) and ii), we conclude that 
V t 2  E L(G,  21)  of sufficiently long length, &[q1> P( t2 ) ]  = 
b d [ q ~ ,  P(stlt2)I = Q% is Fi-certain. Let t = t l t 2 .  We conclude 
that 3 ni E IN such that V t E L/.s 

lltll 2 ni * ( V u  E PL1[P(s t ) ] )  Cfi E U .  

Hence L is diagnosable. Further, we can obtain a bound on ni, 
V i  E nf as follows. First, recall that I(tllI 5 n,,. Next, define 

ci = c #x-states in (I. (19) 

Finally, recall that at most no unobservable events can occur 
between any two observable events in L. Hence we have that 

nj 5 ci x no + 72,. (20) 

Q.E.D. 
It follows from the above proof that Conditions C1) and 

C2), together with the liveness assumption on L, imply that if 
L is indeed diagnosable, then every Fi-uncertain state leads to 
an Fi-certain state in a bounded number of transitions of the 
diagnoser. We now have the following important corollary. 

Corollary I :  Consider a prefix-closed and live language 
L. Let Cf;, ,i = 1, 2, . . . , m denote disjoint sets of failure 
events in C. Assume that multiple failures of the same type 
do not occur in the traces in L. If L is diagnosable with delay 
ni corresponding to failure type Fi, then the diagnoser Gd 
transitions into an Fi-certain state in at most n,i + no events 
of L following the occurrence of a failure event of type Fi. 

Proof: Let L be diagnosable with delay n,i corresponding 
to failure type Fj . From the proof of sufficiency of Conditions 
Cl)  and C2) of Theorem 1 ,  it is obvious that every trace of 
L containing a failure event of type Fi leads to an Fi-certain 
state of the diagnoser in a bounded number of transitions. We 
now show that this happens in at most ni +no transitions of the 
system following the failure event. Consider any s E q(Ef i ) ,  
and consider any t E L / s  such that ( ( t ( (  2 n,. Since L is 
diagnosable with delay ni, we have that ( V u  E P;’[P(st)]), 
Cfi E w .  First suppose that t f  E Co. It follows then from 
the construction of the diagnoser Gd that &[(IO, P(s t ) ]  is Fi- 
certain. Next suppose that t f  q! E,. Since the state of the 
diagnoser Gd corresponding to the trace st is defined only 
after the occurrence of the first observable event following 
st, and since the length of any sequence of unobservable 
events in L is bounded by nor we have that V v  E L: (71 = 
st?4flo)(74 E %,)(go E IIufloII 5 no and &[(Io, P(u)]  is 
Fi -certain. Q.E.D. 

Recall the systems represented in Figs. 4 and 5. In both 
of these systems multiple failures of the same type do not 

q E Q d :  is F,-uncertain 

occur along any trace. The diagnoser corresponding to the 
system in Fig. 5 does not have any F;-indeterminate cycle 
or ambiguous states, and hence this system is diagnosable. 
The bound on the delay n1 for this system is calculated from 
(20) to be six; inspection of the system reveals that the actual 
value of n1 = 6. Inspection of the diagnoser shows that the 
detection delay for this system is also six. (Here, n1 +no = 7.) 
The system represented in Fig. 4 is not diagnosable since the 
diagnoser Gd for this system contains an Fi-indeterminate 
cycle as explained earlier. Fig. 3 represents another system 
that is not diagnosable. This again is an example of a system 
in which multiple failures are not possible; inspection of the 
diagnoser for this system reveals the presence of an ambiguous 
state. 

Remark: One could interpret Conditions C1) and C2) of 
Theorem 1 as generalizations to the case of diagnosability of 
Ozveren and Willsky’s conditions for invertibility stated in 
r14 .  

2) The Case of Multiple Failures: We now consider the 
case of possible multiple failures from the same set of the 
partition. First, recall that when more than one failure event 
of the same failure type occurs along any trace of the system, 
our definition of diagnosability does not require that all of 
these events be detected. We only require that it be possible 
to conclude with finite delay (after the first occurrence of a 
failure) that a failure event of that type happened. This is what 
distinguishes the case of multiple failures from the case of no 
multiple failures and leads to the following consequences on 
the diagnosability of a language. 

In the case of no multiple failures discussed in the last 
section, we saw that a necessary condition for L to be 
diagnosable is that no state of Qd is ambiguous. In other 
words, L should contain no two Fi-ambiguous traces Vz E nf. 
Such a requirement is not necessary when we allow for the 
possibility of multiple failures. Recall from Lemma 1-iii) 
that any two Fi-ambiguous traces SI and 5 2  produce the 
same record of observable events and, in addition, share the 
same future behavior. Thus, no future observations can help 
identify which of the two traces was actually executed by the 
system. If every trace in the post-language of these ambiguous 
traces contains failure events of the same type that caused the 
ambiguity, namely, failures from the set C f i  occumng in a 
bounded number of transitions of the system following the 
first occurrence of the failure, and if it were possible to detect 
with finite delay the occurrence of these failures, the language 
L would still satisfy our condition of diagnosability. Hence, 
presence of two ambiguous traces does not necessarily imply 
that L is not diagnosable. To determine in the case of multiple 
failures if L is indeed diagnosable, one needs to record what 
failure types caused the ambiguity and test if these failure types 
reappear. For these reasons, the “basic” diagnoser introduced 
in Section 111 is not adequate for checking diagnosability of 
a language in which multiple failures of the same type are 
possible. In this regard, we now introduce some modifications 
to the diagnoser G d  of Section 111. 

