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Abstract Opacity is a confidentiality property that captures whether an intruder
can infer a “secret” of a system based on its observation of the system behavior
and its knowledge of the system’s structure. In this paper, we study four notions
of opacity: language-based opacity, initial-state opacity, current-state opacity, and
initial-and-final-state opacity. Initial-and-final-state opacity is a new opacity property
introduced in this paper, motivated by secrecy considerations in anonymous network
communications; the other three opacity properties have been studied in prior work.
We investigate the relationships between these opacity properties. In this regard,
a complete set of transformation algorithms among the four notions is provided.
We also propose a new, more efficient test for initial-state opacity based on the
use of reversed automata, and present a trellis-based test for the new property of
initial-and-final state opacity. We then study the notions of initial-state opacity,
current-state opacity, and initial-and-final-state opacity in the context of a new
coordinated architecture where two intruders work as a team in order to infer the
secret. In this architecture, the intruders have the capability of combining their
respective state estimates at a coordinating node. In each case, a characterization
of the corresponding notion of “joint opacity” and an algorithmic procedure for its
verification are provided.
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1 Introduction

The development of online services in network communications has led to many
security and privacy problems. Many of these problems require some information
about the system to be kept secret to an outside observer with malicious intentions.
Various information flow properties have arisen in the literature: anonymity, non-
interference, non-deductibility, and opacity; see, e.g., Schneider and Sidiropoulos
(1996), Focardi and Gorrieri (1994), Hadj-Alouane et al. (2005) and Alur et al.
(2006). The property that is of interest here is opacity, which characterizes whether a
given “secret” about the system behavior is hidden or not from an outsider observer
with malicious intentions, termed an intruder hereafter.

In this paper, we study opacity properties in discrete event systems (DES) mod-
eled as finite-state automata (FSA). The system is partially observed. The intruder,
modeled as an observer of the system, is assumed to have full knowledge of the
system’s structure and to have partial observations of the system’s behavior. Based
on its partial observations, the intruder constructs an estimate of the secret of the
system. The system is said to be opaque if the intruder is never sure whether the
secret has occurred or not. Depending on how the secret is defined, various notions
of opacity emerge. Three main types of opacity properties have been considered in
the literature: language-based opacity, initial-state opacity, and current-state opacity.
Language-based opacity defines the secret as a sublanguage of the system; initial-
state opacity and current-state opacity define the secret as a secret state set. In this
paper, we define a fourth type of opacity called initial-and-f inal-state opacity, which
is motivated by anonymous network communications (see e.g., Chaum 1981, 1988)
where the identities of the senders and/or receivers need to be kept secret. We define
initial-and-final-state opacity so that the initial and the final states of the system are
simultaneously hidden. Regardless of how the secret is defined, an opacity property
holds if whenever a secret-relevant behavior occurs, there is another non-secret-
relevant behavior that looks the same to the intruder. We can think of opacity as
“plausible deniability” of the given secret.

There is much prior work on existing notions of opacity. Opacity was first
introduced in the computer science literature to analyze cryptographic protocols
(Mazaré 2004). It was then investigated in systems modeled as Petri nets (Bryans
et al. 2005). In Bryans et al. (2005), the authors defined the secret as predicates over
Petri net markings (i.e., states), and formalized three opacity properties based on
when the information of the system’s state is critical: initial-opaque, final opaque,
and always-opaque. Extending the work in Bryans et al. (2005), the authors in Bryans
et al. (2008) investigated opacity in labelled transition systems, in which the secret
was defined as predicates over runs. Recently, Saboori and Hadjicostis (2007, 2008,
2009) investigated state-based opacity properties using FSA models. In particular,
the notion of initial-state opacity was defined in Saboori and Hadjicostis (2007) and
a trellis-based initial-state-estimator for its verification was presented in Saboori and
Hadjicostis (2008). The same authors also introduced and verified in Saboori and
Hadjicostis (2007, 2009) the notion of K-step opacity, which is a stronger version of
current-state opacity that requires the secret to hold for K-delayed estimates of the
state; we do not consider K-step opacity in this paper. Several works on opacity have
considered the enforcement of opacity properties (Badouel et al. 2007; Dubreil et al.
2008, 2009, 2010; Saboori and Hadjicostis 2008; Cassez et al. 2009). Inspired by the
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theory of supervisory control of DES, Dubreil et al. (2008, 2010) and Saboori and
Hadjicostis (2008), constructed minimally restrictive opacity-enforcing supervisory
controllers. In Badouel et al. (2007), the authors solved the control problem of the
so-called concurrent secrecy (as defined therein) for a language-based notion of
opacity. In Cassez et al. (2009), the authors enforced opacity by modifying the set of
observable events; they also provided a transformation from trace-based opacity to
state-based opacity (or the current-state opacity in our terminology). Also, Dubreil
et al. (2009) used techniques from diagnosis of DES (Sampath et al. 1995) to detect
and predict the flow of secret information and constructs a monitor that allows an
administrator to detect it. Finally, Lin (2011) compared language-based opacity with
other information flow properties and with observability (Lin and Wonham 1988)
and diagnosability of DES.

The first focus of this paper is to investigate relationships among the four notions
of opacity in FSA models. Opacity is defined as a state property in Saboori and
Hadjicostis (2007, 2008, 2009), and as a language property in Dubreil et al. (2008,
2009, 2010), Cassez et al. (2009). While they are formulated differently, trace-
based opacity (in the terminology of Cassez et al. (2009)) is reduced to state-based
opacity (or current-state opacity in our terminology) in Cassez et al. (2009), and an
alternative language-based definition is given for initial-state opacity in Saboori and
Hadjicostis (2008). However, to the best of our knowledge, transformations between
other pairs of opacity properties have never been presented in the literature. In
Section 4, we present a complete set of algorithms for transforming any one of
the four types of opacity (language-based, initial-state, current-state, and initial-and-
final-state) to any other.

The second focus of this paper is to consider the efficient verification of opacity
properties. In Section 5, we review existing methods of verifying opacity properties
and propose a new, more efficient one, for initial-state opacity. Our algorithm
constructs an initial state estimator (ISE) called the GR-based ISE using the reversed
automaton of the system. This algorithm reduces the complexity of the ISE derived in
Saboori and Hadjicostis (2008), which we call the trellis-based ISE. While the trellis-
based ISE requires the complexity of O(2|X|2), the GR-based ISE requires only the
complexity of O(2|X|); X is the state space of the system. We also use the trellis-based
estimator to verify the new notion of initial-and-final-state opacity property.

The third focus of this paper is to extend initial-state opacity, current-state opacity,
and initial-and-final-state opacity to a coordinated architecture where the system is
observed by multiple observers that share their state estimates through a coordi-
nator. The observers work as a team in trying to identify the (common) secret by
reporting their estimates, based on their respective projection maps, to a coordinator
where the coordinated estimate is generated. In the context of this coordinated
architecture, we define three corresponding notions of joint opacity properties. We
develop algorithmic procedures to verify each of the three joint opacity properties.
To the best of our knowledge, this is the first study of opacity in the context of a
coordinated architecture. The work in Badouel et al. (2007) also considers secrecy
under multiple observers; however, our problem formulation is different. In Badouel
et al. (2007), an individual secret set is associated with each observer, and concurrent
secrecy holds if all secret sets are simultaneously opaque, each one with respect to
its own individual observer. The problem considered in Badouel et al. (2007) is to
synthesize a supervisory controller that will enforce concurrent secrecy.
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The remaining sections of this paper are organized as follows. Section 2 introduces
the system model and relevant notations. Section 3 gives the definitions of the four
opacity properties studied in the paper. Section 4 presents the transformation pro-
cedures between each pair of opacity properties. Section 5 considers the verification
of the four opacity properties. Section 6 introduces and verifies opacity properties
under the coordinated architecture. Section 7 concludes the paper.

2 Preliminaries

We consider various notions of opacity in DES modeled as a finite-state automata.
A deterministic finite-state automaton G = (X, E, f, X0, Xm) has a set of states
X = {0, 1, ..., N − 1}, a finite set of events E, a partial state transition function
f : X × E → X, a set of initial-states X0, and a set of marked states Xm. In opacity
problems, the initial state need not be known a priori, and thus a set of initial
states instead of a single initial state is used. When there are no marked states,
we write G = (X, E, f, X0). E∗ is the set of all finite strings composed of elements
of E. The function f is extended to domain X × E∗ in the usual manner. The
language generated by the system G describes the system’s behavior and is defined by
L(G, X0) := {s ∈ E∗ : (∃i ∈ X0)[ f (i, s) is defined]}; it is prefix-closed by definition.
Also, the marked language of G is defined by Lm(G, X0) := {s ∈ E∗ : (∃i ∈ X0,

j ∈ Xm)[ f (i, s) = j]}. In general, the system is partially observed. The event set is
partitioned into an observable set Eo and an unobservable set Euo. Given a string
t ∈ E∗, its observation is the output of the natural projection function P : E∗ → E∗

o,
which is recursively defined as P(te) = P(t)P(e) where t ∈ E∗ and e ∈ E. The projec-
tion of an event P(e) = e if e ∈ Eo, while P(e) = ε if e ∈ Euo ∪ {ε} where ε denotes
the empty string.

The reversed automaton of G, denoted by GR, is constructed by reversing all
transitions in G. Given a string t, the reverse operator Rev : E∗ → E∗ outputs a new
string with events in the reversed order, tR. Formally, the reversed automaton of G
is defined as follows.

