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An Efficient Approach for Online Diagnosis
of Discrete Event Systems

Francesco Basile, Member, IEEE, Pasquale Chiacchio, and Gianmaria De Tommasi, Member, IEEE

Abstract—A novel approach to fault diagnosis of discrete event
systems is presented in this paper. The standard approach is based
on the offline computation of the set of fault events that may have
occurred at each reachable state, providing a fast online diagnosis
at a price of excessive memory requirements. A different approach
is here adopted, which is based on the online computation of the set
of possible fault events required to explain the last observed event.
This is efficiently achieved by modelling the plant by Petri nets,
since their mathematical representation permits to formulate the
fault diagnosis problems in terms of mathematical programming,
which is a standard tool. Moreover, the graphical representation
of the net allows the diagnoser agent to compute off-line reduced
portions of the net in order to improve the efficiency of the online
computation, without a big increase in terms of memory require-
ment.

Index Terms—Discrete event systems (DES), fault diagnosis,
Petri nets (PNs).

I. INTRODUCTION

ODAY the safety issue plays an important role for the re-

liability of complex systems. The fault detection is cru-
cial for the safety of both systems and operators. Once a fault
has been detected and identified, the control law can be mod-
ified in order to safely continue the operations, although with
degraded performance. As a result the fault diagnosis issue has
been studied a lot in the field of discrete event systems (DES)
field since the early 90s [1].

DES based methodologies for fault diagnosis are applicable
not only to systems normally modeled as DES, but also to sys-
tems that traditionally are treated as continuous-time dynamic
systems. In general, DES approaches to fault diagnosis are
suitable for failures that cause a distinct change in the state of
system components but do not bring the system to a halt: ex-
amples are equipment failures (stuck failure of valves, stalling
of actuators, controller failures, etc.) usual in flight control
systems or heating and air conditioning systems, and process
failures (buffer overflow) usual in manufacturing systems.

A. Position of the Work

A standard approach to fault diagnosis is to build a DES,
called compiled diagnoser. At each state transition this fault di-
agnoser provides the set of faults that could have happened [1],
or a set of fault states that the system could have reached [2]. In

Manuscript received October 26, 2007; revised May 21, 2008. Current version
published April 08, 2009. Recommended by Associate Editor S. Haar.

F. Basile and P. Chiacchio are with the Dip. Ing. dell’Informazione e Ing.
Elettrica, Universita di Salerno, Salerno 84084, Italy (e-mail: fbasile @unina.it).

G. De Tommasi is with the Dipartimento di Informatica e Sistemistica, Uni-
versita di Napoli Federico II, Napoli 80125, Italy.

Digital Object Identifier 10.1109/TAC.2009.2014932

general, building the compiled diagnoser is very computation
demanding, even if it can be performed offline, often resulting
in a state space that is too big. However, the computational effort
to run a diagnoser is very low. Hence, this approach provides a
fast online diagnosis at a price of excessive memory require-
ments, since the diagnoser state space must be fully available.
It follows that such an approach may be applied only when the
state space is bounded, or not too large in practice.

This is the usual approach when the plant is modeled as fi-
nite state automata [1]—[3]. In this framework, the diagnoser is
a finite state automaton and many theoretical results have been
devised: conditions to establish if the system is diagnosable or
not, i.e., all faults can be detected [1], [2]; it has been shown
that a diagnoser coupled to a controller could drive a system
from nominal to degraded behavior and vice versa, positively
affecting the robustness of a control system [4]; in [5] the au-
thors deal with a decentralized implementation of the diagnoser.
An extension of this approach to stochastic automata has been
presented in [6].

Another approach is to write an algorithm, called interpreted
diagnoser, which online, after each observed event, computes
the set of faults that could have happened, or a set of fault states
the system could have reached. In this case, the computational
effort to run a diagnoser is higher than in the case of the com-
piled diagnoser, and it is difficult to derive a diagnosability test.
On the other hand, the memory requirement is much less since
there is no need to precompute any state space. A first inter-
preted diagnoser based on automata can be found in [7], even if
the interpreted diagnoser are used mainly with Petri Nets (PNs),
since the online computation can take advantage of their twofold
representation—graphical and mathematical.

Several works based exclusively on a PN model of the plant
have been presented recently. Since the approach proposed in
this paper is based on PNs, below some related works are briefly
recalled.

In [8] faults are not explicitly taken into account in the model,
and two types of faults have been defined: a place fault that cor-
rupts the net marking, and a transition fault that causes an incor-
rect update of the marking after events occurrences. The authors
propose an identification methodology based on algebraic de-
coding techniques and redundant places which are added to the
plant. Although the approach is very general and it leads to an
interpreted diagnoser, it is assumed that the net marking is pe-
riodically observable even if unobservable events (transitions)
— i.e., events whose occurrence cannot be directly detected by
sensors—are admitted.

More usually faults are associated to unobservable transitions
(unobservable transitions not associated to fault events are also
considered) as in the works recalled below.
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In [9] the authors propose a novel compiled diagnoser ap-
proach based on a PN (similar to a colored PN), which asso-
ciates to each net marking the different estimated states the plant
may be in. Such estimated states are computed offline. Substan-
tially, as for the state explosion problem, this diagnoser does not
improve the previous ones based on automata when it is imple-
mented in a centralized way, i.e., the entire plant is monitored
by a single diagnoser. However, a great improvement can be ob-
tained when the plant can be modeled as a collection of PN mod-
ules coupled through common places [10], since the diagnosis
can be achieved by a set of local PN diagnosers communicating
among each other.

In [11] a set of fundamental vectors is used to characterize the
firing count vectors associated to the set of minimal sequences
of unobservable transitions that can explain the firing of an ob-
servable transition; such sequences are called minimal explana-
tions. These fundamental vectors can be computed by a tabular
algorithm and they are used to build a deterministic automaton,
called basis reachability tree (BRT), which provides a compact
characterization of the net reachability set. Such an approach
permits us to perform fault diagnosis and it can be regarded as
an efficient compiled diagnoser. In [12] a similar approach was
proposed but backward analysis on the net structure—by using
the precondition of the observed event, the preconditions of the
precondition and so on—is used to compute minimal explana-
tions. The work [12] requires that the PN model is bounded,
while this assumption is not required in this paper. On the other
hand, as in [11] and [12] in this paper it is required that the un-
observable portion of the PN model is acyclic.

A net unfolding approach for online asynchronous diagnosis
was presented in [13]. This approach leads to an interpreted di-
agnoser where the state explosion is well kept under control,
but the online computational effort may increase significantly
due to the online building of PN structures—called diagnosis
nets—via unfolding. Such nets are used to detect faults under
the current net marking. Moreover, this approach can be applied
only to safe PN.

In [14] an interpreted diagnoser has been devised only for safe
PNs with an output function that associates an output vector to
each net marking (interpreted PNs).