First define the new set of possible labels 
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(as opposed to {N} U 2{Afu{A)) in the previous case). The 
modified diagnoser for G is the FSM 

Lemma 2: 
i) Let S d ( q 0 ,  U )  = q. If q is Fi-certain, then (Vw E 

ii) If a state q E Qd is Fi-uncertain, then this implies that 
PL1(u))  Cfi E w. 

Gyf = ( Q y f ,  C O ,  6yf , 40) .  (22) 
~. 

381, s2 E L such that C f i  E SI, Cfi 4 si, P(s1) 
= P(s2), and & [ q O ,  ~ ( S I ) ]  = q. 

The proof of the above lemma is obvious by the construction 
of the diagnoser cyf. Note that Lemma 1-ii) and 1-iii) of 
Section IV-A-1) have been restated together as Lemma 2-ii) 
since ambiguous states have now become Fi-uncertain states. 

Fig. 7 illustrates construction of the diagnoser G y f  for the 
case of multiple failures. In this system a ,  /3, 7, and S are 
observable events while au0 is unobservable. The only failure 

Here qo = ( (20 ,  {N})} as before, and the label propagation 
function L P m f ,  the range function R, the transition function 
6Tf, and the state space Q T f  of GTf are defined as follows. 

Dejinition 9: The label propagation function L P m f :  X ,  x 
Amf x C* -+ Amf .  

Given x E X,,  L E A m f ,  and s E L,(G, x ) ,  LPmf 
propagates the label e over s, starting from x and following 
the dynamics of G, i.e., according to L(G,  x ) .  It is defined by 

LP”f (5 ,  P, s )  = 

if ! = {N} A V’i[Cfi $ S] { [g!Fi E e V C f ;  E s} otherwise. 

The label correction function LC, which assigns the A label, 
is now dropped. 

The transition function 6yf: Qo x CO + Q, is now defined 
as 

with a E e d ( q 1 )  defined as before. The state space QYf is the 
resulting subset of Q o  composed of the states of the diagnoser 
that are reachable from 40 under the transition function 6rf. 

Properties and Dejinitions of cyf: We now restate some 
of the properties of the diagnoser and the definitions of Section 
IV-A-1) taking into account the modifications discussed above. 
Note that we have now dropped the label correction function 
LC. Therefore, Property P1) no longer holds, i.e., there may 
exist q E Q d  such that (x, e).  (2 ,  e’) E q with 4 # e’. Property 
P2) remains true for the case of multiple failures. Property P3) 
is restated as follows. 

P3)-MF): Let q l ,  q2  E Q d  and s E C* such that (xl ,  el) E 
411 ( 2 2 ,  e21  E 921 6(21, s) = 2 2 7  and &[q1, P(S)l  = q 2 .  Then 

Property P3)-MF) simply states that the failure labels F; 
propagate from state to state and if along any trace s of L 
a state x receives an Fi label, then every successor x’ of x 
also carries the F; label. 

The definition of an Fi-certain state holds as before, and the 
definition of an ambiguous state is now irrelevant. We add to 
the definitions of an Fi-uncertain state and an Fi-indeterminate 
cycle, respectively, the qualifiers “x not necessarily distinct 
from y” and “XI” not necessarily distinct from yr.” Therefore, 
states q E Q d  that were ambiguous in the case of no multiple 
failures are now Fi-uncertain states. 

Lemma 1 is restated as follows. 

event in the system is afl and hence the partition is given by 
Cfl  = { O f l } .  

Necessary and SufJicient Conditions: 
Theorem 2: A language L is diagnosable if and only if its 

diagnoser GTf satisfies the following condition: 
C-MF): There are no Fi-indeterminate cycles in Gd, for 

all failure types Fi. 
Pro08 The proof of the necessity of the above condition 

is identical to the proof of the necessity of Condition Cl )  
of Theorem 1 since the latter proof does not require that the 
$s and the yTs be distinct. The proof of the sufficiency of 
Condition C-MF) is essentially the same as the proof of the 
sufficiency of Conditions Cl )  and C2) of Theorem 1. The only 
difference is that the absence of ambiguous states is true by 
assumption in the case of Theorem 1 whereas it is true by 
construction in the present case. Hence, reasoning along lines 
identical to the proof of Theorem 1, we conclude that the 
condition of no F;-indeterminate cycles in G T f ,  for all failure 
types Fi, is necessary and sufficient for L to be diagnosable 
in the case of multiple failures. Further, reasoning as before, 
we have the following bound on the delay ni, V i  E IT, 

, 

n; 5 ~ y f  x no + no (24) 

where 

c,mf = c #x-states in q. (25) 
qEQyf:qiSF,-uncertain 

This, however, is a very conservative bound. In Section V we 
shall provide a better bound on the delay ni. Q.E.D. 