Definition 1 (Reversed automaton GR) Given a deterministic finite-state automa-
ton G = (X, E, f, X0, Xm), the reversed automaton GR is the nondeterministic
automaton that is obtained by reversing all the transitions in G. Specifically,
GR := (X, E, fR, XR,0, XR,m) where the transition function has codomain 2X and
is defined as fR(x′, e) = {x ∈ X : f (x, e) = x′}.

Similar to f , fR is extended to domain X × E∗ in a recursive manner: fR(x′, se) =
{x ∈ X : (∃x′′ ∈ X)[x ∈ fR(x′′, e), x′′ ∈ fR(x′, s)]}; or equivalently, fR(x′, se) = {x ∈
X : [ f (x, esR) = x′]}. The sets of initial and marked states of GR, XR,0 and XR,m,
respectively, are to be specified according to the context.

3 Classification of notions of opacity

In this section, we define the four notions of opacity we study in this paper. The cen-
tralized architecture, where there is one single intruder of the system, is considered.
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In this model, the intruder is assumed to have full knowledge of the system’s
structure, but can only observe P(t) when the system executes t ∈ L(G, X0). Based
on its observations, the intruder constructs estimates of the system’s behavior. The
secret is said to be opaque if the intruder’s estimate never reveals the system’s secret.
Specifically, the secret is opaque if for any “secret behavior,” there exist at least
one other “non-secret behavior” that looks the same to the intruder. Depending
on the secret behavior under consideration, we classify the corresponding opacity
properties into four categories, studied in the following four subsections: language-
based opacity, initial-state opacity, current-state opacity, and initial-and-final-state
opacity.

3.1 Language-based opacity

We start our discussion with language-based opacity (or simply LBO). In Saboori
and Hadjicostis (2008), Dubreil et al. (2008, 2010) and Cassez et al. (2009), language-
based opacity is defined over a system G and a secret behavior LS ⊆ E∗. The secret
is opaque with respect to L(G, X0) and the projection map P if no execution leads to
an estimate that is completely inside the secret behavior. Alternatively, in Lin (2011),
language-based opacity is defined over two sublanguages of the system, L1, L2 ⊆
L(G, X0). Sublanguage L1 is opaque with respect to L2 and an observation mapping
θ if the intruder confuses every string in L1 with some strings in L2 under θ . In this
paper, we follow the definition in Lin (2011) but let the general observation mapping
θ be the natural projection map P.

Definition 2 (Language-based Opacity) Given system G = (X, E, f, X0), projection
P, secret language LS ⊆ L(G, X0), and non-secret language LNS ⊆ L(G, X0), G is
language-based opaque if for every string t ∈ LS, there exists another string t′ ∈ LNS

such that P(t) = P(t′). Equivalently, LS ⊆ P−1[P(LNS)].

The system is language-based opaque if for any string t in the secret language LS,
there exists at least one other string t′ in the non-secret language LNS with the same
projection. Therefore, given the observation s = P(t), intruders cannot conclude
whether secret string t or non-secret string t′ has occurred. Note that LS and LNS

need not be prefix-closed in general. Also, they need not be regular; however, we
assume that they are regular in the remainder of this paper.

Example 1 Consider the system G in Fig. 1 with Eo = {a, b , c} . It is language-based
opaque when LS = {abd} and LNS = {abc∗d, adb} because whenever the intruder
sees P(LS) = {ab}, it is not sure whether string abd or string adb has occurred.
However, this system is not language-based opaque if LS = {abcd} and LNS = {adb};
no string in LNS has the same projection as the secret string abcd.

3.2 Initial-state opacity

The notion of initial-state opacity (or ISO) was first defined for Petri nets in Bryans
et al. (2005). The authors of Saboori and Hadjicostis (2008) then introduced this
notion for finite-state automata and investigated its verification and enforcement.
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Fig. 1 The system G discussed
in Example 1
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Initial-state opacity property is a state property that relates to the membership of the
system’s initial state within a set of secret states. The system is initial-state opaque if
the observer is never sure whether the system’s initial state is a secret state or not.

Definition 3 (Initial-State Opacity) Given system G = (X, E, f, X0), projection P,
set of secret initial states XS ⊆ X0, and set of non-secret initial states XNS ⊆ X0, G
is initial-state opaque if ∀i ∈ XS and ∀t ∈ L(G, i), ∃ j ∈ XNS, ∃t′ ∈ L(G, j), such that
P(t) = P(t′).

The system is initial-state opaque if for every string t that originates from secret
state i, there exists another string t′ from non-secret state j such that t and t′ are
observationally equivalent. Therefore, the intruder can never determine whether the
system started from a secret state i or from a non-secret state j.

The following is the same example as in Saboori and Hadjicostis (2008) that is used
to demonstrate ISO. This example is used throughout this work in order to facilitate
the comparison of our algorithmic procedures with those in Saboori and Hadjicostis
(2008).

Example 2 Saboori and Hadjicostis (2008) Consider G in Fig. 2 with Eo = {a, b},
XS = {2}, and XNS = X \ XS. G is initial-state opaque because for every string t
starting from state {2}, there is another string (uo)t starting from state {0} that looks
the same. However, ISO does not hold if XS = {0}. Whenever the intruder sees string
aa, it is sure that the system originated from state {0}; no other initial states can
generate strings that look the same as aa.

Fig. 2 The system G discussed
in Example 2
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3.3 Current-state opacity

Current-state opacity was first introduced as “final opacity” in Bryans et al. (2005)
in the context of Petri nets. The definition was then adopted in the framework of
labelled transition systems in Bryans et al. (2008), and further developed in finite
state automata models (Dubreil et al. 2008, 2010; Saboori and Hadjicostis 2008;
Cassez et al. 2009). A system is current-state opaque if the observer can never infer,
from its observations, whether the current state of the system is a secret state or not.

Definition 4 (Current-State Opacity) Given system G = (X, E, f, X0), projection P,
set of secret states XS ⊆ X, and set of non-secret states XNS ⊆ X, G is current-state
opaque if ∀i ∈ X0 and ∀t ∈ L(G, i) such that f (i, t) ∈ XS, ∃ j ∈ X0, ∃t′ ∈ L(G, j) such
that: (i) f ( j, t′) ∈ XNS and (ii) P(t) = P(t′).

Current-state opacity (or CSO) states that for every string t that goes to a secret
state, there must exist another string t′ going to a non-secret state whose projection
is the same. As a result, the intruder can never assert with certainty that the system’s
current state is in XS. Note that the generalized system model we use, where there
can be multiple initial states, allows the two observationally equivalent strings to start
from different initial states.

Example 3 Consider G in Fig. 3 and the sets of secret and non-secret states XS = {3}
and XNS = X \ XS. If Eo = {b}, then G is current-state opaque because the intruder
is always confused between ab and cb when observing b ; that is, the intruder cannot
tell if the system is in state 3 or 4. However, if Eo = {a, b}, CSO does not hold because
the intruder is sure that the system is in state 3 when observing ab .

3.4 Initial-and-Final-State Opacity (IFO)

Motivated by anonymous communications in security networks (Chaum 1981, 1988),
we introduce a new notion of opacity called initial-and-f inal state opacity. In anony-
mous communications, the identities of both the sender and the receiver need to
be hidden from the intruder. If we model a communication network as a DES, and
use the initial and the final states to represent the identities of the sender and the

Fig. 3 The system G discussed
in Example 3
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receiver, the network is anonymous if the memberships of the initial and the final
states are hidden as a pair. Formally, initial-and-final-state opacity is defined in terms
of set of initial and final state pairs.

Definition 5 (Initial-and-Final-State Opacity) Given system G = (X, E, f, X0), pro-
jection P, set of secret state pairs Xsp ⊆ X0 × X, and set of non-secret state
pairs Xnsp ⊆ X0 × X, G is initial-and-final-state opaque if ∀(x0, x f ) ∈ Xsp and ∀t ∈
L(G, x0) such that f (x0, t) = x f , there is a pair (x′

0, x′
f ) ∈ Xnsp and a string t′ ∈

L(G, X0) such that f (x′
0, t′) = x′

f and P(t) = P(t′).

Initial-and-final-state opacity (or simply IFO) requires that the occurrence of a
string starting from x0 and ending at x f , where (x0, x f ) is a secret pair, should not
reveal to the intruder the fact that x0 is the initial state and x f is the final state. A
system is said to be intial-and-final-state opaque if for any string t that starts from
x0 and ends at x f , with (x0, x f ) ∈ Xsp, there exists another string t′ starting from x′

0
and ending at x′

f , where (x′
0, x′

f ) ∈ Xnsp, that has the same projection. Therefore, the
intruder can never determine whether the initial-and-final state pair is a secret pair
or a non-secret pair.

Example 4 Consider again G in Fig. 2 and take Xsp = {(3, 1)}. G is initial-and-final
state opaque if the non-secret state pair set is Xnsp = {(1, 0), (1, 1), (1, 2), (1, 3)}.
However, initial-and-final-state opacity property does not hold if we take Xsp =
{(0, 0)} since (0, 0) is the only state pair that corresponds to string aa; no other state
pairs give strings that look the same as aa.

Remark 1 ISO and CSO are both special cases of IFO. To obtain an ISO problem
from an IFO problem, we set Xsp = XS × X and Xnsp = XNS × X. Also, to obtain
an CSO problem, we set Xsp = X0 × XS and Xnsp = X0 × XNS.