B. Contribution of the Paper

In this paper an interpreted diagnoser based on the online so-
lution of programming problems is proposed. The problem of
diagnosability, i.e., to decide a priori if a given fault can be iso-
lated, is not addressed here. Hence, it is here assumed that all
the unobservable events can be detected. In particular, diagnos-
ability of the fault events is sufficient to distinguish between “a
fault has occurred for sure” and “a fault may be not occurred”.
Moreover detectability of the unobservable events, either faulty
and non-faulty, allows the proposed algorithm to distinguish be-
tween “a fault may have occurred” and “a fault has not occurred
for sure”.

To do that g-markings are introduced. If the firing of an ob-
servable transition ¢, is observed and such a transition was en-
abled, then the previous net marking is updated according to
PN state equation. In the presence of unobservable transitions,
it may happen that ¢, was not enabled under the current net
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marking since, in order to enable it, a sequence of unobserv-
able transitions must have fired before. Hence, by using the PN
state equation a unique marking having negative components is
obtained from the firing of ¢,, and this marking is here called
g-marking. Since the sequence of unobservable transitions re-
quired to explain the firing of ¢, is not always unique, to per-
form diagnosis other approaches require the estimation of the
net marking, which in general is not a vector, but a set of vec-
tors representing all the possible markings where the net can be
in according to the observed sequences.

This problem is avoided here, since it is shown that linear pro-
gramming problems based on g-markings can be used to com-
pute online the firing count vectors associated to unobservable
sequences that can explain the firing of £,, and consequently
also fault occurrences. If such a firing count vector is unique the
g-marking is updated, otherwise more observations are needed
to update it. It follows that the online implementation of the
algorithm presented in this work is very efficient in terms of
memory requirement.

A good compromise to speed up the online diagnosis is to
precompute something offline. Thanks to the graphical repre-
sentation of PN, it is shown that the programming problems to
be solved by the diagnoser can be formulated on reduced por-
tions of the net properly computed offline, without a big increase
in terms of memory requirement. This is very interesting when
the diagnoser must be implemented on embedded systems.

A discussion regarding the computational complexity of the
online solution of the programming problems used in the pro-
posed algorithm is also presented.

The following assumptions are used throughout this work:

* two different observable transitions cannot be associated to

the same event;

* the subnet induced by the unobservable transitions is

acyclic;

* the prefix-closed language associated with the net is de-

tectable.

NOTATIONS AND ASSUMPTIONS

This section introduces the basic Petri net formalism, together
with some additional notation, and with the assumptions ex-
ploited throughout the paper. For a complete review on Petri
nets refer to [15].

C. Basic Petri Net Notation

A Place/Transition net (P/T net) is a 4-tuple N =
(P, T,Pre,Post), where P is a set of m places (repre-
sented by circles), 7" is a set of n transitions (represented
by empty boxes and each one associated to an event),
Pre : PxT — N (Post : P x T — N) is the pre-
(post-) incidence matrix. Pre(p,t) = w (Post(p,t) = w)
means that there is an arc with weight w from p to ¢ (from
t to p); C = Post — Pre is the incidence matrix. The
symbols °*p (°t) and p°® (¢*) are used for the pre-ser and
post-set of a place p € P (transition ¢t € T), respectively, e.g.,
*t = {p € P | Pre(p,t) # 0}.

A marking is a functionm : P — N that assigns to each place
of a net a nonnegative integer number of tokens, drawn as black
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dots. It is useful to represent the marking of a net with a vector
m € N™. A net system S = (N, my) is a net N with an initial
marking my. A transition ¢ is enabled at m iff m > Pre(-,t)
and this is denoted as m|[t). An enabled transition ¢ may fire,
yielding the marking m’ = m + C(-, t), and this is denoted as
m[t)m/'.

A firing sequence from m is a sequence of transitions o =
tity ... ti suchthatm[t;)m, [ta)ms . .. [tg)my, and this is de-
noted as m[o)my. An enabled sequence o is denoted as m[o),
while ¢; € o denotes that the transition ¢; belongs to the se-
quence o. The empty sequence is denoted as v.

A marking m/’ is said to be reachable from my iff there exists
a sequence o such that my[o)m’. R(N,mg) denotes the set of
reachable markings of the net system (N, my).

The function o : T — N, where o (t) represents the number
of occurrences of ¢ in o, is called firing count vector of the firing
sequence o. As it has been done for the marking of a net, the
firing count vector is often denoted as a vector ¢ € N™. The
notation o = 7 (o) is used to denote that ¢ is the firing count
vector of o, thus 7(v) = nu = 0. Note that, if a sequence is
made by a single transition, i.e., o = ¢;, then the corresponding
firing count vector is the ¢-th canonical basis vector denoted as
€t .

i

If mo[o)m, then it is possible to write the vector equation
m=mo+C- o (D

which is called the state equation of the net system.

Theorem 1 ([15]): Consider a net system (N, my) and let N
be an acyclic! net. It results m € R(N,my) iff there exists a
nonnegative integer solution o satisfying (1). [ |

The set T' can be partitioned into the disjoint sets of ob-
servable (represented by empty boxes) and unobservable tran-
sitions (represented by filled boxes), named respectively 7}, and
Two, With |Tyo| = nue < n. In this paper the fault events
t € Ty are supposed to be unobservable, i.e., Ty C T,,, with
ITy] = np < o

For the sake of simplicity the same name is used for each tran-
sition and the associated event, i.e., ¢ denotes both the transition
t and the corresponding event. Thus, 7, denotes both the set of
unobservable transitions and the set of unobservable events. The
notation 7T, is used to denote the set of all possible sequences
of unobservable events.

D. Induced Nets and Marking Projections

Definition 1 (T'-Induced Subnet): Given a net N =
(P, T,Pre,Post), and a subset 7/ C T, the T’-induced
subnet on N, denoted with N’ <y N, is the 4-tuple
N’ = (P',T',Pre',Post’), where P’ =* 1" U 1"® while
Pre’ and Post’ are the restrictions of Pre and Post to P’
and T".

Thus, the subnet N/ < N can be obtained from
N removing all the places which are not connected with any
transition in 7”, and all the transitions in 7" \ 7". O

Definition 2 (Marking Projection on P’ C P): Let N =
(P, T,Pre,Post) and P’ C P a subset of places of N. The
marking projection on P’ is the restriction of the marking func-

1A net is acyclic if it does not include a directed circuit.
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Fig. 1. Example of Petri net model.

tion to the places in P’ and it is denoted with mp/ : P’ +— N.
O

To avoid awkward notation if P’ = {p} is a singleton the
marking projection on P’ is denoted with m;; instead of m p:.
It is immediate to extend Definition 2 to the firing count vectors
projection on 7" C 7', denoted as 7.

Definition 3 (T'-Induced Net System): Consider net system
S = (N,my) and T" C T. The T’-induced net system on S is

the net system " = (N', mqp:), with N' < N.