As before, note that Condition C-MF), together with the 
liveness assumption on L,  implies that if L is diagnosable, then 
every Fi-uncertain state of the diagnoser G T f  leads to an Fi- 
certain state in a bounded number of transitions of cyf. Hence 
we have the following corollary, whose proof is analogous to 
that of Corollary 1. 

Corollary 2: Consider a prefix-closed and live language L. 
Let C f i ,  i = 1, 2, . . . , m denote disjoint sets of failure events 
in E. Lf L is diagnosable with delay ni corresponding to failure 
type Fi, then the diagnoser GTf  transitions into an Fi-certain 
state in at most ni + no events of L following the occurrence 
of a failure event of type Fi. 

Fig. 7 represents a system where multiple failures of the 
same type are possible. This system is diagnosable since it 
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Fig. 7. Example illustrating construction of the diagnoser G?' for the case of multiple failures. 

is easily verified that the cycle of F,-uncertain states in the 
corresponding diagnoser GTf is not Fi-indeterminate. 

B. Conditions for I-Diagnosability 
We now study necessary and sufficient conditions for a 

language to be I-diagnosable. Recall from Section II-B-2) that 
in the case of I-diagnosability we are interested in detecting 
failure events only after the occurrence of the corresponding 
indicator events, i.e., we require the diagnosability condition 
D to hold only for those traces in which an indicator event fol- 
lows a failure event. Based on this requirement, we introduce 
the following modifications to the basic diagnoser Gd. 

We define, as before, the set of failure labels A, = { F l ,  
Fz, . . .  F,} where lIIfl = m. In addition, we now define 
a set of indicator labels A, = { I l ,  Iz, . . . I m } .  We interpret 
{171, . . . , I z k }  as meaning that indicator events of the type 
I,, through I z k  have occurred. The complete set of possible 
labels is now defined as 

A' = { N }  U 2*J"*, (26) 

with the restriction that 

(V8 E A') I ,  ~t + F, E C 

(explained in the subsequent paragraphs). 

The modified diagnoser Gf, is the FSM 

G i  = (Qi, CO, S i ,  40)  (27) 

with the initial state qo = ( ( 2 0 ,  { N } ) }  as in Section 111. The 
label propagation function LP', the range function R, the 
label correction function LC', the transition function S i ,  and 
the state space Q i  of Gf, are defined as follows. 

Definition 10: The label propagation function LPI: X ,  x 
A' x C* -+ A'. 

Given x E X,, P E A', and s E L,(G, x), LP' propagates 
the label C over s ,  starting from x and following the dynamics 
of G, i.e., according to L(G, x). It is defined by 

LP'(2, e ,  s )  = 

if e = { N }  AVZ[Ef, s] 
{Ft: Fz E C V C f ,  E S }  

U{L:L E ev [ I (Cfz)  rN} E s A (F, E e V C f ,  E s)]} otherwise. 

Fig. 8 illustrates propagation of labels according to LP' as 
defined above. Here a f l  refers to a failure event of type Fl 
and 011  refers to an indicator event of type 1,. The range 
function R:Q, x CO + Q, is defined to be 

R(4, a) = U U {(%& s ) ,  L", P ,  s ) ) } .  
( r , P ) € q  sEL,(G,z)  
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Fig. 8. Figure illustrating propagation of labels along traces of L.  

Definition 11: The label correction function LCI: Qo -+ 
Qo is defined as follows 

LC'(q) = q - {(z, e )  E q: (x, l') E q 
A v~[F, E e U F, E e/] A [e c e l l ) .  

The use of the label correction function LG' is explained 
as follows. Suppose there exist two pairs (z, e )  and (z, e') 
as described above, in R(q, (T) for some state q of Gf,. This 
implies the presence in L of two traces s1 and s2 such that they 
have identical projections and lead to the same state z, and S I  

contains an indicator event of type I; following a failure event 
of type Fi while s 2  does not. Since for I-diagnosability, we 
are concerned only with traces in which the indicator event 
follows the failure, we can drop the pair (2, C) which does 
not contain the Ii label with no loss of generality. 

The transition function 6:: Q, x CO + Qo is defined as 

q 2  = S h ,  .) q 2  = LC"1, .)I (28) 

with a E ed(q1) defined as before. The state space Qf, is the 
resulting subset of Qo composed of the states of the diagnoser 
that are reachable from qo under the transition function 6;. A 
state qd of Gf, is now of the form 

3) The 1; labels propagate from state to state just like the 
Fi labels. 

4) We do not use the A label here. As mentioned earlier, 
we are now concerned only with traces where the 
failure event is followed by an appropriate indicator 
event. Therefore, there could be present in L two Fi- 
ambiguous traces for some i E IIf and yet L could 
be diagnosable if no trace in the post-language of 
these traces contains an indicator event from the set 
I(Efi). Hence, to check for I-diagnosability, we need 
to remember which failure types caused the ambiguity, 
even in the case of no multiple failures. Therefore, we 
do not need to distinguish between the case of possible 
multiple failures and the case of no multiple failures in 
this section. 

Fig. 9 illustrates the construction of the diagnoser Gi. Here, 
a;, i E { 1, . . . , 4}, and 011 are observable events while ou0 is 
unobservable. The indicator event corresponding to the failure 
event a f l  is I (a f1 )  = ( 0 1 1 )  and the partition is Cf1 = { a f l } .  

