
 - 2 - IEC DIS 1131-3

FOREWORD

This document is Part 3 of IEC Standard 1131 for programmable controllers. The current status of the
various Parts of IEC 1131 is as follows:

Part 1 - General Information (IS)
Part 2 - Equipment and Test Requirements (IS)
Part 3 - Programming Languages (This Part - DIS)
Part 4 - User Guidelines (CD)
Part 5 - Messaging Service (CD)

This document was prepared by Task Force 3 (Programming Languages) of Working Group 7
(Programmable Controllers) of IEC Subcommittee 65B (formerly SC65A/WG6).

Annexes A, B, C, D, and E of this document are normative. It is anticipated that, as industrial practice
matures, a normative annex H will be developed.

A Type 2 Technical Report (TR) will provide "pre-standardization" guidance for the implementation
and application of the programming languages defined in this document , including such issues as
operating system/program interaction and requirements for programming support environments.

IEC DIS 1131-3 - 3 -

CONTENTS
Clause/subclause Page

1. General ... 9
1.1 Scope .. 9
1.2 Normative references ... 9
1.3 Definitions ... 10
1.4 Overview and general requirements .. 14
1.4.1 Software model .. 15
1.4.2 Communication model ... 15
1.4.3 Programming model .. 19
1.5 Compliance ... 21
1.5.1 Programmable controller systems ... 21
1.5.2 Programs ... 23

2. Common elements ... 24
2.1 Use of printed characters ... 24
2.1.1 Character set ... 24
2.1.2 Identifiers ... 25
2.1.3 Keywords ... 26
2.1.4 Use of spaces ... 26
2.1.5 Comments ... 26
2.2 External representation of data .. 27
2.2.1 Numeric literals .. 27
2.2.2 Character string literals .. 28
2.2.3 Time literals ... 29
2.2.3.1 Duration .. 29
2.2.3.2 Time of day and date .. 30
2.3 Data types ... 30
2.3.1 Elementary data types ... 30
2.3.2 Generic data types .. 32
2.3.3 Derived data types ... 33
2.3.3.1 Declaration ... 33
2.3.3.2 Initialization ... 33
2.3.3.3 Usage .. 36
2.4 Variables ... 37
2.4.1 Representation .. 37
2.4.1.1 Single-element variables .. 37
2.4.1.2 Multi-element variables ... 38
2.4.2 Initialization .. 39
2.4.3 Declaration... 39
2.4.3.1 Type assignment .. 40
2.4.3.2 Initial value assignment .. 42
2.5 Program organization units... 44
2.5.1 Functions ... 44
2.5.1.1 Representation ... 45
2.5.1.2 Execution control .. 46
2.5.1.3 Declaration ... 47
2.5.1.4 Typing, overloading, and type conversion .. 48
2.5.1.5 Standard functions .. 50

 - 4 - IEC DIS 1131-3

CONTENTS (continued)
Clause/subclause Page

2.5.1.5.1 Type conversion functions ... 50
2.5.1.5.2 Numerical functions .. 52
2.5.1.5.3 Bit string functions .. 54
2.5.1.5.4 Selection and comparison functions .. 54
2.5.1.5.5 Character string functions .. 58
2.5.1.5.6 Functions of time data types .. 59
2.5.1.5.7 Functions of enumerated data types .. 59
2.5.2 Function blocks .. 61
2.5.2.1 Representation .. 61
2.5.2.2 Declaration .. 63
2.5.2.3 Standard function blocks ... 70
2.5.2.3.1 Bistable elements ... 70
2.5.2.3.2 Edge detection ... 72
2.5.2.3.3 Counters ... 73
2.5.2.3.4 Timers .. 74
2.5.2.3.5 Communication function blocks ... 76
2.5.3 Programs .. 76
2.6 Sequential Function Chart (SFC) elements .. 77
2.6.1 General ... 77
2.6.2 Steps .. 77
2.6.3 Transitions .. 79
2.6.4 Actions .. 83
2.6.4.1 Declaration .. 83
2.6.4.2 Association with steps ... 86
2.6.4.3 Action blocks ... 87
2.6.4.4 Action qualifiers ... 88
2.6.4.5 Action control ... 88
2.6.5 Rules of evolution ... 93
2.6.6 Compatibility of SFC elements ... 104
2.6.7 Compliance requirements .. 104
2.7 Configuration elements ... 105
2.7.1 Configurations, resources, and access paths .. 107
2.7.2 Tasks .. 110

3. Textual languages ... 118
3.1 Common elements .. 118
3.2 Language IL (Instruction List) .. 119
3.2.1 Instructions ... 119
3.2.2 Operators, modifiers and operands ... 119
3.2.3 Functions and function blocks .. 121
3.3 Language ST (Structured Text) ... 122
3.3.1 Expressions .. 122
3.3.2 Statements ... 124
3.3.2.1 Assignment statements ... 125
3.3.2.2 Function and function block control statements .. 125
3.3.2.3 Selection statements ... 126
3.3.2.4 Iteration statements ... 126

4. Graphic languages .. 128
4.1 Common elements .. 128
4.1.1 Representation of lines and blocks ... 128
4.1.2 Direction of flow in networks .. 128