Example 1: The net N shown in Fig. 1(a) has
T, = {ti,t2,t6,t7} and Ty, = {t3,t4,t5}.
Fig. 1(b) shows the N, <Tu. N subnet, with

Rm = {P17p27p37p47p57p6}'

Let mp = [4 1 0 1 0 0 1] and P =
{p1,p3,p7}, then the projection of the initial marking on
P is mop = [4 0 1]7, while the projection on P, is
mop, =4 1 0 1 0 0]T.

Consider the firing count vector
o = [1 1.0 1 0 0 0]F, its projection on
Tuwisor,, =[0 1 0] O

E. Diagnosability and Detectability

The notion of detectable prefix-closed and live language is
given starting from the definition of diagnosability given in [1].

Consider anet N = (P, T, Pre,Post) with T = T,,, U T,
and Tf = {tf17tf2, Ce ,tfk} - Tuo.

Let s be the prefix-closure of any trace s € 1. We denote by
L/s the post-language of L after s, i.e.,

L/s={qeT"st.sqe L}.

Let Pr : T* +— T be the usual projection [16], which
“erases” the unobservable events in a trace s. The inverse pro-
jection operator Prz1 is defined as

Pri'(r)={s € Ls.t. Pr(s) =r}.
Let ¢ be the final event of trace s and define
U(ty,) ={st € Ls.t.t =t}

Under the assumptions that no cycles of unobservable events
exists, and that the language L generated by N is live, it is pos-
sible to give the following definition of diagnosability.
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Definition 4 (Diagnosable Prefix-Closed Live Language): A
prefix-closed and live language L is said to be diagnosable w.r.t.
Pr and T} if

Vts 3 h; € Nsuch that the following holds
VseU(ty)andVqge L/s
llgll = hi = D

where ||¢|| is the length of trace ¢, and the diagnosability condi-
tion is

r € Pri'(Pr(sq)) = ts, €.

0

The above definition of diagnosability can be explained as
follows. Let s be any trace generated by the system that ends in
afailure event ¢, , and let ¢ be any sufficiently long continuation
of s. Condition D implies that along every continuation ¢ of s
it is possible to detect the occurrence of ¢y, with a finite delay,
specifically in at most h; transitions of the system after s.

The notion of detectable language is derived from Definition
4 as follows:

Definition 5 (Detectable Prefix-Closed Live Language): A
prefix-closed and live language L is said to be detectable w.r.t.
Pr and T, if it is diagnosable w.r.t. Pr and T,. O

Note that detectability implies diagnosability, while unde-
tectability does not necessarily imply undiagnosability. Further-
more undiagnosability implies undetectability.

F. Basic Assumptions

The assumptions exploited throughout the paper are pre-
sented in this section.

Assumption 1: Two different observable transitions cannot
share the same event. O

The approach used in this paper is based on the fact that the
firing of an observable transition requires a proper marking of
its input places. If the same event is associated to more than one
transition, the observation of an event could not necessarily cor-
respond to the firing of a single transition. Taking into account
this problem complicates too much the approach, and this is why
Assumption 1 is made. A similar assumption is not required for
unobservable transitions, which can be assumed to be associ-
ated to an arbitrary event, since such event is unobservable.

Assumption 2: Given a net N with T' = T, U Ty, and
T, N Ty = 0, Nuo <T,. N is acyclic, with
Nuo = (PuoyTuo, Prey,, Post,,). In words, the subnet
induced by the unobservable transitions is acyclic. ¢

Assumption 2 is commonly adopted in the field of fault detec-
tion with PN models, and it corresponds to the fact that cycles
of unobservable transitions are not admitted.

Under this assumption, it is well known that the PN state
equation applied to N,, does not have spurious solutions.
Therefore it can be used to compute the firing count vectors
associated to unobservable sequences that can explain the firing
of observable transitions. Such an assumption is not necessary
if N,, belongs to some net subclasses—e.g., live Marked
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Graphs and State Machine. However, for the sake of generality,
from now on this assumption is assumed to be true in this paper.

Assumption 3: Given a net IV, the associated prefix-closed
and live language L is supposed to be detectable. O

As it will be shown in Section IV, Assumption 3 is exploited
to allow the proposed algorithm to distinguish both between “a
fault has occurred for sure” and ““a fault may be not occurred,”
and between “a fault may have occurred” and “a fault has not
occurred for sure.” It is worth noticing that only the hypothesis
of diagnosable language is needed to decide if a fault is occurred
for sure.

II. G-MARKING

This section introduces the notion of g-marking of a Petri net,
which extends the classic net marking presented in the previous
section.

A. Why g-Marking?

Let m be the current net marking. If a sequence o fires, a new
marking m’ is reached. From the state equation it follows that
for the firing count vector ¢ it is possible to write

m+Co=m'>0.

Suppose that o = et where € is a sequence of unobservable
transitions and ¢t € T,. Let p = m + Ce; = m + C(-,¢). It
may happen that g has negative components, since ¢ may not
be enabled under the marking m. The negative components in
p mean that the unobservable sequence ¢ must have fired in
order to explain the firing of ¢, which is the unique observed
event. A marking that may have negative components is called
g-marking?, and it will be formally defined in Section III-B.

Suppose that a fault event is associated to the unobservable
transition ¢ s, and that one wants to know if ¢  has occurred prior
to the observation of ¢. Essentially, the problem is to check if the
minimum number of occurrences of #; required to explain the
firing of ¢ is greater than zero. Note that it is not necessary to
compute explicitly € or its firing count vector €, but simply to
check if €(ts) is greater than zero.

How to compute €(t7)? Since the net marking is positive by
definition, it follows that at least one firing count vector & must
exist such that

p+Cé > 0. 2)

Moreover, Theorem 1 says that, if C is the incidence matrix of
an acyclic net, then any integer vector o > 0 which verifies (2)
can be a solution to our problem.

Note that more than one solution may exist, since more than
one sequence of unobservable transitions may explain the firing
of t.

As an example consider the net in Fig. 1(a), and suppose that
m=[1 1 1 0 0 0 0] is the current marking of the
net. If the firing of ¢ is observed, then a sequence of unobserv-
able transitions must have fired to explain the firing of ¢5. How-
ever, the firing of ¢ may be explained both by the sequences

2g-marking stands for generalized marking.
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61 = tats and 69 = tats3. If t3 models a fault, since o1 (¢3) = 1
and a3(t3) = 0, it is not possible to establish if the fault has oc-
curred or not.

All the possible firing count vectors associated to sequences
of unobservable transitions explaining ¢ are given by

Y={eeN"|Ce>—pande(t)=0VteT,}.

Hence, if the solution of the integer programming problem

min

s.t.

€(ty)
=D 3)

is different from zero, it is possible to establish if £ has occurred
or not before the firing of ¢. From now on, a compact notation
is used to denote ILP problems. For example, problem (3) will
be denoted as minees €(ty).