Remark 2 In the definitions of LBO, ISO, CSO, and IFO, no assumptions are
made regarding the sets of secret and non-secret languages, states, or state pairs,
respectively. However, to facilitate our work, we can assume they are disjoint without
loss of generality. Take ISO for example. Assume that XS ∩ XNS = XI �= ∅. Then,
every state in the intersecting set XI is a secret state as well as a non-secret state. That
is, a string from a secret state in XI is also from a non-secret state. No states in XI

results in the violation of opacity. Therefore, ISO is unchanged if XI is removed from
the secret set XS. Therefore, we can re-define the secret state set as X ′

S = XS \ XI ,
which is disjoint with XNS, without affecting ISO. Similar results hold for LBO,
CSO and IFO.

4 Transformation between different notions of opacity

While different notions of opacity have been defined in existing work, their rela-
tionships have never been completely characterized. To the best of our knowledge,
the only works that consider such relationships are the alternative language-based
definition for initial-state opacity in Saboori and Hadjicostis (2008), the transfor-
mations from trace-based opacity (LBO in our terminology) to state-based opacity
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Fig. 4 Transformations between notions of opacity (labeled by section numbers)

(CSO in our terminology) in Cassez et al. (2009), and the transformations in Lin
(2011) from language-based opacity to strong-secrecy and weak-secrecy (defined
therein). In this section, we provide a complete characterization of the relationships
between the four notions of opacity defined in the previous section. Algorithms that
map among the four notions are presented in the following subsections, according to
the diagram in Fig. 4. Examples are provided for most of the algorithms. Complete
proofs are provided for the transformations between IFO and LBO in the corre-
sponding subsections. The proofs for the other transformations are briefly discussed
in Section 4.5. For the sake of simplicity, we will use the acronym IFO to denote both
“initial-and-final-state opacity” and “initial-and-final-state opaque”; it will be clear
from the context if the noun or the adjective is referred to. Similarly for LBO, CSO,
and ISO.

4.1 Transformation between IFO and LBO

4.1.1 IFO to LBO

Given an IFO problem with G = (X, E, f, X0) and sets of secret and non-secret state
pairs Xsp and Xnsp, we transform the IFO problem into an LBO problem by the
following steps:

1. Construct Gs
i = Trim[(X, E, f, {xs

0,i}, {xs
f,i})] where (xs

0,i, xs
f,i) is the i-th pair in

Xsp, and Gns
j = Trim[(X, E, f, {xns

0, j}, {xns
f, j})] where (xns

0, j, xns
f, j) is the j-th pair

in Xnsp.
2. Obtain Gs by treating the set of all Gs

i as a single automaton, with corresponding
sets of initial and marked states; proceed similarly to obtain Gns from all Gns

j .
Define the secret and non-secret languages LS and LNS as

LS = Lm
(
Gs) =

⋃

i

Lm
(
Gs

i

)

LNS = Lm(Gns) =
⋃

j

Lm
(
Gns

j

)

3. Obtain GLBO by treating Gs and Gns as a single automaton.
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We show that (G, Xsp, Xnsp) is IFO if and only if (GLBO, LS, LNS) is LBO.
By construction, every Gs

i marks the language that corresponds to the i-th secret
pair (xs

0,i, xs
f,i) ∈ Xsp. Since every secret pair has a corresponding Gs

i , language LS

captures the complete set of secret pairs Xsp. Similarly, LNS captures the set of non-
secret pairs Xnsp. To verify if (G, Xsp, Xnsp) is IFO, we check if every string with
a secret pair (x0, x f ) ∈ Xsp has the same projection as a string associated with a non-
secret pair (x′

0, x′
f ) ∈ Xnsp, that is, if every string t ∈ LS has the same projection as a

string t′ ∈ LNS in GLBO. This procedure is equivalent to verify if (GLBO, LS, LNS)

is LBO.
We discuss the computational complexity of this transformation. Given any input

instance (G, Xsp, Xnsp), building Gs takes complexity O(|X|2|X0|) because each Gs
i

is simply the trim of G with the i-th state pair in Xsp as the initial and marked
state, and there are at most |X||X0| number of such Gs

i . Similarly, building Gns

also takes complexity O(|X|2|X0|). Therefore, this transformation can be obtained
in polynomial time, in the cardinality of the state space of G.

4.1.2 LBO to IFO

Given an LBO problem with G, LS, and LNS, we construct the equivalent IFO
problem by the following steps:

1. Build automata Gs = (Xs, E, fs, Xs
0, Xs

f ) with Lm(Gs, Xs
0) = LS and Gns =

(Xns, E, fns, Xns
0 , Xns

f ) with Lm(Gns, Xns
0 ) = LNS.

2. Construct GIFO by treating the two automata Gs and Gns as a single one. Take
the set of secret pairs to be Xsp = Xs

0 × Xs
f and the set of non-secret pairs to be

Xnsp = Xns
0 × Xns

f .

We show that (G, LS, LNS) is LBO if and only if (GIFO, Xsp, Xnsp) is IFO. By
construction, Gs, which has initial states Xs

0 and marked states Xs
f , generates marked

language LS. Thus, a string is in LS if and only if it has an initial-final state pair in
Xsp = Xs

0 × Xs
f . Similarly, a string is in LNS if and only if it has an initial-final state

pair in Xnsp = Xns
0 × Xns

f . To verify if (G, LS, LNS) is LBO, we verify if every string
in LS is always confused with a string in LNS; that is, if every state pair in Xsp is always
confused with a state pair in Xnsp. This is the same as checking if (G, Xsp, Xnsp)

is IFO.
This transformation also requires polynomial complexity. In step 1, the complexity

depends on how the languages LS and LNS are defined. Recall that LS and LNS are
assumed to be regular. They could be specified using automata, in which case Gs and
Gns are directly obtained. More generally, LS could be expressed as sublanguages
of L(G) in terms of state and/or event ordering, in which case Gs can be obtained
in polynomial time by splitting the state space of G as necessary using standard
automata procedures. Step 2 takes only constant time. Therefore, the transformation
can be done in polynomial time, in the cardinality of the state space of G.

Example 5 Consider again the system in Fig. 1. Let LS = {abd}, LNS = abc∗d +
adb , and the set of observable events Eo = {a, b , c}. To transform the LBO problem
into an IFO problem, we first build Gs (top in Fig. 5) and Gns (bottom in Fig. 5).
Then, we construct GIFO by taking the two automata as a single one, as shown in
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Fig. 5 GIFO used in Example 5

Fig. 5. Finally, we define the set of secret and non-secret pairs by Xsp = {(0, 3)} and
Xnsp = {(4, 7), (4, 9)}, respectively.

4.2 Transformation between ISO and LBO

4.2.1 ISO to LBO

Given an ISO problem with G, XS, and XNS, we construct the equivalent LBO
problem by the following steps:

1. Build automata Gs = Trim[G(X, E, f, XS)] and Gns = Trim[G(X, E, f, XNS)].
2. Obtain GLBO by treating Gs and Gns as a single automaton. Define the secret

and the non-secret languages as LS = L(GLBO, XS) and LNS = L(GLBO, XNS).

Example 6 Let us go back to Example 2 and take XS = {0} and XNS = X \ XS =
{1, 2, 3}. Following the transformation, the secret and non-secret languages are
defined by LS = L(G, {0}) and LNS = L(G, X \ XS). In this case, LBO does not hold
since no string in LNS looks the same as string aa ∈ LS.

4.2.2 LBO to ISO

To transform from LBO to ISO, we must check if LS and LNS in the LBO problem
are prefix-closed. This is because the languages of an ISO problem are prefix-closed
by definition. If LS and LNS are not prefix-closed, then this transformation is not
meaningful. Specifically, given an LBO problem with G, LS, and LNS, we construct
this transformation by:

1. Check if LS and LNS are both prefix-closed. If yes, then proceed to Step 2.
Otherwise, no transformation exists.
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2. Build automata Gs = (Xs, E, fs, Xs
0) and Gns = (Xns, E, fns, Xns

0 ) such that
L(Gs, Xs

0) = LS and L(Gns, Xns
0 ) = LNS.

3. Construct GISO by treating Gs and Gns as a single automaton. Take the secret
and non-secret initial states sets to be XS = Xs

0 and XNS = Xns
0 , respectively.

Example 7 Consider again the system in Fig. 1, with the set of observable events
Eo = {a, b , c}. Let the secret and non-secret languages to be prefix-closed: LS =
{abd} and LNS = [abc∗d + adb ]. This LBO problem can be transformed to an ISO
problem on the system in Fig. 5 (with no marked states) with secret state set XS = {0}
and non-secret state set XNS = {4}. In this example, ISO holds because for every
string starting from state {0}, there is another string from {4} with the same projection.

4.3 Transformation between CSO and LBO

4.3.1 CSO to LBO

Given a CSO problem with G, XS, XNS, the equivalent LBO problem is built
in two steps. First, we build automata Gs = Trim[G(X, E, f, X0, XS] and Gns =
Trim[G(X, E, f, X0, XNS)]. Then, we obtain GLBO by treating Gs and Gns as a
single automaton, and define the secret and the non-secret languages as LS =
Lm(GLBO, XS) and LNS = Lm(GLBO, XNS).

Example 8 Let us go back to Example 3. Take XS = {3}, XNS = X \ XS, and Eo =
{b}. Following the above transformation, the secret and the non-secret languages are
defined by LS = {ab} and LNS = {ε, a, c, cb}. In this case, LBO holds because the
intruder always confuses the secret string ab with the non-secret string cb .