Properties and DeJnitions of Gf,: Since we do not use the 
A label, properties P1) through P3) of the diagnoser corre- 
spond to those discussed in Section IV-A-2). Likewise, the 
remarks on the definition of an F;-certain state, an Fi-uncertain 
state, and an Fi-indeterminate cycle, and Lemma 2 cited in 
Section IV-A-2) remain valid. We now introduce the notions 
of (F;, I;)-uncertain states and (Pi, Ii)-indeterminate cycles. 

Definition 12: A state q E Qfi is said to be (F; ,  Ii)- 
uncertain if 3(z, e ) ,  (y ,  e') E q ,  such that {F i ,  I i j  Cr C and 

Lemma 3: If a state q E &a is (F; ,  1i)-uncertain, then 
this implies that 3sl = p l t l  E L and s 2  E L such that: 

F; # e'. 

P I  E * ( C f ; ) ,  I(Efi)  E t l ,  E t ;  # 5 2 ,  P(s1) = P ( S Z ) ,  and 
S; [qo ,  P ( S 1 ) l  = 

The above lemma simply states that presence of an (F; , I;)- 
uncertain state in Gf, corresponds to the situation where there 
are two traces s1 and s2 in L such that s1 contains a failure 
event of type Fi followed by an indicator event corresponding 
to this failure type while s 2  does not contain a failure event 
of type F;. In addition, the traces S I  and s2 produce the 
same record of observable events. Proof of this lemma follows 
directly from the construction of Gfi. 

Definition 13: A set of (Fi, Ii)-uncertain states q1, 42, 
... , 4, E Qi is said to form an (Fi, I,.)-indeterminate cycle 
if qd = ( ( 2 1 ,  [l)? . . .  3 ( z n ,  a,)} 

1) 41, 4 2 ,  . . . , q, form a cycle in G i  with S;(q l ,  a l )  = 
= 1, - " ,  n - 1 and 6i(q,, (T,) = q1 where qi+l, where zi E X ,  and E A', i.e., Ci is of the form 

Ci = { N }  ore; = {Fil, Fi,, . . . ,  Fi,, Ij,Ij,, e.., Ij,} where 
{ i l ,  22,  " ' !  'k) 

E E,, 1 = 1, ' . . ,  TL, and 
2 {l, 2 ,  " ' )  m, and { j l ,  j 2 !  ' * ' !  j l }  2) ](zf, e : ) ,  (y[, 6) E qi, 1 = 1, . . . ,  n, = 1, ...! m, 

and T = 1, . . . , m' (z not necessarily distinct from y), 
such that 

(21, 22, * .  . , 2k). 
We make - 7  the following observations on the modified diag- 

noser G:: 
1) In addition to failure information, the labels now carry 

information on occurrences of indicator events following 
the failure events. 

2) We append the 1, label to any e only if an indicator event 

a) {F;,  Ii} C_ Cf, F; # e for all I ,  I C ,  and r ;  
b) The sequences of states {zf j ,  1 = 1, . . . , n, k = 

1, ..., m, and {y[}, 1 = 1,  ..., n, r = 1, ..., m' 
form cycles in G' with 

from-i(Efi) follows a failire event from ~ f i .  The set 
of Ii labels is always a subset of the set of F; labels in 
any (x. a)  pair E q E Q d .  

(zf, 01, xtl+1)) E SG', 1 = 1, . . . , 
k = 1, . . - ,  m, 

- 1, 
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Fig. 9. Example illustrating construction of the diagnoser Gi. 

An (F ,  , 1%)-indeterminate cycle in Gf, indicates the presence 
in L of two traces s1 and s2 of arbitrarily long length, such that 
they both have the same observable projection, and s1 contains 
a failure event from the set Cf, followed by an indicator event 
from the set I ( C f % )  while s2 does not contain any event from 
the set Cf?.  

Consider the system shown in Fig. 9. Inspection of the 
diagnoser Gf, for this system reveals the presence of an 
(F , .  I>)-indeterminate cycle. Here the set {xf } of Definition 
13 is { 5 ,  6, 4) (these states carry the label { F l ,  11) in the 
diagnoser Gf,), the set {y:} is (9, 11, 8) (these states carry 
the label { N } ) ,  and m = m' = 1. 

Necessary and SufJicient Conditions: 
Theorem 3: A language L is I-diagnosable if and only if 

C-I) There are no ( F z ,  I,)-indeterminate cycles in Gf,, for 

Pro03 This proof is very similar to the proof of Theorem 
1 with the exceptions that we now consider the I labels and 
(F,, Iz)-indeterminate cycles and that there are no ambiguous 
states. For the sake of clarity, it is presented in its entirety. 

Necessity: We prove necessity by contradiction. Assume 
there exist states (11, (12, . . . , q,  E Qf i  such that they form an 
( F z ,  I,)-indeterminate cycle and let Si (q , ,  a,) = q(,+l) m o d n .  