The main contribution of this paper is to use an algorithm
based on programming problems such as (3) to detect occur-
rences of faults associated to unobservable transitions, every
time an observable transition occurs. Then, an interpreted diag-
noser is obtained which relies on programming problems which
is a standard mathematical tool unlike net unfolding, and which
requires the plant net—as a matter of fact the unobservable por-
tion only—to be acyclic. It may be argued that the computa-
tional effort of solving online ILPs such as (3) makes the pro-
posed approach not effective from a practical point of view.
However, exploiting the graphical representation of PNs, the
computational effort can be reduced. In particular:

1) The complexity of programming problems can be signifi-
cantly reduced by formulating it on proper subnets of plant
model. A first reduction can be achieved considering only
the unobservable portion of the plant net. Moreover, it
will be shown that a further reduction can be obtained by
considering only the portion of unobservable subnet influ-
encing the specific fault transition. In this way, a trade off
between online computation and memory requirement is
obtained, since such subnets have to be precomputed.

2) If the ILP is formulated on a subnet which is TS1 or TS2
net,4 then its solution has a closed form which consists of
logical predicates, as it has been proved in [17]. Thus, at
low cost of storing the logical predicates, a significant im-
provement of online computational effort is achieved, since
the logical predicates are simple algebraic expressions.

3) If the ILP is formulated on a subnet whose incidence ma-
trix is totally unimodular, it results to be a linear program-
ming problem, which has polynomial complexity [18]. If
such a subnet is a Marked Graph, then its incidence matrix

3Note that in the considered example there are 8 other sequences of unob-
servable transitions that can explain the firing of ¢¢.

4A PN is said to have a generalized tree structure if it is acyclic and the places
on one level of PN graph acts as sources for the transition on the next level.
These transitions then act as the exclusive sources of tokens for the places in the
next level. Places on one level receive tokens exclusively from the transitions
one level back and deliver tokens to the transitions one level forward. A net NV
has a tree structure of type 1 TSI if it has a generalized tree structure and each
transition has at most one output arc. A net IV has a tree structure of type 2 TS2
if it has a generalized tree structure and each place has at most one output arc.
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is totally unimodular. Moreover, if the subnet is a Back-
ward-Conflict Free-Choice Netd, then it can be decom-
posed in marked graph components and, even in this case,
the solution can be obtained as solutions of linear program-
ming problems [19].

B. Formal Definition

Definition 6 (g-Marking): A g-marking is afunctionp : P —
Z that assigns an integer number to each place of a net. Contrary
to the standard marking introduced in Section II-A, a transition
t is enabled at g iff one of the following two conditions is true:
ia)t € T,,
iia)t € Tyoand3o € TF st.yf/ =p+Co > 0,t € o,
with o = 7(0).

The notation p[t) denotes that ¢ is enabled at p.

A transition ¢ may fire if:

ib) t € T, is enabled® and its firing has been observed.
iib) ¢t € T}, is enabled,

When a transition ¢ fires, it yields the g-marking p/ =

C(-, 1), this is denoted as p[t)p'.

A firing sequence from p is a sequence of transitions ¢ =
tity ...t suchthat p[t1)p [t2)ps - - . [tx)p; and this is denoted
as p[o)p,,. If the sequence o is enabled at p this is denoted as
ulo).

Given a net system S = (N, my), the corresponding g-net
system S = (N, py) is anet N with the initial g-marking g, =
my.

The marking projection previously defined is naturally ex-
tended to the g-markings (see Example 2). O

The conditions ia) and iia) are the g-enabling conditions,
while ib) and iib) are the g-firing conditions. It is worth to no-
tice that checking the condition iia) is not straightforward, as it
is for the standard enabling rule given in Section II-A. Never-
theless Sections IV-VI will show how this rule is exploited to
perform fault diagnosis.

The following example shows how the evolution rules for the
g-marking given above can lead to negative marking compo-
nents.

Example 2: Consider the net N in Fig. 1(a) and let
o = [1 1 1 0 0 0 0]T be the initial g-marking
of the net. If the firing of t¢ € T, is observed, then g
may fire, since an observable transition is always enabled
under any g-marking. The firing of ¢ yields the g-marking
p, = mug +C(,tg) = [2 1 1 0—-1 0 0]7. The
projection of gy on Py, is pyp,, = [2 1 1 0-1 0]7.
The negative marking p,,, = —1 means that an unob-
servable sequence 0 € T, must have fired to explain the
firing of tg. In this simple example it is immediate to ob-
serve that g1 = t3t5, 09 = t4t5, g3 = t3t4t5, g4 = t3t5t4,
05 = tatsts, o = tatsls, o7 = tstslats, og = t3tatsts,

p+

SBackward-Conflict Free-Choice Nets (BCFCNs) are ordinary nets that ad-
mits a free-choice relationship (each arc from a place to a transition is either
the unique outgoing arc from the place or the unique coming arc of the transi-
tion), together with a backward-conflict relationship (each place has only one
incoming arc—no join places are allowed). BCFCNs can model not only con-
currency and synchronization of activities—as the Marked Graph subclass —
but also decisions.

OThis condition is superfluous since t € T, is always enabled, but it is stated
for completeness.
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o9 = l4tststs, and 019 = t4tststs, is the set of all the se-
quences of unobservable transitions ¢ such that u; + Co > 0,
with w(0) = o. Thus the unobservable transitions t3, tg4,
and ¢5 are enabled at u;, since they belong to unobserv-
able sequences 0 € T; st.p = p; + Co > 0 with
m(0) = o. It follows that one of these enabled transitions can
fire at p,. In particular the firing of ¢3 yields the g-marking
By = py +C(,t3) = [1 0 1 1—-1 0 0]T, with
ty and t5 still enabled at p,, while the firing of ¢5 yields
ps=p +C(,t5)=[2 1 1—=1 0 0 0]7,withts, ty,
and 5 enabled at p;. ¢

Throughout this paper, the negative components of a
g-marking represent the tokens that are needed to explain
either the firing of an observed transition, or the firing of an
unobservable transition that must have fired.

As far as the fault diagnosis is concerned, the g-markings
allow the fault diagnosis agent to store in a compact way all the
needed information about the state space estimation, as it will
be shown in the next.

III. UNOBSERVABLE EXPLANATIONS AND RELATED RESULTS

Unobservable explanations, together with the related results,
are presented in this section. Given a g-marking p, the unobserv-
able explanations are the sequences of unobservable transitions
which are enabled at p.

The following definitions are given for a net N =
(P, T,Pre,Post), with T = T, U Ty, Nuo <1, N
and Ty C T,,.

Definition 7: Given a g-marking u € Z™

(N, p) ={e €T, | ple)p’ st p’ > 0}
is the set of all the unobservable explanations enabled at p and
Y(N,u)={eeN"|Jeec X(N,pu)s.t. m(e) = €}

is the corresponding set of firing count vectors. O

The notation (N, u) makes clear the dependence of the un-
observable explanations on the net structure.

In order to detect a fault transition #, it is sufficient to con-
sider a specific subset of X(V, p). In particular the subset of
unobservable sequences containing the given fault transition ¢ ¢
has to be considered.