4.3.2 LBO to CSO

Given an LBO problem with G, LS, LNS, we transform it to a CSO problem in
two steps. First, we build Gs = (Xs, E, fs, Xs

0, Xs
f ) and Gns = (Xns, E, fns, Xns

0 , Xns
f )

such that Lm(Gs, Xs
0) = LS and Lm(Gns, Xns

0 ) = LNS. Then, we construct GCSO by
treating Gs and Gns as a single automaton, where the initial state set is X0 = Xs

0 ∪ Xns
0

and the secret and non-secret state sets are XS = Xs
f and XNS = Xns

f .

Example 9 Consider again the system in Fig. 1, with Eo = {a, b , c}. This LBO
problem is transformed to a CSO problem on the system in Fig. 5 with initial state
set X0 = {0, 4}, secret state set XS = {3}, and non-secret state set XNS = {7, 9}. G
is current-state opaque because string adb , which ends at state {9}, has the same
projection as string abd, which is the only string that ends at secret state {3}.

4.4 Transformation between ISO/CSO and IFO

As explained in Remark 1, ISO and CSO are special cases of IFO, so the transfor-
mations from ISO to IFO and from CSO to IFO are already covered by that remark.



Discrete Event Dyn Syst (2013) 23:307–339 319

On the other hand, the transformation from IFO to ISO can be obtained by first
transforming IFO to LBO and then transforming LBO to ISO; similarly for the case
IFO to CSO.

4.5 Discussion

The transformations between ISO/CSO and LBO can be proven using similar
methods for those between IFO and LBO. For the transformation from ISO to
LBO, we construct Gs and Gns whose initial states are XS and XNS, respectively. By
suitably defining LS and LNS as sublanguages of Gs and Gns, languages LS and LNS

completely capture XS and XNS. Therefore, checking if a string starts from XS or
XNS is equivalent to checking if the string is in LS or LNS. That is, verifying ISO in the
original automaton G is equivalent to verifying LBO in GLBO. A similar argument
holds for the transformation from CSO to LBO. The only difference is that XS and
XNS are the marked states of Gs and Gns. For the transformation from LBO to ISO,
we construct Gs and Gns that generate LS and LNS by suitably defining the initial
states as XS and XNS. Therefore, checking if a string is in LS or LNS is equivalent to
checking if the string starts from XS or XNS. That is, verifying LBO in the original
automaton G is equivalent to verifying ISO in GISO. Similarly, by letting XS and XNS

to be the marked states of Gs and Gns, we can prove the transformation from LBO
to CSO.

All the transformations are of polynomial-time computational complexity. We
have seen that transformations between IFO and LBO require polynomial time.
Transformations between ISO/CSO and LBO also require polynomial time because
they are adapted from those between IFO and LBO. The transformations from
IFO to ISO/CSO can also be done in polynomial time by transforming from IFO
to LBO in polynomial time and then from LBO to ISO/CSO in polynomial time.
In conclusion, we have shown that there exists a polynomial-time transformation
between any pair of the four notions of opacity. The only exception is that there is
no transformation from LBO to ISO when the secret or non-secret languages are not
prefix-closed. Therefore, we can say that two opacity properties, OP1 and OP2, are
“equivalent” in the sense that OP1 holds in system G if and only if OP2 holds in the
the transformed system G′.

5 Verification of different notions of opacity

We are interested in the verification of the four notions of opacity. Based on the
results of the preceding section, we can always transform one opacity property to
another for the purpose of verification. However, this may not be the most efficient
manner to proceed. Thus, it is still worthwhile to consider each opacity property
individually. Algorithms are available in the literature for verifying ISO, CSO, and
LBO. For the sake of completeness, we briefly discuss the verification of CSO
and LBO at the beginning of this section. Then we present a new algorithm for
the verification of ISO that has reduced computational complexity as compared
with existing ones. Finally, we present an algorithm for the verification of the new
property of IFO.
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We mention that no polynomial-time algorithms, in the cardinality of the state
space of G, exist for any of the above notions of opacity. In fact, it was shown in
Cassez et al. (2009) and Dubreil (2009) that the verification of state-based opacity
(CSO in our terminology) and that of trace-based opacity (LBO in our terminology)
are PSPACE-complete problems. Also, ISO was shown to be PSPACE-complete in
Saboori (2010), when |Eo| > 1. As a result, IFO must also be PSPACE-complete
due to the polynomial-time transformations from other notions of opacity to IFO
mentioned in Section 4.5.

5.1 Verification of current-state opacity

The most intuitive way to verify CSO is to build the observer automaton.1 The
observer Obs(G, X0) models how the intruder gains knowledge of the system
through observations. More specifically, the state of Obs(G, X0) reached by s ∈
P[L(G, X0)] is the intruder’s state estimate after observing s. Therefore, we can use
Obs(G, X0) to capture all possible state estimates of the intruder. To verify CSO,
we examine all reachable states in Obs(G, X0). The system is CSO if no state in
Obs(G, X0) contains secret states but not non-secret states. Also, when constructing
the observer to verify CSO, one does not assume a specific set of secret states. Thus,
no reconstruction of the observer is required if the set of secret states changes.

5.2 Verification of language-based opacity

Given LS, LNS ⊆ L(G, X0), the system is LBO if LS ⊆ P−1[P(LNS)]. To check
the aforestated language inclusion, the author of Lin (2011) proposed Algorithm 1
therein that utilizes marked languages of automata. We use the notation of Lin (2011)
to briefly review that algorithm for the sake of comparison with a transformation-
based approach. In order to fit our model, Algorithm 1 of Lin (2011) needs to be
slightly modified by using the natural projection instead of the more general state-
based projection. In brief, the algorithm first constructs two automata, G1 and G2,
that mark LS and LNS, respectively. Next, it constructs their observers, G5 and
G8, and the product of these two observers, G9, that marks the joint projected
marked language. Then, it compares Lm(G9) and Lm(G5). The system is LBO
if these two marked languages are equal. That is, P(LS) ∩ P(LNS) = P(LS), or
equivalently, P(LS) ⊆ P(LNS). As an alternative, we can use state-based verification
by transforming the LBO problem to a CSO one. The state-based verification is
based on the transformation from LBO to CSO presented in Section 4.3.2. The
equivalent CSO problem is then verified as described above in Section 5.1. While the
above two algorithms are constructed differently, their computational complexity is
the same. In Algorithm 1, if we assume that G1 and G2 have state spaces in the
order of X, then building G9 has worst-case complexity of O(22|X|). As for state-
based verification, transforming from LBO to CSO doubles the state space to 2X
and building the observer also has worst-case complexity of O(22|X|).

1The observer automaton (or simply observer) is defined in Section 2.5.2 of Cassandras and
Lafortune (2008). Here, the notation Obs(GR, X) indicates that the initial state of the observer
is X.
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5.3 Verification of ISO

To verify ISO, we need to capture the intruder’s initial state estimate, which is the set
of states where the observed string could have started. The definition for the initial
state estimate is given below:

Definition 6 (Initial-state estimate) Given system G = (X, E, f, X0) and P, the
initial state estimate after observing string s is defined as X̂0(s) := {i ∈ X0 : (∃t ∈
E∗)(P(t) = s)[ f (i, t) is defined]}

The authors of Saboori and Hadjicostis (2008) constructed a trellis-based initial
state estimator to capture the initial state estimate. Motivated by the work in Saboori
and Hadjicostis (2008), we propose a new algorithm using the reversed automaton to
generate the estimates. Since we will use the initial state estimator of Saboori and
Hadjicostis (2008) in other parts of this paper, we start with a brief review of key
notations and rules from Saboori and Hadjicostis (2008). We use the acronym ISE
for “initial state estimator” hereafter.

5.3.1 Trellis-based initial state estimator

The authors of Saboori and Hadjicostis (2008) used state mappings to construct the
trellis-based ISE. A state mapping m ∈ 2X2

is a subset of X2 consisting of state pairs.
Induced by the observed string s ∈ P[L(G, X0)], the state mapping M(s) enumerates
all possible pairs of starting and ending states corresponding to s. The composition
operator for two state mappings ◦ : 2X2 × 2X2 → 2X2

is defined as:

m1, m2 ∈ 2X2
, m1 ◦ m2 := {(i1, i3) | ∃i2 ∈ X, (i1, i2) ∈ m1, (i2, i3) ∈ m2}

The operator takes the starting states of m1 and the ending states of m2 to form a new
state mapping only for those sets of tuples that share the same intermediate element.
Given G, the trellis-based ISE of G is a deterministic finite-state automaton where
the state reached by string s ∈ P[L(G, X0)] is state mapping M(s). Since intruders
are assumed to have no prior knowledge about the system’s initial state, the ISE
starts with a state mapping whose set of starting states is the entire state space X.
More specifically, the initial state of the estimator is {(i, i) : i ∈ X)} ∪ {(i, j) ∈ X2 :
(∃t ∈ E∗

uo)[ f (i, t) = j]}. The transition function is defined such that state mapping m
transitions to state mapping m′ through event eo if m′ = m ◦ M(eo) where M(eo) is
the state mapping induced by eo. The estimator relies on state mappings to relay
information about the initial- and the current-state estimates. Given a state m of the
trellis-based ISE reached by s, Saboori and Hadjicostis (2008) proved that the set of
starting states of m is exactly the intruder’s initial-state estimate X̂0(s). One can verify
ISO by examining all states in the trellis-based ISE and determining if the condition
on XS and XNS is satisfied or not.