Let (r!, e!) .  (y;. e) E ql ,  1 = 1, . ' . ,  n ,  IC = 1, e.., m, 
and r = 1, . . . , m' form corresponding cycles in G' with 

the diagnoser Gf, satisfies the following condition: 

all failure types F,. 

and 

S(yn". .sF'a,) = y: 

where 

m, m' E IN. sp E L(G,  xf). BF E L(G,  y;) 
and 

sl". i; E E:o. 

Since (xi, !;), Cy:, t!;) E q l ,  3s0, Bo E L such that 
S(x0, SO) = xi, S(y0, So) = y i  and P(s0) = P(i0) from 
Property P2). Further, since {F,, I t }  C e;, then Cf, E so, and 
3 stl  E So such that .$ E Q(Cft) and stl E Q [ I ( C f % ) ] ,  i.e., the 
trace stl contains a failure event of the type F, and ends in an 
indicator event associated with the failure type F,. Also, since 
F, $ CY, we have that Cf, $! So and Cfz $! SF, for all 1, T .  

Consider the two traces 

w = S ~ ( S ~ C T ~ S ~ ( T ~  . . . s:ansfal$a2 . . . 
s:an ' . . S ; n U l S ~ 0 2  . ' . s;a,)k" 

W = s o ( S : 0 1 s ; 0 2  . . . 9;ans$71s;a2 . . . 
$an . . . s;"'a1s572 . . i;)a,)km 

and 

for arbitrarily large k .  We have that w ,  W E L,  and P ( w )  = 
P(W) = P(so)(a102 . . .  an)km". Let t 2  E L/s t l  be such 
that w = stlt2. By choosing k to be arbitrarily large, we can 
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get Ilt211 > n for any given n E IN. n u s ,  LJ E ~ ~ l [ ~ ( s t ) ]  

and C f ;  4 2.  Therefore, the chosen s violates the definition 
of I-diagnosability for Fi. Hence L is not I-diagnosable. 

Sufficiency: Assume that the diagnoser Gf, for L satisfies 
Condition C-I). Pick any s E L and any Fi such that 
s E @(C,i) and any tl E L / s  such that t l f  E I ( C f ; ) .  
Let ~ ( o o ,  s t l )  = $1, and correspondingly in Gfi, let Gi[qo,  
P(s t l ) ]  = 41. Since C f ;  E stl and t l f  E I ( C j ; ) ,  we have 
($1, C 1 )  E 41 with {Fi, I;} G 41. 

We now have two distinct cases to consider: I) q1 is Fi- 

Case I: Suppose q1 is Fi-certain. Then, by Lemma 2-i) 
certain, and 11) q1 is (F;, Ii)-uncertain. 

( V u  E PL1[P(st1)]) Cfi E w .  

Hence L is I-diagnosable for F, with n, = 0. Since this is true 
for any F,, L is I-diagnosable. 

Case ZZ: Suppose q1 is (F,, 1,)-uncertain. We have as- 
sumed that there are no (F,, I,)-indeterminate cycles in Gi .  
Recalling the definition of an ( F ,  , I,)-indeterminate cycle, this 
assumption means that one of the following is true: i) there 
are no cycles of (F,, I,)-uncertain states in Gf,, and ii) there 
exists one or more cycles of (F,, I,)-uncertain states in Gfi but 
corresponding to any of these cycles in Gf,, there do not exist 
two sequences {$} and {y;}, E = 1, . - .  . n and IC, T E IN 
such that both of these form cycles in G', where the sequence 
{z;} is composed of states that appear with an {Ft, I,} label 
in the cycle in Gf, while the sequence {y:} is composed of 
states that do not appear with an F, label. 

Reasoning along lines similar to the proof of sufficiency of 
Conditions C1) and C2) of Theorem 1, we conclude as before 
that V't2 E L(G. T I )  of sufficiently long length, Si [q1 ,  P(tz )]  
= S i [ q o ,  P(stlt2)] = q2 is F,-certain. Note that q2 cannot be 
F,-uncertain. This is because q1 is (F,, I,)-uncertain, and no 
(F,, 1,)-uncertain state of Gf, can lead to an F,-uncertain state 
since the I, labels propagate from state to state. Hence we 
conclude that 3 n, E IN such that V t 2  E L/stl  

Hence L is I-diagnosable. Further 

where 

c,! = c #%-states in q .  (30) 
gE&1,:gis(~,.I,)-uncertain 

We note here that this bound on the delay n, is conservative; 
in Section V we provide a better bound. Q.E.D. 

Again, note that Condition C-I) and the liveness assump- 
tion on L together imply that if L is indeed I-diagnosable, 
every (F2 ,  I;)-uncertain state leads to an Fi-certain state in a 
bounded number of transitions of the diagnoser. Also note that 
in the case of I-diagnosability, we are not concerned about F,- 
uncertain states and F,-indeterminate cycles which are not also 
(F,, Iz)-uncertain and (Fa, I,)-indeterminate, respectively. 

Corollary 3: Consider a prefix-closed and live language L. 
Let C f ; ,  i = 1, 2, . . + , m denote disjoint sets of failure events 
in E, and let I ( C f ; )  denote the corresponding sets of indicator 
events. If L is I-diagnosable with delay ni corresponding to 
failure type F;, then the diagnoser G$ transitions into an Fi- 
certain state in at most n; +no events of L after the occurrence 
of an indicator event of type I; following a failure event of 
type Fi . 