Definition 8: Given a g-marking g € Z™ and a fault transi-
tionty € Ty
Si(N,p,ty)={eeTy

uo |

plow st.w >0
and e(ty) # 0, with e = w(€)}

is the set of all the faulty unobservable explanations of 1y en-
abled at u and

Yi(N.p,tr)={eeN"|Jee€ s (N,p,ts)s.t. m(e) = €}

is the corresponding set of firing count vectors. O
From the definitions given above it follows that
Ef(N,p,,tf) - E(N‘,Il') and |2f(N‘,Il'>tf)| < |2(N7”’)|
Remark 1: Tt is important to remark the following properties
of the empty sequence and its firing count vector:
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* the empty sequence v belongs to X(N, ) only if p > 0,
since if p } 0 the firing of the empty sequence does not
change the actual g-marking, i.e., u[v)p, and therefore it is
not possible to explain any firing;

* the empty sequence v does not belong to X (N, p,t5)
since v(t5) = 0.

¢

The following theorem follows directly from the definitions
of g-marking and of X(N, u).

Theorem 2: Consider a net N with T = T, U T,,, and a
g-marking p. If p has at least one negative component, i.e ;é
0, then X(V, ) # 0, ie., |B(V,pn)| > 1, butv & X(N, p).

Proof: If u } 0, since all the negative components of a
g-marking must be explained by the firing of an unobservable
sequence, there must be at least one non-empty unobservable
explanation, thus |[E(N, u)| > 1. ]

As it has been noticed in Section III-A, more than one pos-
sible explanation could exist, each one leading to a different
marking estimation. Thus fault diagnosis approaches based on
conventional state observers may suffer from problems related
to the explosion of the state space estimation.

Remark 2: If |E(N, p)| = 1, it means that all the unobserv-
able explanations have the same firing count vector, thus they all
yield the same g-marking u’ = p + C€, with ¥(N, p) = {€'}.

¢

The following theorem states a sufficient condition under
which |[E(N, )| = 1.

Theorem 3 ([20]): If p } 0 is a g-marking, and the
subnet N, <7, N is Backward Conflict-Free’, then
SV, )| = 1. .

The theorems 4 and 5 presented further on are the main results
of this section, and they are used in the proposed fault diagnosis
algorithm in Section V.

Theorem 4: Consideranet N, withT = T,UT,,,.Letu } 0
be a g-marking, and t; € Ty C T, a fault transition, then

€(ty) # 0.

min

E(N,p)| = |2s(N,p, tf)] >0 <
| ( ”’)| | f( 4 f)| €ECE(N,)

Proof: (if). Suppose that |[E(N, p)| = |2 (N, p, t¢)| > 0.
If minecs v ) €(ty) = 0, since p 2 0, it follows that exists a
non-empty unobservable explanation € such that e = 7(¢), and

€€ X(N,p) withe(ty) =0

which implies that € ¢ X(N,p,tr), hence |[E(N,p)| >
|X¢(N, pu,ts)| + 1, contradicting the initial assumption.

(only if). Suppose that mineesvpu)€(ty) # 0. If
|E(Nvll‘)| # |Ef(N/ K, tf) , then |E(Nll‘)| > |zf(Nvl‘7 tf)|’
since ¥4 (N, p,ty) C S(N,p). If p # 0, then there exists a
non-empty unobservable explanation e such that € = 7 (¢), and

662(N7Il') and€¢2f(N7ll'7tf)

which implies €(Z;) = 0, and therefore minees v y) €(tf) = 0,
contradicting the initial hypothesis. [ |

Note that, if p > 0, then minecs (v ) €(ty) = 0 since v
belongs to (N, p, t¢) (see Remark 1).

7A net is Backward Conflict-Free, if each place has only one incoming arc.
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Theorem 5: Consider anet N, withT =T, UT,,. Let u be
a g-marking, and t; € Ty C T, a fault transition, then

€(ty) # 0.

max

Y:(N,p,t 0 «—
IZr (N, ty)| # comax

Proof: (if). Suppose that |X;(N,p,tf)] # 0. If
maxees(n,p) €(tf) = 0, then

VeecX(N,p), e(ty) =0=€¢ X;(N,p,ts)

since X ¢ (N, p,t5) C X(N, p), it follows that |[X (N, g, t5)| =
0, which contradicts the hypothesis.

(only if). Suppose that maxecm(vp)€(ty) # 0. If
/(N . t)| = 0 then

Yi(N,pty) =0 =VecX(N,pu), €(ty)=0
which implies maxees (v, p) €(ty) = 0, contradicting the initial
assumption. [ |

Theorem 6: Consider anet N, with T' = T, U T,,,. It holds
E(N,u) ={e eN" | Cuo€i1,, > —pyp,, and €1, = 0}.

Proof: The proof follows from Theorem 1. ]
Thus minees(v,pu) €(tf) and maxecs(n p)€(ty) can
be computed by solving programming problems on the
Nuo <1, N subnet, which in general are integer linear
programming problems. However, as it has been discussed in
Section III-A, there are several cases in which such ILPs can be
reduced either to linear programming problems, or to the eval-
uation of logical predicates, as it will be shown in Section VI.
The following corollary is a direct consequence of Theorem
6.
Corollary 1: Consider anet N, with T = T, U T},,. It holds
|X(N, )| = Liff Cuo€yr,, > —p/p,, admits only one solution

uwo —

€*, such that GTTO =0. [ ]

It is worth remarking that the Gauss elimination method can
be used to check if a linear system has a solution. This method
has polynomial complexity, therefore it is suitable for online
computation [18].

The next two propositions make clear the need of Assump-
tion 3 to distinguish both between “a fault has occurred for sure”
and “a fault may be not occurred,” and between “a fault may
have occurred” and “a fault has not occurred for sure.” In par-
ticular, the proposition stated below proves that diagnosability
is sufficient to decide if a fault is occurred for sure.

Proposition 1: Let L be diagnosable w.r.t. Pr and T}. If
s € U(ty,) then exists ¢ € L/s, such that

min

t7)>0
ety <05:)

with pg[z)p, and z = Pr(sq).

Proof: Let L be diagnosable w.r.t. Pr and T%. If s €
U(ts,), and consider s = ty, € U(ty,). Suppose, ad absurdum,
that forall ¢ € L/s is

min €(ty) =0
cent (ts.)

where
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p=p+Cz

and z = 7(z), with z = Pr(sq).

It follows that V h € N, ||¢g|| > h, it should exist at least
one sequence ¢ € 1, which explains the firing of z, and such
that ¢f, ¢ 6. Hence L is not diagnosable, which contradicts the
hypothesis. |

Proposition 2 proves that detectability is sufficient to decide
if a fault may have occurred.

Proposition 2: Let L be detectable w.r.t. Pr and T,,,. If s is
a sequence which enables the firing of ¢7, and t;, ¢ s, then it
exists b € N such that for all sequences ¢ € /s whose firing
does not enable ty,, and ||q|| > h, ty, ¢ g, it holds that

max
EEX(N, ')

with po[B)p”, and B = Pr(sq).
Proof: Consider a sequence s which enables the firing of
ty,,and ty, ¢ s. By Theorem 5 it holds that

€(ts,) =0

max
€ES(N )

E(tfi) >0
with pola)p’, and o = Pr(s).