Remark 3 To verify IFO using the trellis-based ISE in Section 5.4.1, and to help
us extend notions of opacity to the coordinated architecture of Section 6, we
slightly modify above the definition of the initial state of the trellis-based ISE from
Saboori and Hadjicostis (2008). Specifically, the modified initial state includes the
unobservable reach to account for the unobservable transitions after the system
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Fig. 6 Trellis-based ISE of the system in Fig. 2

begins and before the first observable transition. This is a practical concern as the
intruder does not know when the system starts. The modification does not affect the
initial state estimates since the unobservable reach affects only the ending states but
not the starting states. Furthermore, it affects only the initial state but not the other
states of the ISE. As a result, the modification gives the same initial state estimates
as those in Saboori and Hadjicostis (2008).

Example 10 Consider the system in Fig. 2. The a- and b -induced state mappings are
M(a) = {(0, 0), (0, 1), (0, 2), (0, 3), (2, 1), (2, 3)} and M(b) = {(1, 0), (1, 1), (1, 2),

(1, 3), (3, 1), (3, 3)}. To construct the trellis-based ISE, we start with the initial state
mapping m0 as defined above. Then, we generate new state mappings by composing
m0 with M(a), and M(b). The complete construction is shown in Fig. 6.

5.3.2 GR-based initial state estimator

One of our contributions in this paper is to propose a new algorithm to construct
the initial state estimate based on the reversed automaton GR. In the following, we
first introduce the method of verifying ISO when X0 = X. Then we generalize the
verification method to the case when X0 ⊂ X.

Case 1 ISO problem when X0 = X

To construct our ISE, we first build the reversed automaton GR of the system
G. After that, we build the observer Obs(GR, X), with the initial state being the
entire state space X. We prove below that the state of Obs(GR, X) reached by
string sR is the initial state estimate after s, where sR is the reversed string of string
s. This explains why the initial state is taken as X. Because the observer has no prior
knowledge about the system’s initial state, its estimate after observing nothing is the
entire set of initial states X0 = X. We describe the construction of the initial state
estimate in the following theorem. The subscript R applied to strings indicates the
corresponding reversed string.

Theorem 1 Given system G = (X, E, f, X), map P, set of secret states XS ⊆ X,
and set of non-secret states XNS ⊆ X, the initial state estimate after observing s
is X̂0(s) = fobs,R(X, sR), where fobs,R is the transition function of Obs(GR, X) =
(Xobs,R, Eo, fobs,R, X).
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The construction of the initial state estimate relies on the structure of its reversed
automaton. Before proving Theorem 1, we present three lemmas that characterize
useful properties of reversed strings and automata. We use the notation Rev(·) for
the operation of taking the reverse of a string or of all the strings in a set of strings.

Lemma 1 P(tR) = P(t′R) if f P(t) = P(t′).

This result is proved in a straightforward manner by using induction on the length
of strings.

Lemma 2 x0 ∈ fR(x, tR) if f x = f (x0, t).

Proof This result is proved by using the extended definition of fR; that is, fR(x, tR) =
{x0 ∈ X : [ f (x0, t) = x]}. ��

Lemma 3 tR ∈L(GR, X) if f t ∈L(G, X). Thus,L[Obs(GR, X)] = Rev
(
P[L(G, X)]).

Proof

t ∈ L(G, X) ⇔ ∃x, x′ ∈ X, such that x′ = f (x, t)

⇔ ∃x, x′ ∈ X, such that x ∈ fR(x′, tR) by Lemma 2

⇔ tR ∈ L(GR, X)

Furthermore, because tR = Rev(t), we have L(GR, X) = Rev[L(G, X)]. By applying
projection operation at both sides, we obtain P[L(GR, X)] = P

(
Rev[L(G, X)]); that

is, L[Obs(GR, X)] = Rev
(
P[L(G, X)]). ��

We can now present the proof of Theorem 1:

Proof For any string s ∈ P[L(G, X)], if we pick any state x0 ∈ X̂0(s) := {i ∈ X : (∃t ∈
E∗)(P(t) = s)[ f (i, t) is defined]}, then we have that ∃t ∈ L(G, X) where P(t) = s such
that f (x0, t) is defined.

Using Lemma 3, we have that ∃t ∈ L(G, X) ⇔ ∃tR ∈ L(GR, X).
Using Lemma 2, we have that x = f (x0, t) ⇔ x0 ∈ fR(x, tR).
Using Lemma 1, we have that P(t) = s ⇔ P(tR) = sR.

Therefore, an arbitrary x0 ∈ X̂0(s) iff ∃tR ∈ L(GR, X), ∃x ∈ X where P(tR) = sR and
x0 ∈ fR(x, tR).

Equivalently, x0 ∈ {i ∈ X : (∃x ∈ X)(∃tR ∈ L(GR, X))[P(tR) = sR] and [i ∈
fR(x, tR)]} =: fobs,R(X, sR). ��

Obs(GR, X) can be interpreted as an ISE in the sense that Theorem 1 shows that
the intruder’s initial state estimate after observing string s is captured by the state
of Obs(GR, X) reached by sR. The verification of ISO can therefore be performed
by examining all the states of this ISE. The system is not ISO if there exists an
observation sequence that leads to an initial state estimate containing secret states
but not non-secret states, as formalized by the following result, where Xobs,R denotes
the state space of Obs(GR, X).
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Theorem 2 System G = (X, E, f, X) is ISO if f ∀y ∈ Xobs,R, y ∩ XS �= ∅ ⇒ y ∩
XNS �= ∅.

Proof By definition, G is ISO if and only if the system’s initial state estimate never
contains secret states but not non-secret states. Whenever there is a secret state
in the estimate, there must also be a non-secret state to confuse the intruder, for
all observable strings s ∈ P[L(G, X)]. To prove the result it is sufficient to prove
that the collection of all possible initial state estimates of the intruder equals to
the collection of all reachable states of Obs(GR, X). We first observe that each
initial state estimate is captured by a state in Obs(GR, X). This is given in the
result of Theorem 1 where X̂0(s) = fobs,R(X, sR) for all s ∈ P[L(G, X)]. For the
reverse direction, we observe that each reachable state of Obs(GR, X) corresponds
to a valid initial state estimate. This is because Obs(GR, X) is deterministic and
L[Obs(GR, X)] = Rev

(
P[L(G, X)]) by Lemma 3. Therefore, the ISO property is

verified by examining all reachable states of Obs(GR, X). ��

Example 11 We use the GR-based ISE to verify the ISO property of the system in
Fig. 2. To build the GR-ISE, we first build GR, shown in Fig. 7a. Then, we build
Obs(GR, X), shown in Fig. 7b. In the GR-ISE, the initial state is X because the
intruder has no prior knowledge of the system’s initial state. The state reached by
string tR is the intruder’s initial state estimate after observing t. In this example,
after observing event b , the intruder constructs initial state estimate {1, 3}, which
is the state of the ISE reached by Rev(b) = b . If the intruder further observes a, its
initial state estimate is updated to {1}, which is the state of the GR-ISE reached by
Rev(ba) = ab . To verify the ISO property, we examine all the states of the GR-ISE
in Fig. 7b. If the secret state is {1}, the system is not ISO because the state of the ISE
reached by ab contains only state 1.

Case 2 Initial-State Opacity problem when X0 ⊂ X

In the previous case, we verified the ISO property when X0 = X. Now, we
consider the case when X0 ⊂ X, which was mentioned but not studied in Saboori
and Hadjicostis (2008).

0 1

2 3uo
ba

uo

a

b

X

2, 0 1, 3

0 1

a

a

a

a

a

b

b

b

b

b

(b) The G
R
-based ISE, Obs(G

R
,X)

(a) The reversed automaton G
R

Fig. 7 Construction of the GR-based ISE of the system in Fig. 2
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Recall that when X = X0, the language of the GR-ISE is L[Obs(GR, X)] =
Rev(P[L(G, X)]) = Rev(P[L(G, X0)]); thus, the set of initial state estimates is the
set of reachable states of Obs(GR, X). However, when X0 ⊂ X, we could have
Rev(P[L(G, X0)]) ⊂ Rev(P[L(G, X)]) = L[Obs(GR, X)]. In this case, there exists
a string tR in L[Obs(GR, X)] but not in Rev(P[L(G, X0)]). Thus, tR does not
correspond to a valid initial state estimate; namely, state y = fobs,R(X, tR) ∈ Xobs,R

does not give a valid initial state estimate. To verify ISO when X0 ⊂ X, we need
to identify and examine only valid initial state estimates instead of examining all
reachable states of Obs(GR, X). For this purpose, we use marking of states. First,
we construct a modified automaton G′ by marking all states in X0 to recognize all
valid initial states. Then, we build the reversed automaton G′

R = (X, E, fR, X, X0)

and its G′
R-based ISE. The marked language of G′

R-ISE is therefore the reversed
projection language, i.e., Lm[Obs(G′

R, X)] = Rev
(
P[L(G, X0)]

)
. A marked state

corresponds to a reversed string that starts from a valid initial state. The set of valid
initial state estimates is obtained by taking the intersection of X0 with the marked
states of Obs(G′

R, X). (Note that an observer state is marked if it contains at least
one marked state.) Since only marking has been affected, we write Obs(G′

R, X) =
(Xobs,R, Eo, fobs,R, X, Xobs,R,m). We have the following result.

Theorem 3 Given system G = (X, E, f, X0) with X0 ⊂ X, projection P, set of secret
states XS ⊂ X, and set of non-secret states XNS ⊂ X, when observing s ∈ P[L(G, X0)]
we have:

1. X̂0(s) = fobs,R(X, sR) ∩ X0

2. sR ∈ Lm[Obs(G′
R, X)]

That is, there exists ym = fobs,R(X, sR) ∈ Xobs,R,m such that the initial state estimate
X̂0(s) is ym ∩ X0.