Proof: Let L be I-diagnosable with delay n; correspond- 
ing to failure type Fi. Proof of the sufficiency of Condition 
C-I) of Theorem 3 reveals that if L is I-diagnosable, then every 
trace of L containing a failure event of type F;, followed by 
an indicator event of type I;, leads to an Fi-certain state of 
Gf, in a bounded number of transitions. We now show that 
this happens in at most n; + no transitions of the system 
following the indicator event. Consider any s E q ( C f i ) ,  and 
consider any t l t 2  E L / s  such that stl E I [ q ( C f , ) ]  and 
I ( t 2  1 1  2 n;. Since L is diagnosable with delay n;, we have that 
( V u  E Pi1[P(s t l t 2 ) ] )  Cf; E w. First suppose that taf E Co. 
It follows then from the construction of the diagnoser Gf, that 
6 i [ q o ,  P(stlt2)l is Fi-certain. Next suppose that t z f  4 C o .  
Since the state of the diagnoser Gfi corresponding to the trace 
stlt2 is defined only after the occurrence of the first observable 
event following stlt2 and since the length of any sequence of 
unobservable events in L is bounded by no, we have that 
V u  E L:(v = st1t2ua0)(u E E:,)(a, E C O ) ,  (Iuo,I( 5 no 
and S,'[qo, P(v ) ]  is Fi-certain. Q.E.D. 

Fig. 9 provides an example of a system that is not I- 
diagnosable since the corresponding diagnoser Gf, contains 
an (Fi ,  1i)-indeterminate cycle. 

This concludes the discussion on necessary and sufficient 
conditions for diagnosability and I-diagnosability. Note that 
checking for diagnosability and I-diagnosability amounts to 
cycle detection in the diagnosers and in G' and any of the 
standard cycle detection algorithms (which are of polynomial 
complexity) may be used. 

v. ON-LINE DIAGNOSIS OF DIAGNOSABLE SYSTEMS 

We show in this section that the basic diagnoser Gd in- 
troduced in Section I11 is adequate for diagnosing failures 
in diagnosable and I-diagnosable systems, with or without 
multiple failures. In other words, once it is established that 
L is diagnosable or I-diagnosable, we can restrict attention to 
Gd (as opposed to GYf and Gf,) for performing diagnostics; 
occurrences of failures in the system can be detected with a 
finite delay by inspecting the states of this diagnoser. This 
result is important from an implementation viewpoint, as Gd 
will in general have far fewer states than its counterparts GTf 
and Gf,. 

Theorem 4: Consider a prefix-closed and live language L. 
Let C f i ,  i = 1, 2, . . . , m denote disjoint sets of failure events 
in E. If L is diagnosable (respectively, I-diagnosable) with 
delay n; corresponding to failure type Fi, then the diagnoser 
Gd detects occurrences of failure events of the type F; in at 
most n; + n, events of L after the occurrence of the failure 
events (respectively, after the Occurrence of indicator events 
of type I; following the failure events). 



1572 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40. NO. 9, SEPTEMBER 1995 

Pro08 
Case I-Diagnosability: We first consider the case where 

L is such that multiple failures of the same type do not 
occur along any trace. Let L be diagnosable with delay ni 
corresponding to failure type F;. First recall that we conclude, 
by inspection of the states of the diagnoser, that a failure 
of type F; has occurred when the diagnoser hits an Fi- 
certain state. It then follows directly from Corollary 1 that 
the diagnoser Gd detects occurrences of failures of type Fi 
with a delay of at most ni + no events. 

Consider next the case where L is such that multiple 
failures of the same type are possible. Suppose that we 
again construct the dia noser Gd. First, note that the only 
difference between G T f  [discussed in Section IV-A-2)] and 
Gd is in the treatment of ambiguous states. We have that 
every Fi-uncertain state of G Y f  corresponds uniquely either 
to an ambiguous state or to an Fi-uncertain state of Gd, and 
every Fi-certain state of GTf corresponds to a unique Fi- 
certain state of Gd. To be more specific, an Fi-uncertain state 
q E QTf such that q = { ( x ,  e), (y, e’)} with x # y will 
also be a state of Gd; an Fi-uncertain state q E QTf such 
that g = ((2, P), ( . E !  e’)} will correspond to the state q’ = 
((2, { A }  U e n a / ) >  of Gd; finally, two states ql, q 2  E ~ y f  
such that q1 = {(.%, e),  (z, e’), (WI: [ I ) ,  . . . ,  ( v k ,  e,)} and 
q 2  = {(T e), (z, ! I ) ,  ( Y l :  el),  . . .  1 ( Y k ,  4,)) where 41 is Fz- 
uncertain (due to 1 and e’), q2  is Fj-uncertain (due to l! and e’), 
and [ne’ = en@ will both correspond to the same ambiguous 
state 43 = { ( . E ,  { A }  utne’), (Pi, ti), . . ’ ,  ( Y t ,  e,) E Q d .  
Note here that L ( G T f ,  q )  = L(Gd, q’) and L(GT , q l )  = 
L ( G T f ,  q 2 )  = L(Gd, 93). Hence, if one considers a mapping 
of the states of G Y f  onto the states of Gd, this map preserves 
the transition structure of GTf  in the sense of i) preserving 
the language generated by GXf  and ii) preserving the essential 
information for implementing diagnostics because whenever 
GTf hits an Fi-certain state, so would Gd. It follows from 
Corollary 2 and the above reasoning that if L is diagnosable 
with delay n i  corresponding to failure type Fi, then the 
diagnoser G T f ,  and consequently, the diagnoser Gd hits an 
Fi-certain state in at most nz +no events following the failure 
event. Thus, Gd detects occurrences of failures of the type F; 
with a delay of at most nj + no events. 

