Prova scritta di Sistemi ad Eventi Discreti del 17 dicembre 2018

Corso di Laurea Magistrale in Ingegneria dell'Automazione

Esercizio 1.

Dati i due alfabeti $E_1 = \{\alpha \beta, \gamma\}$ e $E_2 = \{\theta, \tau\}$ e i due linguaggi:

- $L_1 = \alpha \gamma (\alpha \beta)^* \cup (\gamma \alpha)^* \subset E_1^*$;
- $L_2 = \{\epsilon, \theta, \tau^* \tau \theta^*\} \subset E_2^*;$

costruire due automi G_1 e G_2 che marchino, rispettivamente:

- $\mathcal{L}_m(G_1) = L_1 \cap L_2;$
- $\mathcal{L}_m(G_2) = P_1^{-1}(L_1) \cap L_2;$

Esercizio 2.

Si consideri la rete etichettata riportata in Figura 1, il cui linguaggio generato \mathcal{L} è contenuto in E_1 , con $E_1 = \{a, b\}$. Si proponga una modifica di tale rete in maniera da generare il linguaggio $P_2^{-1}(\mathcal{L})$, con $E_2 = \{a, b, c\}$.

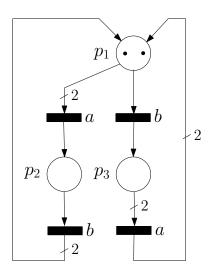


Figura 1: Rete di Petri dell'Esercizio 2.