Similarly to the case where X0 = X, before proving Theorem 3, we would like to
relate the properties of Obs(G′

R, X) to those of the original automaton G.

Lemma 4 x = f (x0, t) if f x0 ∈ fR(x, tR) ∩ X0. Furthermore, ∃x ∈ X, x = f (x0, t) if
and only if x0 ∈ fobs,R(X, sR) ∩ X0, where P(tR) = sR.

Proof

x = f (x0, t) ⇔ x = f (x0, t) ∧ x0 ∈ X0, since x0 ∈ X0 is always true

⇔ x0 ∈ fR(x, tR) ∧ x0 ∈ X0, by Lemma 2.

⇔ x0 ∈ fR(x, tR) ∩ X0

Furthermore, ∃x ∈ X, x0 ∈ fR(x, tR) ⇔ x0 ∈ fobs,R(X, sR) ∩ X0 where P(tR) = sR.
Therefore, we have ∃x ∈ X, x = f (x0, t) if and only if x0 ∈ fobs,R(X, sR) ∩ X0, where
P(tR) = sR. ��
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Lemma 5 t ∈ L(G, X0) if f tR ∈ Lm(G′
R, X).

Proof

t ∈ L(G, X0) ⇔ ∃x0 ∈ X0, and x ∈ X, such that x = f (x0, t)

⇔ ∃x0 ∈ X0, x ∈ X, such that x0 ∈ fR(x, tR) by Lemma 4.

⇔ tR ∈ Lm(G′
R, X) because X0 is the set of marked states of G′

R

��

We can now prove Theorem 3.

Proof For any string s ∈ P[L(G, X0)], pick any state x0 ∈ X̂0(s) := {i ∈ X0 : (∃t ∈
E∗)(P(t) = s)[ f (i, t) is defined]}; we have ∃t ∈ L(G, X0) where P(t) = s such that
f (x0, t) is defined.

Using Lemma 3, we have that t ∈ L(G, X0) ⇔ tR ∈ Lm(G′
R, X).

Using Lemma 2, we have that P(t) = s ⇔ P(tR) = sR

Using Lemma 1, we have that x = f (x0, t) ⇔ x0 ∈ fobs,R(X, sR) ∩ X0

Therefore, given an arbitrary x0, x0 ∈ X̂0(s) holds if and only if ∃x ∈ X, ∃tR ∈
Lm(G′

R, X) where P(tR) = sR ∈ Lm[Obs(G′
R, X)], such that x0 ∈ fobs,R(X, sR) ∩

X0. That is, x0 ∈ fobs,R(X, sR) ∩ X0 where sR ∈ Lm[Obs(G′
R, X)], which proves

Theorem 3. ��

Theorem 3 gives the initial state estimate of an intruder that has prior knowledge
of X0 ⊂ X. The intruder’s estimate after observing string s is the intersection of X0

and the marked state of Obs(GR, X) reached by sR. To verify ISO when X0 ⊂ X,
we need to examine all marked states of Obs(GR, X).

Theorem 4 System G = (X, E, f, X0) is ISO if and only if ∀y ∈ Xobs,R,m, (y ∩ X0) ∩
XS �= ∅ ⇒ (y ∩ X0) ∩ XNS �= ∅.

Proof To prove Theorem 4, it is sufficient to prove that the collection of all initial
state estimates is equal to the collection of Z = {z = y ∩ X0 : y ∈ Xobs,R,m}. By
Theorem 3, we know that every initial state estimate is captured by the intersec-
tion of X0 and a marked state of the G′

R-based ISE. That is, every initial state
estimate is inside the set Z . As for the other direction, because Lm[Obs(G′

R, X)] =
Rev(P[L(G, X0)]), we always obtain a valid initial state estimate by intersecting a
marked state of the G′

R-based ISE with X0. That is, every element in Z is an initial
state estimate. This completes the proof. ��

Corollary 1 The computational complexity of verifying ISO using the GR-ISE in
Theorems 2 and 4 is in the worst case O(2| X|).

Corollary 1 states the advantage of using the GR-based ISE to verify ISO. The
trellis-based ISE in Saboori and Hadjicostis (2008) has complexity O(2|X|2) because
of the use of state mappings as building blocks for the ISE.
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Example 12 Consider the system in Fig. 2 with the sets X0 = {0, 2}, XS = {0}, and
XNS = {2}. To verify if the system is ISO, we construct the modified automaton G′
by marking all initial states, and then build the G′

R-based ISE, as shown in Fig. 8a
and b. As before, the intruder’s initial state estimate after it observes string ab is the
state reached by Rev(ab) = ba in the G′

R-based ISE, {0, 2}. However, since only {0}
and {2} are initial states of the system, not all states but only marked states reached
in G′

R-based ISE correspond to valid initial state estimates. For example, state {1, 3}
is not a valid initial state estimate; no string starting from {0} or {2} has its reversed
observable string that reaches state {1, 3} in the G′

R-based ISE. To verify ISO, we
examine all marked states of G′

R-ISE. The system is not ISO because the marked
state {0} is a valid initial state estimate that contains only secret initial state.

We conclude this section with two remarks that apply to Cases 1 and 2.

Remark 4 Consider Case 1; a similar argument holds for Case 2. A state of the GR-
based ISE reached by string sR is the initial state estimate after observing s. In fact,
the state represents only the state estimate after observing s; it does not possess any
physical meaning if viewed as an intermediate state or as the starting state of another
string. For example, the GR-based ISE starts from X, the state reached by ε, because
the intruder’s initial state estimate after observing nothing is X̂0(ε) = X. If event a
is observed, then the intruder’s estimate moves to X̂0(a) = fobs,R(X, a), which is the
state reached by a = Rev(a). Although X̂0(a) is reached from X̂0(ε), X̂0(ε) is not the
final state estimate after observing a. Constructed in a reversed manner, states of GR-
based ISE along the same path share the same suffix but not prefix in general; thus,
those state estimates are not the intermediate or final state estimate of one another
in general. While the GR-based ISE does not show the evolution of the intruder’s
initial state estimates, it is sufficient for verifying ISO because it provides the set of
all initial state estimates.

Remark 5 The construction of the GR-based ISE does not assume a specific set of
secret states. The set XS is not considered until verification where all (marked) states
of the GR-based ISE are examined. As a result, if XS changes, one does not need to
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reconstruct the ISE, but only need to test the inclusion relationship with the new XS

to verify ISO.

5.4 Verification of IFO

IFO considers the memberships of both the initial and final states of the system. To
verify such a property, one needs to construct the initial-and-final state pair estimates
that correspond to the intruder’s knowledge. Depending on whether Xsp and Xnsp

are given in the form of a Cartesian product or not, we propose to use trellis-based
ISE, the GR-based ISE, or the observer to verify the property.

5.4.1 Verifying IFO for general Xsp and Xnsp

Let us first consider the case where Xsp and Xnsp are not expressed in the form of a
Cartesian product. They may be any subset of 2X2

. In this case, enumeration of all
possible starting and ending state pairs is needed to verify IFO. The trellis-based ISE
of Saboori and Hadjicostis (2008) gives such an enumeration by using state mappings,
as was described earlier. Therefore, we can use it in a straightforward manner to
verify IFO. For all reachable states of the trellis-based ISE, if secret pairs always
come along with non-secret pairs, then the system is IFO; otherwise, it is not IFO.

Example 13 Let us go back to the IFO problem in Example 4 and take the sets of
secret and non-secret state pairs to be Xsp = {(0, 0)} and Xnsp = {(0, 1), (0, 2), (0, 3)}.
To model the intruder, we use the trellis-based ISE shown in Fig. 6, which gen-
erates a set of state pairs for each observed string. In this example, the intruder
would guess that the system has one of the state pairs in m1 = {(0, 0), (0, 1), (0, 2),

(0, 3), (2, 1), (2, 3)} if observing a and it would update its estimate to m2 =
{(0, 0), (0, 1), (0, 2), (0, 3)} upon observing an additional a (i.e, string aa). To verify
the IFO property, we examine all reachable states of this ISE and notice that when
the secret state pair (0, 0) is present, a non-secret state pair is also always present.
Therefore, the system is IFO.

5.4.2 Verifying IFO when Xsp and Xnsp are expressed as Cartesian products

When both Xsp and Xnsp are expressed as Cartesian products, the verification can
be simplified as compared to the preceding general case. In this special case, it is
not necessary to remember the exact initial and final state pair. It is sufficient to
remember whether the initial and the final states are secret or not. Consequently, the
GR-based ISE or the standard observer can be used to verify IFO. We write Xsp =
Xs

0 × Xs
f and Xnsp = Xns

0 × Xns
f , and use Xs

0, Xns
0 , Xs

f , Xns
f as alternative parameters

for the problem.

Verifying IFO property using the GR-based ISE Given system G, the procedure to
follow is:

1. Label states in Xs
f with S and states in Xns

f with N by right-concatenating the
label with the state name. (Right concatenation indicates that the labels are used
for final states)
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2. Build the GR-based ISE. When constructing the observer, pass the label such
that the successor carries the label of the predecessor.

3. The system is IFO if for every state containing i0S where i0 ∈ Xs
0, it also contains

j0 N where j0 ∈ Xns
0 .

Indeed, the IFO problem in this special case can be thought of as an ISO problem
with marked states, which considers the ISO property with respect to a marked
language. In this case, the languages of the ISO problem are not prefix-closed in
general. We did not discuss this case previously in order to keep the formulation of
ISO problems simple. If a system is marked-state initial-state opaque, then for every
string starting from XS and ending at a marked state in Xm, there is another string
starting from XNS and ending Xm with the same projection. That is, every state pair
in XS × Xm is confused with some state pair in XNS × Xm, which is an IFO problem
in Cartesian product form.