Case II-I-Diagnosability: Let L be I-diagnosable with de- 
lay ni corresponding to failure type Fi. Suppose that we again 
construct the basic diagnoser Gd for L. As in the case of 
G T f ,  every Fi-uncertain state of Gf, corresponds uniquely to 
either an ambiguous state or an pi-uncertain state of Gd, and 
every Fi -certain state of Gfi corresponds to a unique Fi -certain 
state of Gd. Every (Fi, Ii)-uncertain state of Gf, corresponds 
uniquely either to an ambiguous state or to an Fi-uncertain 
state of Gd. For example, any two states q1, q2 E Qi of 
the form 41 = ((2, {F7,, &}I, (YI, el), . ” ,  (yk, e,)} and 
42 = {(x, { E } ) ,  (91, el), - . . :  (M, e , ) }  correspond to the 
same state 42 = ((2, { E } ) ,  (YI ,  ‘ e . ,  (Y,, e,)} in Gd. 
Note again that L(Gi ,  q l )  = L(Gf,, q 2 )  = L(Gd, q 2 ) .  Hence, 
as before, if one considers a mapping of the states of Gf, onto 
the states of Gd, this map preserves the transition structure of 
G i  in the sense of i) preserving the language generated by Gf, 

and ii) preserving the essential information for implementing 
diagnostics because whenever G i  hits an Fi-certain state, so 
would Gd. From Corollary 3,  we conclude that every trace 
of L containing a failure event of type Fi, followed by an 
indicator event of type 1i, leads to an F;-certain state of Gf, 
and consequently, to an Fi-certain state of Gd in at most 
ni + no events after the occurrence of the indicator event of 
the corresponding type. Q.E.D. 

Based on the above theorem, we now improve upon the 
bounds on the delay ni provided in Sections IV-A-2) and IV- 
B (cf., proofs of Theorems 2 and 3 )  for diagnosability in the 
case of multiple failures and for I-diagnosability, respectively. 
Recall from the proof of sufficiency of condition C-MF) 
of Theorem 2 that a bound on the delay ni is given by 
c,mf x no + no where cyf = CqEQ,nf: qiSFz-unceflain #x- 
states in q .  We now provide a better bound on (ni which is 
given by ni 5 C; x no + no as in the case of no multiple 
failures. Note that this bound depends only on the states of 
the basic diagnoser Gd and not on the states of cyf. The 
improved bound can be obtained as follows. First, recall that 
to obtain a bound on ni for the case of multiple failures, we 
count the number of Fi-uncertain states in G T f  (that it is 
possible to visit before hitting an Fi-certain state). Next, recall 
from the proof of Theorem 4 that there exist in G T f  states of 
the form ql and 9 2  as described there which have the property 
that L ( G X f ,  ql )  = L ( G T f ,  q 2 ) .  It is obvious then that is 
not necessary to count more than once “duplicate” states like 
q1 and q2 because any trace passing through q1 cannot pass 
through q ~ ,  and vice-versa. Further, note that since both ql and 
q 2  correspond to the same state q 3  in Gd, these duplicate states 
get accounted for only once when we compute the bound in 

Likewise, in the case of I-diagnosability, we can obtain 
a bound on the delay ni that is better than the one pre- 
sented in Section IV-C, namely, ni 5 C: x no where 
c: = q E Q : :  is F,-uncertain #mtates in 4. The new bound 
depends only on the states of the diagnoser G d  and is given 
by ni 5 C, x no. Note, as in the case of multiple failures 
discussed above, that “duplicated” states in G i ,  of the form 
q1 and q2 described in the proof of Theorem 4, get accounted 
for twice when one counts the number of (Pi, 1;)-uncertain 
states that might be traversed before hitting an Fi-certain state 
in Gf,! whereas these get accounted for (and correctly) only 
once in Gd. Hence we have the improved bound stated above. 

We conclude, therefore, that in all cases, the bound on the 
detection delay ni can be given as follows 

Gd, 

ni I Ci x no + no (31) 

where Ci = CqEQd: is F,-uncertain #=states in q. 
We now provide an example that illustrates implementation 

of diagnostics for an I-diagnosable system using the diagnoser 
Gd. The system G, the diagnoser Gi ,  and the diagnoser G d  

that is implemented are shown in Fig. 10. Here, the events 
a,  0, y, 6, 011, ~ 1 2 ,  and 013 are observable while U,, and the 
failure events of1, U ~ Z ,  af3 are unobservable. The indicator 
events are chosen to be I(Uf1) = { q l } ,  1(a f z )  = {uI~}, and 
I (o f3 )  = ((~13); the partition is chosen to be C f ,  = {ofl}, 
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TTIE DUGNOBEJI Gf 

Fig. 10. Example illustrating implementation using diagnoser Gd.  