Suppose, ad absurdum, that for all h € N, and for all se-
quences ¢ € L/s whose firing disable ¢,, with t5, ¢ q, ||¢|| >
h, it is

max
€es(N )

€(t fi) >0

with p[8)p”, and 8 = Pr(sq). Although ¢y, has been disabled
by the firing of ¢, for every p’’ there is at least one negative com-
ponent that can be explained either by the firing of ¢4, , or by the
firing of another unobservable transition # (which should have
fired since ty, is disabled). Hence, for every possible 3 there
exist at least two sequences €1, é2 € X(N, u”) which could ex-
plain the firing of the observable transitions in (3, and such that
ty, € é1,ty, ¢ éo,and t ¢ &1, € é. Therefore it is not pos-
sible to find any continuation of ¢ which permits to detect the
occurrence of £. It follows that L is undetectable, contradicting
the initial hypothesis. ]

IV. FAULT DETECTION ALGORITHM

As it has been discussed in the previous section, the car-
dinalities of X(N,pu) and X7(N,p,ts) permit to perform
the diagnosis of the fault £¢. In particular, it is possible to
establish the occurrences of a fault ¢ in terms of conditions
on both [E(N, )| and [E¢(N, p,ts)|. Such conditions can be
equivalently expressed in terms of conditions on the values of
minecx (v ) €(ty) and maxees (v p) €(t5), as it is claimed by
the following proposition.

Proposition 3 (Fault Detection): Consider anet N, withT =
T,UTy,. Letty € Ty C T, and p be a g-marking. In order to
perform the detection of the fault ¢ ¢, the following three condi-
tions have to be checked:

lau % 0 and [S(N. )| = [B7(N,pty)] > 0 <=t
has occurred;
2a)|X4(N,p,tf)| =0 <= t; hasnot occurred;
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Require: C, mo, Tp, Tyo, Ty

755

1 p = py = myg (* Initialization *)

2 for all t;, € T do
21 ifp o,

then (* if the g-marking has at least one negative component *)
2.1.1 if minees(v ) €(ty,) = F #0,
then (* ty, has occurred F' times *)
2.1.1.1 report that ¢;, has occurred
2112 wp,, = wp,, + Cluo(-stg)F (* Update p *)
2.1.1.3 go to Step 2 (* Restart the for cycle *)
22 if MaXees(N,p) e(tfi) =G#0,
then report that £y, may have occurred
(* t5, may be occurred G' times *)
2.3 else report that t;, has not occurred yet

3 end for

4 if Cuo€1,, > —Hp,, admits only one solution €* s.t. ei‘Ta =0,
then pp,, = pip,, + Cuo€jy, (* Update p *)

5 wait for a new observed transition ¢ € T,

6 p=p+C(,%) (* Update p *)

7 go to Step 2

Fig. 2. Fault detection algorithm.

3a)|X;(N,p,tr)| #0 < t; may have occurred.
The three conditions listed above are equivalent to the following
ones respectively:

1b) p # 0 and minecs(v p) €(ty) # 0 <=

occurred;

2b) maxeex (v ) €(ty) =0 <= 1 has not occurred;

3b) maxees(v,p) €(ty) # 0 < 1y may have occurred.
If condition 1b) holds and minecs (v y) €(ty) = F, then tf
has occurred at least F' times. While if condition 3b) holds and
maxecx (v u) €(ty) = G, then the ; may fire at most G times.
Moreover if F' = @, then the fault has occurred exactly F' = G
times.

Proof: The proof is a direct consequence of Theorem 4,
Theorem 5, Proposition 1 and Proposition 2. [ |

Thus, the solutions of the programming problems
minees(v p) €(ty) and maxecs(n,p) €(ty) allow the diag-
nosis agent to perform the fault diagnosis. Moreover the
proposed approach allows us to determine if a fault could
happen or not and, if yes, at most how many times. In this sense
this approach performs fault prognosis, i.e., what could have
happened or is about to happen in the future, as stated in [12].
Exploiting the results given so far, it is now possible to intro-

duce the algorithm for fault detection and identification reported
in Fig. 2.

In order to perform fault detection, the proposed algorithm

uses an estimation of the g-marking. In particular

* if the new available g-marking estimation has at least one
negative component, then minecx( v p) €(t5) is computed
for each fault transition, so as to establish if the considered
fault has occurred (step 2.1).

* maxecxn(n,u) €(ty) is computed for every new g-marking
estimation, and for each fault transition, so as to per-
form fault prognosis (steps 2.2 and 2.3). Note that
maxees (v, p) €(ty) has to be computed only if we are
interested also in fault prognosis. Thus, if this is not the

t¢ has

case, the number of programming problems to be solved
reduces significantly.
The g-marking estimation is updated when:
* afault transition ¢ € T, is diagnosed (step 2.1.1.2);
» all the unobservable explanations have the same firing
vector, i.e., |S(N,p)| = 1 (step 4);
* the firing of ¢t € T, is observed (step 6).
The example in the next subsection shows how the proposed
algorithm works on a manufacturing system.

A. Example: A Manufacturing System

Let us consider  the manufacturing system
whose Petri net model is shown in Fig. 3(a),
with T, = {tl, ta, te,t7, 19, t10, t14} and T,, =

{ts, ta,ts5,ts, t11, t12, t13}.

This manufacturing system consists of two machines,
M; and My,, which process parts conveyed on pallets.
Machine M processes single parts, and it is modeled by
the transition set 77 = {to,t3,t4,t5,t6}. When M; ends
its operations the pallets must be washed before they are
made available again. The parts coming from M are then
processed by machine My, which is modeled by the set
7—2 = {t77tg,t97t10,t117t127t137t14}. Two different jObS,
named .J; and Jo, can be executed by M,. Machine M,
outputs a finished part after having executed two times .J; and
one time .J». In particular:

* {; fires when a new part to be processed by machine M,

is available;

* o (t7) fires when M; (M3) picks up a pallet, and starts

to work a part;

* t3 (tg) models a faulty behavior

M (Mz)—hence Ty = {t3,ts};
* t4 models an unobservable manufacturing step of machine
My;

of machine
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(a) The net system S = (N, myp).

(b) The Nyo =<1,, N
subnet.

Fig. 3. Petri net model of the manufacturing system.