Verifying IFO property using observers Similarly, we can verify the IFO problem
in Cartesian product form using observers. First, label secret and non-secret initial
states by left-concatenating S or N. (Left concatenation indicates that the labels are
used for the initial-states). Then, build the observer and pass the label as before. The
system is IFO if for every state containing Si f where i f ∈ Xs

f , it also contains Nj f

where j f ∈ Xns
f .

Remark 6 When verifying IFO using the trellis-based ISE, Xsp and Xnsp are part of
the construction of the trellis. One can test the property without reconstructing the
trellis-based ISE if Xsp or Xnsp changes. However, for the IFO in Cartesian product
form, final state sets Xs

f , Xns
f are fixed if the GR-based ISE is used; initial state sets

Xs
0, Xns

0 are fixed if the observer is used. While the latter two methods have only
one degree of freedom in varying state sets, their complexity is lower compared to
that of the trellis-based ISE. Using the GR-based ISE or the observer has worst-case
complexity of O(22|X|), while using the trellis-based ISE has worst-case complexity
of O(2|X|2).

6 Joint opacity properties under coordinated architecture

6.1 A coordinated architecture

In this section, we extend the study of the three state-based opacity properties, ISO,
CSO, and IFO, to a coordinated architecture where intruders work as a team to infer
the secret. In the spirit of Debouk et al. (2000), we study a simplified coordinated
architecture where two local intruders communicate with one coordinator, as shown
in Fig. 9. Each local intruder knows the system model. They observe the system
through their individual projection map, generate local state estimates, and then
report the estimates to the coordinator. The coordinator has no knowledge about
the system. It forms the so-called coordinated estimate by taking the intersection
of the local estimates it receives. The communication from the local intruders to
the coordinator is assumed to have no delay. The collaboration is restricted by
the following rules: (1) local intruders do not communicate with each other about
their individual estimates; (2) local intruders have no knowledge of the projection
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Fig. 9 The coordinated architecture

map of one another; and (3) the only collaboration between the two local intruders
is through the coordinator, where the only memory available is to store the most
recent coordinated estimate. The system is said to be jointly opaque if no coordinated
estimate ever reveals the secret information. Because of the restricted collaboration,
the coordinated estimate is no finer than the estimate of a single “system intruder”
that would observe all events that are observable to some intruder. Such coordinated
structures capture situations where a system intruder does not exist and where the
coordination among local intruders is restricted. In the next three sections, we
define and verify the generalized notions of ISO, CSO, and IFO that correspond
to this specific coordinated architecture. As before, the system is modeled as a
deterministic finite-state automaton G = (X, E, f, X0), but this time there are two
sets of observable events, Eo,1 and Eo,2, one for each intruder, with associated natural
projections P1 and P2 and respective sets of unobservable events Euo,1 and Euo,2. We
form the union Eo,1 ∪ Eo,2 = Eo, and keep the notation P for the natural projection
and Euo for set of unobservable events corresponding to Eo.

6.2 Joint-Initial-State Opacity (J-ISO)

We start by proposing a definition of “joint initial state opacity” that is adapted to
the coordinated architecture in Fig. 9.

Definition 7 (Joint-Initial-State Opacity (J-ISO)) Given G, projection maps P1 and
P2, set of secret states XS ⊆ X0, and set of non-secret states XNS ⊆ X0, G is jointly
initial-state opaque under the coordinated architecture if ∀i ∈ XS and ∀t ∈ L(G, i),
∃ j ∈ XNS, ∃t1 ∈ L(G, j), ∃t2 ∈ L(G, j) such that P1(t) = P1(t1) = s1, and P2(t) =
P2(t2) = s2.
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The system G is jointly initial-state opaque (J-ISO) if for every string t from a
secret state i in XS, there are other two strings, t1 and t2, from a common non-
secret state j such that they are observationally equivalent to t to intruders 1 and
2, respectively. The common non-secret initial state j ensures that the coordinated
estimate, formed by the intersection of two local estimates, contains a non-secret
state whenever the real initial state is a secret state. Note that if a system is jointly
initial-state opaque, it must be initial-state opaque for each intruder. However, the
reverse is not true in general.

We use the GR-based initial state estimator to model local intruders, where in-
truder k is represented by Obsk(GR, X), k = 1, 2. In addition, for analysis purposes,
we consider Obs(GR, X) which models the system intruder whose observable event
set is Eo; it is not a real intruder and its role will be explained later.

To verify the J-ISO property, we introduce a test automaton to capture the coordi-
nated estimate. The test automaton is defined as GISO

test := (Q, Eo, f ISO
test , q0). The state

space is Q ⊆ Xobs,R,1 × Xobs,R,2 × Xobs,R × Xobs,R,1∩2, where Xobs,R,1, Xobs,R,2, and
Xobs,R are the state spaces of the corresponding GR-ISE and Xobs,R,1∩2 := {y ∈ 2X :
(∃xk ∈ Xobs,R,k, k = 1, 2)[y = x1 ∩ x2]}. A state in Q is denoted as q = (q1; q2; qs; qc)

and the initial state of GISO
test is q0 = (q10; q20; qs0; q10 ∩ q20) = (X; X; X; X). The

transition function f ISO
test is defined as follows:

f ISO
test ((q1; q2; qs; qc), e)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( fobs,1,R(q1, e); q2; fobs,R(qs, e); fobs,1,R(q1, e) ∩ q2) if e ∈ Eo,1 \ Eo,2

(q1; fobs,2,R(q2, e); fobs,R(qs, e); q1 ∩ fobs,2,R(q2, e)) if e ∈ Eo,2 \ Eo,1

( fobs,1,R(q1, e); fobs,2,R(q2, e); fobs,R(qs, e); fobs,1,R(q1, e) ∩ fobs,2,R(q2, e))

if e ∈ Eo,1 ∩ Eo,2

where e ∈ Eo, fobs,k,R is the transition function of Obsk(GR, X), and fobs,R is the
transition function of Obs(GR, X). Note that the fourth state qc = q1 ∩ q2 does not
affect the behavior of GISO

test , and the dynamics of GISO
test depend only on (q1; q2, qs)

and are equivalent to that of Obs1(GR, X) ‖ Obs2(GR, X) ‖ Obs(GR, X). With
the additional parallel composition with Obs(GR, X), the behavior of the test
automaton is restricted within system’s observable behavior:

L(GISO
test ) : = P−1

o,1

(
L[Obs1(GR, X)]) ∩ P−1

o,2

(
L[Obs2(GR, X)]) ∩ L[Obs(GR, X)]

= L[Obs(GR, X)]
where the inverse projection maps P−1

o,k : E∗
o,k → 2E∗

o , for k = 1, 2, are with respect to
Eo but not E.

We use the following example to show how the system intruder, Obs(GR, X),
restricts the observable behavior of GISO

test .

Example 14 Consider the system in Fig. 10a with Eo,1 = {a, c} and Eo,2 = {b , c}.
To verify J-ISO, we build two GR-ISEs to model intruders 1 and 2, respectively,
as shown in Fig. 10b and c). Then we take parallel composition Obs1(GR, X) ‖
Obs2(GR, X) to synchronize the behavior of these two local intruders, as shown
in Fig. 11a. This parallel composition does not give the correct system behavior;
Obs1(GR, X) ‖ Obs2(GR, X) generates string ab while the system does not gen-
erate its reversed string ba. To restrict the behavior of the test automaton within
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Fig. 10 The DES and its local and system GR-ISEs used in Example 14

valid observable behavior, we do an additional parallel composition with the system
intruder Obs(GR, X) that is shown in Fig. 10d, and obtain the correct GISO

test shown in
Fig. 11b. The resulting GISO

test no longer includes string ab , and generates the system’s
observable behavior L[Obs(GR, X)].

Fig. 11 The GISO
test in Example 14
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The following lemma shows that the coordinated initial state estimate after a string
t ∈ L(G, X) with P(t) = s, denoted by X̂0,coor(s), is captured by GISO

test . We will show
later how to use GISO

test to verify the J-ISO property

Lemma 6 Given G, projection maps P1 and P2, the coordinated initial-state estimate
after a string t ∈ L(G, X) with P(t) = s is captured by the state reached by sR in GISO

test .
Specif ically, X̂0,coor(s) = qc where qc is the fourth element in q = (q1; q2; qs; qc) =
f ISO
test (q0, sR)

Proof Pick any string s ∈ P[L(G, X)] with P(t) = s, P1(s) = s1, and P2(s) = s2. By
Theorem 1, the initial state estimates of the local intruder 1 and 2 are X̂0,1(s1) =
fobs,1,R(X, s1R) and X̂0,2(s2) = fobs,2,R(X, s2R). Thus, the coordinated initial state
estimate is X̂0,coor(s) = X̂0,1(s1) ∩ X̂0,2(s2) = fobs,1,R(X, s1R) ∩ fobs,2,R(X, s2R). On
the other hand, by construction, the state reached by sR in GISO

test is

f ISO
test (q0, sR) = (q1; q2; qs; qc)

= ( fobs,1,R(X, s1R); fobs,2,R(X, s2R); fobs,R(X, sR);
fobs,1,R(X, s1R) ∩ fobs,2,R(X, s2R))

where the fourth element qc is fobs,1,R(X, s1R) ∩ fobs,2,R(X, s2R) = X̂0,coor(s). There-
fore, after a string t ∈ L(G, X) with P(t) = s, the coordinated estimate X̂0,coor(s) is
qc, which is the fourth element of state q = f ISO

test (q0, sR) ��

We now use GISO
test to verify J-ISO.