C f 2  = {afn) ,  and C f 3  = ( u f 3 ) .  Inspection of Gf, clearly 
shows that L is I-diagnosable. Knowing this fact, one is 
able to conclude that when Gd enters (and stays in) the 
state { (12, {A})}, no failures violating I-diagnosability have 
happened. Next, it is clear by inspecting the system G and 
the diagnoser Gf, that when the trace ( Y ~ I ~ U I ~ C T T ~  is observed, 
the diagnoser enters into an F1 -indeterminate cycle and hence 
it is not possible to conclude whether a failure of type F1 

has happened or not. This, however, is not an (F1, 11)- 
indeterminate cycle since the corresponding trace in G, which 
contains the failure event afl, does not contain the indicator 
event 011. It is interesting to note that the corresponding state 
in the diagnoser Gd, ((11, ( F 2 ,  F 3 ) ) } ,  reveals nothing about 
the failure afl. 

Also shown in Fig. 10 is the diagnoser G T f .  Note that 
Condition C-MF) is violated in cyf, and hence L is not 
diagnosable. Each of the states ((12, {N}), (12, {Fl})}, 

and ((11, ( F 2 ,  F 3 } ) ,  (11: {Fl, F 2 ,  F 3 ) ) )  forms an Fi- 
indeterminate cycle. 

((1% {F2})1(12, { F 3 ) ) ) ,  ((12, { F l , F 2 ) ) ,  (12, { F 1 , F 3 } ) } ,  

Finally, we make the observation that given an I-diagnosable 
language L, it is possible to have traces in L that satisfy the 
diagnosability condition D, but in which an indicator event 
of the appropriate type does not follow the failure event. 
Consider, for example, the trace 0 u o ~ f 3 6 O f 3 0 1 2 C T f 2 C 7 1 3  in 
Fig. 10 and note that the corresponding state of Gf, is F2- 
certain. 

VI. CONCLUSION 
We have introduced the notions of diagnosability and I- 

diagnosability of systems in the framework of formal lan- 
guages. We have compared this notion with the problems 
of observability, observability with delay, and invertibility, 
all of which fall in the general class of partial observation 
problems, and we have illustrated by means of examples 
that diagnosability is a distinctly different notion. We have 
provided a construction procedure for the diagnoser and pre- 
sented necessary and sufficient conditions for diagnosability 
and I-diagnosability. These conditions can be verified using 
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a,. 

Fig. 11. Example of a nondiagnosable system that is observable with delay. 

standard cycle detection algorithms on the diagnosers and 
the machine G’. We have shown that the “basic” diagnoser 
can be used to implement on-line diagnostics while suitably 
modified versions of this diagnoser can be used to check for 
diagnosability and I-diagnosability. 

The theory presented in this paper is based on two as- 
sumptions on the system model. The first assumption, on 
the liveness of the system, can be relaxed and the definition 
of diagnosability can be extended to include terminating 
traces as well; the necessary and sufficient conditions for 
diagnosability can also be modified appropriately. While it 
is straightforward to do the above modifications, relaxing the 
liveness assumption tends to make the analysis cumbersome. 
The second assumption, on the absence of arbitrarily long 
traces of unobservable events in L, can also be relaxed if we 
require that the failures be detected within a bounded number 
of occurrences of observable events following the failure. 
Again, appropriate modifications of the theory presented in 
this paper are straightforward. 

Finally, we point out that for the task of on-line diagnosis of 
diagnosable systems, it is not necessary to store the complete 
machine Gd whose state space may, in the worst-case, be 
exponential in the state space of G. It is sufficient to just 
remember its current state. Upon occurrence of an observable 
event, the new state of Gd could be built on-line from the 
current state of Gd and the relevant part of G, with polynomial 
complexity at each stage. 

APPENDIX A 

Diagnosability and Observability with Delay: Fig. 11 rep- 
resents a system which is observable with delay but not 
diagnosable. Here a and B are observable events while ufl 
and of2 are unobservable failure events. This system is not 
diagnosable if the desired partition is C f l  = { a f l }  and 

Fig. 12 represents a system where the converse holds. In 
this figure cy and /3 are observable while gu0 is unobservable. 
The only failure event is u f .  Here, a possible output sequence 
is ,#*. When this sequence is observed, neither the current 
state nor the state any finite number of transitions in the past 
can be identified uniquely. On the other hand, it is possible 
to conclude the occurrence of a failure whenever the event 
sequence a*,#[jP* is observed. Hence, this is a diagnosable 
system which is not observable with delay. 

Diagnosability and Invertibility: Fig. 13 depicts a nonin- 
vertible system which is diagnosable. 

Here it is not possible to distinguish between the occur- 
rence of traces uf10-7A01/3, crflofz,D, and of2au02P. Hence the 

C f 2  = ( q 2 ) .  

Fig. 12. Example of a diagnosable system that is not observable with delay. 

a 

Fig 

Qfl 

P 
U 

, 13. Example of a noninvertible system that is diagnosable. 

system is not invertible. If the required partition is Cfl  = 
{ ofl , ufi  }, however, the system is diagnosable. 
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