* t5 is an unobservable transition which fires when a pallet
is washed after being processed by M;;
* tg (t14) fires when M; (Ms) ends its operation;
* tg, t19 model the two different manufacturing jobs, J; and
Jo, of machine Mo;
* t11 and t12 model two unobservable manufacturing steps
of machine My;
e {13 is an unobservable transition which fires when a fin-
ished part is produced by Mo;
¢ the initial number of tokens in p; and p7 model the fact that
each machine can process up to four parts simultaneously.
Some execution steps of the proposed algorithm are reported
in Fig. 4. In this case, if the estimated g-marking has nega-
tive components, then the two ILPs minecs(y u) €(t3) and
mineex (v, p) €(fs) are solved so as to perform fault detection
and identification. The remaining two ILPs, maxecs (v, p) €(%3)
and maxecx (v, p) €(fs), are solved for each new estimation, so
as to perform fault prognosis.

V. COMPLEXITY REDUCTION USING SUBNETS

This section deals with the problem of reducing the compu-
tational effort needed to solve the ILPs in the fault detection
algorithm proposed in Section V.

The main idea to improve the computational efficiency, is to
solve each ILP on a subnet which is smaller than the whole plant
model, since the complexity of ILPs strongly depends on the
number of variables [18], i.e., the number of places.

Hence, it is necessary to store in memory a number of subnets
equal to the number of different ILPs that have to be evaluated.
Since these subnets are calculated offline, the only price to be
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paid in order to improve the online efficiency of the proposed
algorithm, is the increase of memory needed to store these ad-
ditional subnets. However this increase is not comparable to the
memory requirement of a typical compiled approach to fault di-
agnosis, where the whole diagnoser state space must be stored.

A. Pre-Net and Post-Net of a Fault Transition

In the proposed fault detection algorithm, two ILPs,
mineex (v, p) €(ty) and maxees (v p) €(t ), must be solved for
each fault transition £;. In order to reduce the complexity of
each of these ILPs, only a specific part of net can be considered,
i.e., only the portion of unobservable subnet that influences the
specific fault transition.

A first reduction can be achieved considering only the
Nuyo =<1, N subnet, as it has been done in the previous
section. An additional reduction can be made considering only
the portion of the N, <1, N subnet that influences
a given fault transition ¢;. At this aim, it is very efficient to
use the graphical nature of PNs. This approach was initiated by
Holloway and Krogh which gave a computationally efficient
solution for the forbidden-state problem of marked graphs on
the basis of the influence paths of forbidden places [21].

As an example, for the manufacturing system introduced in
Section V-A, it can be noticed that the ILPs minecs( v, p) €(3)
and maxecx (v u) €(t3) can be solved considering the subnet
induced by 7" = {t3,t4,1t5}, since the firing of ¢3 does not
depend on the firing of g, 11, t12 and ¢13. Similarly, the ILPs
minecs: (v, p) €(ts) and maxecs v p) €(ts) can be solved on the
subnet induced by T = {tg, ti11,t12, tlg}.

Given a fault transition ¢, a further increase of the compu-
tational efficiency can be attained considering the two subnets
defined below.

Definition 9 (Pre-Net of ty): Given anet N withT' =T, U
Ty Letty € Ty C T,, and consider the following set of
unobservable transitions:

Tl(tf):{tETuo | dpe® ty
such that a path from ¢
to p exists in Ny, } U {ts}.

The pre-net of ty, denoted as N | (t), is equal to the subnet
N <Tl,(tf) Nuoalf (t.) 7& {ff} lnN If® (t.) = {tf}
in N, then N | (tg) is obtained from N removing the places in
t%. O

! Definition 10 (Post-Net of ty): Givenanet N withT =T, U
T Letty € Ty C T,, and consider the following set of
unobservable transitions:

T1(ty) ={t€Tu |Ipet}
such that a path from ¢
to p exists in Ny, } U {ts}.

The post-net of ¢y, denoted as ' 1 (t), is equal to the subnet
N '<TT(tf) Nuo, 1f( ) 7é {tf} 1I1N If( ) =
{ts} in N, then N' 1 (¢ 7) is obtained from N removing the
places in *ty. O
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Action " minges(n,,) €(t3) [ maxces(v,u) €((3) [ minges(n ) €(ts) | maxces (v ) €(ts) | Comment

Initialization [4000004000000]7 not computed 0 not computed Under the initial marking both
t3 and tg cannot fire

ty fires [4 10000400000 O] T not computed 1 not computed 0 t3 may have fired once, while
tg cannot fire

ty fires {4 20000400000 0} T not computed 2 not computed 0 t3 may have fired up to 2
times, while ¢g cannot fire

to fires [3110004000000] T not computed 1 not computed 0 t3 may have fired once, while
tg cannot fire

tg fires 4110 —104000000]1 0 1 0 0 t3 may have fired once, while
tg cannot fire

tr fires [4110 -1 —13100000}T 0 1 0 1 Both ¢3 and tg may have fired
once

ty fires [4210—1—13100000}T 0 2 0 1 t3 may have fired up to 2
times, while g may have fired
once

to fires [3120 -1 -13100000]7 0 1 0 1 Both t3 and tg may have fired
once

tg fires [4120 —2 —13100000}‘ 0 1 0 1 Both ¢3 and tg may have fired
once

ty fires [4120 —2 —22200000]T 0 1 0 2 t3 may have fired once, while
tg may have fired up to 2
times

te fires [5120—3—22200000]T 1 1 0 2 t3 has fired once, while tg
may have fired up to 2 times

Update M [4021 —3 —22200000]7 0 0 0 2 t3 cannot fire, while tg may

(Step 2.1.1.2) have fired up to 2 times

to fires [4021 -3 722110000}’1" 0 0 0 1 t3 cannot fire, while tg may
have fired once

t, fires [4121 -3 722110000}T 0 1 0 1 Both ¢3 and tg may have fired
once

to fires [3031—3—22110000}T 0 0 0 1 t3 cannot fire, while tg may
have fired once

t14 fires [3031 —3—2311000—1]T 0 0 1 1 tg has fired once, while t3
cannot fire

Update » [3031 —3 —23010000]7 0 0 0 0 Both t3 and tg cannot fire

(Step 2.1.1.2)

t7 fires [3031 -3 -32110000]7 0 0 0 1 t3 cannot fire, while tg may
have fired once

t1o fires [3031 —3 —32011000]" 0 0 Both t3 and tg cannot fire

ty fires [3131 -3 -3201 1000}T 0 0 t3 may have fired once, while
tg cannot fire

to fires [2041 —3 =32011000]7 0 0 0 0 Both t3 and tg cannot fire

t fires [2041—3—41111000}7" 0 0 0 1 t3 cannot fire, while tg may
have fired once

tg fires [2041—3—41021000]T 0 0 0 0 Both t3 and tg cannot fire

114 fires 2041 —3 —4202100 —1]F 0 0 0 0 Both t3 and tg cannot fire

tg fires 3041 —4 —4202100 —1|7F 0 0 0 0 Both t3 and tg cannot fire

tg fires 4041 —5 —4202100 —1]7 0 0 0 0 Both ¢3 and tg cannot fire,
and Cuo€|T,, > —H Pug
admits only one solution €
st €fr, =0

Update M [4000002000002]7 not computed 0 not computed 0 Both ¢3 and tg cannot fire

(Step 4)

Fig. 4. Execution of the fault detection algorithm on the net of Fig. 3(a).