Theorem 5 G is jointly initial-state opaque if and only if: ∀q = (q1; q2; qs; qc) reach-
able in GISO

test , qc ∩ XS �= ∅ ⇒ qc ∩ XNS �= ∅.

Proof G is J-ISO if and only if X̂0,coor(·) always contains a non-secret state whenever
it contains a secret state. To prove Theorem 5, it is sufficient to prove that the
collection of X̂0,coor(·) is the collection of the fourth element of every reachable
state in GISO

test . By Lemma 6, X̂0,coor(s) is captured by the fourth element of the
state q reached via sR. Since GISO

test is deterministic and L
(
GISO

test

) = L[Obs(GR, X)] =
Rev

(
P[L(G, X)]), every reachable state of GISO

test corresponds to a valid X̂0,coor(·), and
vice-versa. Therefore, the J-ISO property is verified by examining the fourth element
of all reachable states in GISO

test . ��

Example 15 Let us go back to Example 14 and take the secret and non-secret state
sets to be XS = {0} and XNS = X \ XS. The system is initial-state opaque to each
local intruder because no state in Obs1(GR, X) or Obs2(GR, X) contains only the
secret state 0. However, the system is not jointly initial-state opaque. As seen in
Fig. 11b, by collaborating under the coordinated architecture, the team of intruders
generate a coordinated estimate {0} when P(t) = s = bc (sR = cb) has occurred.

We can extend the above verification procedure for J-ISO to the joint versions of
CSO and IFO, by employing the respective estimator in the construction of the test
automaton. These results are presented in the next two sections.
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6.3 Joint-Current-State Opacity(J-CSO)

Definition 8 (Joint-Current-State Opacity(J-CSO)) Given G, projection maps
P1, P2, set of secret states XS ⊆ X, and set of non-secret states XNS ⊆ X.
G is jointly current-state opaque under the coordinated architecture if ∀i ∈ X0

and ∀t ∈ L(G, i) where f (i, t) = x ∈ XS, ∃ j1, j2 ∈ X0, ∃t1 ∈ L(G, j1), ∃t2 ∈ L(G, j2)
such that (i) f ( j1, t1) = f ( j2, t2) = x′ ∈ XNS and (ii)P1(t) = P1(t1) = s1, and P2(t) =
P2(t2) = s2.

The system G is jointly-current-state opaque if for every string t ending at a
secret state x, there are other two strings t1 and t2 ending at a common non-secret
state x′ such that intruder 1 confuses t with t1 and intruder 2 confuses t with t2.
Strings t1 and t2 need not start from the same initial state, but they have to end at
a common non-secret state to ensure that a non-secret state exists in the coordinated
estimate. Similarly to the case of J-ISO, to verify J-CSO, we build a test automaton
GCSO

test := (Q, Eo, f CSO
test , q0) where standard observers are used to model intruders.

Specifically, Obsk(G) models the behavior of local intruder k, and Obs(G) models
the system intruder who observes Eo; the system intruder is to confine the be-
havior of the test automaton. The state space Q ⊆ Xobs,1 × Xobs,2 × Xobs × Xobs,1∩2

where Xobs,1, Xobs,2, and Xobs are state spaces of the corresponding observers and
Xobs,1∩2 = {y ∈ 2X : (∃xk ∈ Xobs,k, k = 1, 2)[y = x1 ∩ x2]}. A state in Q is denoted by
q = (q1; q2; qs; qc), and the initial state is q0 = (X; X; X; X). The transition function
f CSO
test is defined as follows:

f CSO
test ((q1; q2; qs; qc), e)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( fobs,1(q1, e); q2; fobs(qs, e); fobs,1(q1, e) ∩ q2) if e ∈ Eo,1 \ Eo,2

(q1; fobs,2(q2, e); fobs(qs, e); q1 ∩ fobs,2(q2, e)) if e ∈ Eo,2 \ Eo,1

( fobs,1(q1, e); fobs,2(q2, e); fobs(qs, e); fobs,1(q1, e) ∩ fobs,2(q2, e))

if e ∈ Eo,1 ∩ Eo,2

where fobs,k is the transition function of Obsk(G), and fobs is that of Obs(G).

Theorem 6 G is jointly current-state opaque if and only if: ∀q = (q1; q2; qs; qc) reach-
able in GCSO

test , qc ∩ XS �= ∅ ⇒ qc ∩ XNS �= ∅.

Due to the similarity between GCSO
test and GISO

test , we omit the proof.

6.4 Joint-Initial-and-Final-State Opacity(J-IFO)

Definition 9 (Joint-Initial-and-Final-State Opacity(J-IFO)) Given G, projection
maps P1 and P2, set of secret pairs Xsp ⊆ X0 × X, and set of non-secret pairs
Xnsp ⊆ X0 × X, G is jointly initial-and-final-state opaque under the coordinated
architecture if ∀(x0, x f ) ∈ Xsp and ∀t ∈ L(G, x0) where f (x0, t) = x f , ∃(x′

0, x′
f ) ∈

Xnsp, ∃t1, t2 ∈ L(G, x′
0) such that (i) f (x′

0, t1) = f (x′
0, t2) = x′

f ∈ XNS and (ii)P1(t) =
P1(t1) = s1, and P2(t) = P2(t2) = s2.

G is jointly-initial-and-final-state opaque if for every string t that corresponds to a
secret state pair, there are other two strings t1 and t2 corresponding to a common
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non-secret state pair (x′
0, x′

f ) ∈ Xnsp such that intruder 1 confuses t1 with t and
intruder 2 confuses t2 with t. The common non-secret state pair (x′

0, x′
f ) ∈ Xnsp

ensures that a non-secret state pair exists in the coordinated estimate.
To verify J-IFO property, we use a test automaton GIFO

test := (Q, Eo, f IFO
test , q0)

where trellis-ISE are used to model local intruders and the system intruder.
The state space is Q ⊆ M1 × M2 × M × M1∩2, where M1, M2 and M are the
state spaces of corresponding trellis-ISEs, and M1∩2 := {y ∈ 2X2 : (∃mk ∈ Mk, k =
1, 2)[y = m1 ∩ m2]}. A state in Q is denoted as q := (q1, q2, qs, qc). The initial state
of GIFO

test is q0 = (q10; q20; qs0; q10 ∩ q20) where qk0 = {(i, i) : i ∈ X)} ∪ {(i, j) ∈ X2 :
(∃t ∈ E∗

uo,k)[ f (i, t) = j]} and qs0 = {(i, i) : i ∈ X)} ∪ {(i, j) ∈ X2 : (∃t ∈ E∗
uo)[ f (i, t) =

j]}. The transition function f IFO
test is defined as follows:

f IFO
test ((q1; q2; qs; qc), e)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( ftre,1(q1, e); q2; ftre(qc, e); ftre,1(q1, e) ∩ q2)if e ∈ Eo,1 \ Eo,2

(q1; ftre,2(q2, e); ftre(qc, e); q1 ∩ ftre,2(q2, e))if e ∈ Eo,2 \ Eo,1

( ftre,1(q1, e); ftre,2(q2, e); ftre(qc, e); ftre,1(q1, e) ∩ ftre,2(q2, e))

if e ∈ Eo,1 ∩ Eo,2

Fig. 12 The DES and trellises used in Example 16
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Fig. 13 The tester GIFO
test of the system in Example 16

where ftre,k is the transition function of trellis ISE k, and ftre is the transition function
of the system trellis-ISE.

Example 16 Consider J-IFO using system G in Fig. 12a with Xsp = {(0, 2)}, Xnsp =
X2 \ Xsp, Eo,1 = {a, c}, and Eo,2 = {b , c}. We construct trellis-based ISE to model
intruders 1 and 2 and the system intruder, as shown in Fig. 12b, c and d, respectively.
The system is IFO to both local intruders. To verify J-IFO, we build tester GIFO

test ,
shown in Fig. 13, by parallel composing the three trellises and adding the intersection
of the two local estimates as the fourth element. The system is J-IFO because no
states of GIFO

test contains the secret state pair (0, 2) alone.

7 Conclusion

We presented several new results regarding the property of opacity of DES in the
context of centralized and coordinated architectures. Four types of opacity properties
were investigated: language-based opacity, initial-state opacity, current-state opacity,
and initial-and-final-state opacity; the latter one was introduced to capture situations
where the secret simultaneously involves the initial and final states of the system.
We also developed a set of transformation algorithms between the four notions of
opacities and showed that every pair of opacity properties are equivalent through
some transformation. These results unify the treatment of opacity in DES. To verify
the different notions of opacities, we reviewed existing methods and proposed new
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algorithms. Finally, we formulated three new notions of joint opacity in the context of
a coordinated architecture where a set of intruders work as a team to infer the secret.
Verification algorithms were proposed for each notion of joint opacity, leveraging
the centralized tests.

It would be of interest to investigate the extension of recent results on opacity-
enforcing supervisory control, as in Dubreil et al. (2008, 2010) and Saboori and
Hadjicostis (2008) for instance, to the coordinated architecture considered in this
paper. It would also be worthwhile to continue the study of opacity under multi-
ple cooperating intruders but examining other types of coordinated architectures.
Finally, it may be possible to obtain more computationally–efficient algorithms than
those presented in this paper under special structural assumptions on the automaton
model of the system.
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