Require: t¢ € T¢, Tyo, Puo, Prey,, Posty,

1 Tota = tg, Tnew =0, P =*ty, P, ,, = P.,., = 0 (* Initialization *)

2 T= {teTuw|3pe P s.t. Preyo(p, t) # 0 or Posty,(p, t) # 03\ {ts}
(* T is the set of transitions in T}, which are linked to at least one place
in P, except ty *)

5 Thew = Tota U T (* update Thew *)

Talg = Thew (* update Tpiq *)
7 if T is empty then
Tl (tf) = Tnew

[=)}

8 else
81 PFP..,=FP,.VY P (* update the set of places already checked *)
82 gcold = PCnew (* uPdatE Pcozd *)

83 P={p€ Py |IteT st Prey(p,t) #0 or Postyo(p,t) # 0} \ Pe,.,
(* E is the set of places in P,, which are linked to at least one transition
in T, except the places already checked *)

84  go to Step 2

Fig. 5. Algorithm to compute the transition set 7 | (¢;).

The algorithm to compute the set ' | (ty) is reported in Let us denote N | (t5) = (P | (ty),T | (tf
Fig. 5. The set T' T (¢) can be obtained by the same algorithm  (t5),Post | (t7)), and N' T (t;) = (P T (
defining P = 5. (ty),Pre 1 (ty),Post T (tr)).
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5 Py
Iy
P Py Py
t5
3 Ps D
(@) N | (ts). () N1 (ts)
Fig. 6. Pre and post-net of #5.

rO—l
t8
(@) N (ts). ®) N'1(ts)
Fig. 7. Pre and post-net of ts.
Example 3: Consider the N,, <7, N subnet of the

manufacturing system shown in Fig. 3(b). Applying the defini-
tions given in this section, it follows that:

T | (ta) = {ts}

e T T (tg) = {tg, t4, t5}

o T | (ts) = {ts}

o T'7 (ts) = {ts,t11,t12,t13}
The pre and post-nets for t3 and tg are shown in Figs. 6 and 7,
respectively. In particular, since in the N <7 1 (t3) Nuyo
subnet one has *(2%) = {t3}, the place p4 is removed from N,
and P | (t3) = {p1,p2}. O

The following theorems show that it is possible to solve ILPs
on the pre and post-nets of a given fault, instead of solve them
on the whole N, <71, N subnet.

Theorem 7: Consider anet N, with T = T, U T,,. Let u be
a g-marking, and t; € Ty C T, a fault transition, then

min  €(tf) = min €(ty).
GGE(N:II') GIGE(NT(tf):Il'\pT(tf))
Proof: Let us denote with
€=arg min €(t
8o min (tr)
€= arg min €(ty)

e/eE(/\fT(tf)’ll'\PT(tf>)

with €(t¢) > 0 and €(¢t) > 0. Since N T (¢y) is a subnet of
N, it follows that some of the negative markings explained by
the firing of ¢y in N T (¢5), may be explained by the firing of a
transition which belongs to N, butitis notincluded in N 1 (¢y).
Then, by definition of the post-net, it holds

€(ty) > €(ty)-

Suppose, ad absurdum, that

E(tf) > E(tf).
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It follows that there exists a transition ¢ € T,, \ T T (¢5),
such that €(t) > €(¢), and whose firing adds at least one token
to at least one place p in t$. Hence there is a path from ¢ to
at least one place p in t;, which implies that t € T 1 (t5),
and €(t) = €(t). It turns out that it is not possible to find any
t € Tuo \ T 1 (ty) whose firing in € can replace the firing of ¢
in€, thus €(ty) = €(ty). [ |

Theorem 8: Consider anet N, with T = T, U T,,. Let u be
a g-marking, and t§ € T C T, a fault transition, then

e(ty) = "(ty)

max = max €
e/l€2<Nl(tf)7I"’|Pl(if))

ecx(N.p)

Proof: This proof can be done using similar arguments as
in the proof of Theorem 7. ]

B. Fault Detection Algorithm With Pre and Post-Nets

It is possible to exploit the results presented in the previous
subsection, when solving the ILPs in the proposed fault detec-
tion algorithm.

Proposition 4 (Fault Detection Using Pre and Post-Nets):
Consider anet N, with T = T, UT,,. Letty € Ty C T,,,
and p a g-marking. In order to perform the detection of the fault
t¢, the following three conditions have to be checked:

16) pipiy) # 0 and mine syt ) € (1) #
0 <=t has occurred
2¢) ma‘xe,,ez(Nl(tf)»Il'|p¢(tf)) ell(tf) =0 <= t;has
not occurred
3c) maXf"'EE(Nl(tf)vllqzw(ff)) €'(ty) #0 <=ty may
have occurred

|

Example 4: Consider the pre and post-nets of Figs. 6 and
7. As it has been discussed at the beginning of this section, by
solving the ILPs on these four nets, it is possible to improve
the efficiency of the fault detection algorithm, at a price of a
little increase in memory requirement, that is the storing of four
additional nets.

Note that, although the whole N,,, subnet does not have any
particular structure, some of the pre and post-nets may exhibit
particular properties, which permit to attain a further improve-
ment in terms of computational effort. In particular, for the con-
sidered manufacturing system, it can be easily shown that

max

f”(tS) = maX(07Il' D )
€'€T(NL(ts) M p (1)) "

Moreover N | (t3) shown in Fig. 6(a) is TS1 [17], while A/ |
(t3) and N 1 (¢3), shown in Figs. 6(b) and 7(b) respectively, are
TS2, thus

min
EET(NT(t3):8 p1(ty))
max

€TED(NL(t3) M p(15))

min €(ts)=
EET(NT(tg)H pi(tg))

+
— max (07_ﬂp13 —3 - max <O,min (l‘plg tey, \‘%J ))) ’

It follows that, when applying the proposed algorithm to per-
form the fault detection for the manufacturing system consid-

€(ts)= max(().,—p‘m “Hip, _”\PE))

€'(t3)= max(07min(p‘pl,p‘p2))
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ered in Section V-A, there is no need to solve any ILP online,
while only the four expressions above must be stored and eval-
uated each time the firing of a new transition is observed. ¢

VI. CONCLUSION

This paper proposes a novel approach to fault diagnosis for
DES, which requires the online computation of the set of pos-
sible fault events explaining the last observed event. In order
to achieve this result, g-markings are introduced in this paper.
G-markings are net markings that may have negative compo-
nents and whose estimation is always unique. The online com-
putation consists of solving programming problems formulated
on net structure and based on g-markings. In many cases of prac-
tical interest, such programming problems have closed-form so-
lutions or LP forms, even if in general they are ILPs. However, it
has been shown that such ILPs can be rewritten into equivalent
ones, which are formulated on proper subnets that influence the
occurrence of the observed event. These subnets are computed
offline and permit to reduce the computational effort to solve the
programming problems at the price of a small memory increase.
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