IEC DIS 1131-3 - 5 -

CONTENTS (continued)
Clause/subclause Page

4.1.3 Evaluation of networks .. 130
4.1.4 Execution control elements ... 132
4.2 Language LD (Ladder Diagram) ... 134
4.2.1 Power rails ... 134
4.2.2 Link elements and states ... 134
4.2.3 Contacts ... 135
4.2.4 Coils ... 135
4.2.5 Functions and function blocks ... 135
4.2.6 Order of network evaluation .. 135
4.3 Language FBD (Function Block Diagram) ... 138
4.3.1 General .. 138
4.3.2 Combination of elements ... 138
4.3.3 Order of network evaluation .. 138

ANNEX A - Specification method for textual languages (normative) .. 139
A.1 Syntax .. 139
A.1.1 Terminal symbols .. 139
A.1.2 Non-terminal symbols ... 139
A.1.3 Production rules ... 140
A.2 Semantics ... 140

ANNEX B - Formal specifications of language elements (normative) ... 141
B.0 Programming model ... 141
B.1 Common elements ... 142
B.1.1 Letters, digits and identifiers .. 142
B.1.2 Constants .. 142
B.1.2.1 Numeric literals ... 142
B.1.2.2 Character strings .. 143
B.1.2.3 Time literals ... 143
B.1.2.3.1 Duration ... 143
B.1.2.3.2 Time of day and date .. 144
B.1.3 Data types .. 144
B.1.3.1 Elementary data types ... 144
B.1.3.2 Generic data types ... 145
B.1.3.3 Derived data types ... 145
B.1.4 Variables ... 146
B.1.4.1 Directly represented variables ... 146
B.1.4.2 Multi-element variables .. 147
B.1.4.3 Declaration and initialization .. 147
B.1.5 Program organization units ... 149
B.1.5.1 Functions .. 149
B.1.5.2 Function blocks .. 150
B.1.5.3 Programs .. 150
B.1.6 Sequential function chart elements ... 151
B.1.7 Configuration elements ... 152
B.2 Language IL (Instruction List) .. 153
B.2.1 Instructions and operands ... 153
B.2.2 Operators .. 153

 - 6 - IEC DIS 1131-3

CONTENTS (continued)
Clause/subclause Page

B.3 Language ST (Structured Text) .. 154
B.3.1 Expressions ... 154
B.3.2 Statements ... 154
B.3.2.1 Assignment statements .. 154
B.3.2.2 Subprogram control statements ... 155
B.3.2.3 Selection statements .. 155
B.3.2.4 Iteration statements .. 155

ANNEX C - Delimiters and Keywords (normative) ... 156

ANNEX D - Implementation-dependent parameters (normative) .. 160

ANNEX E - Error Conditions (normative) ... 162

ANNEX F - Examples (informative) ... 163
F.1 Function WEIGH ... 163
F.2 Function block CMD_MONITOR .. 164
F.3 Function block FWD_REV_MON .. 167
F.4 Function block STACK_INT .. 173
F.5 Function block MIX_2_BRIX ... 178
F.6 Analog signal processing .. 182
F.6.1 Function block LAG1 .. 182
F.6.2 Function block DELAY ... 183
F.6.3 Function block AVERAGE ... 184
F.6.4 Function block INTEGRAL ... 185
F.6.5 Function block DERIVATIVE ... 186
F.6.6 Function block HYSTERESIS .. 186
F.6.7 Function block LIMITS_ALARM ... 187
F.6.8 Structure ANALOG_LIMITS ... 188
F.6.9 Function block ANALOG_MONITOR ... 189
F.6.10 Function block PID .. 190
F.6.11 Function block DIFFEQ ... 191
F.6.12 Function block RAMP .. 192
F.6.13 Function block TRANSFER ... 193
F.7 Program GRAVEL ... 194
F.8 Program AGV .. 203

ANNEX G - Index (informative) .. 207

ANNEX H - Software compliance testing (informative) .. 220

1 - Character set features .. 25
2 - Identifier features .. 25
3 - Comment feature .. 26
4 - Numeric literals ... 27
5 - Character string literal feature ... 28
6 - Two-character combinations in character strings ... 28
7 - Duration literal features ... 29
8 - Date and time of day literals ... 30
9 - Examples of date and time of day literals ... 30
10 - Elementary data types .. 31

IEC DIS 1131-3 - 7 -

CONTENTS (continued)
Clause/subclause Page

11 - Hierarchy of generic data types ... 32
12 - Data type declaration features ... 34
13 - Default initial values ... 34
14 - Data type initial value declaration features .. 35
15 - Location and size prefix features for directly represented variables .. 38
16 - Variable declaration keywords ... 40
17 - Variable type assignment features ... 40
18 - Variable initial value assignment features .. 42
19 - Graphical negation of Boolean signals ... 45
20 - Use of EN input and ENO output ... 47
21 - Typed and overloaded functions .. 49
22 - Type conversion function features ... 51
23 - Standard functions of one numeric variable ... 52
24 - Standard arithmetic functions ... 53
25 - Standard bit shift functions ... 54
26 - Standard bitwise Boolean functions ... 55
27 - Standard selection functions .. 56
28 - Standard comparison functions .. 57
29 - Standard character string functions ... 58
30 - Functions of time data types .. 60
31 - Functions of enumerated data types .. 60
32 - Examples of function block I/O parameter usage .. 62
33 - Function block declaration features ... 65
34 - Standard bistable function blocks .. 71
35 - Standard edge detection function blocks ... 72
36 - Standard counter function blocks ... 73
37 - Standard timer function blocks ... 74
38 - Standard timer function blocks - timing diagrams .. 74
39 - Program declaration features ... 76
40 - Step features .. 78
41 - Transitions and transition conditions .. 80
42 - Declaration of actions ... 84
43 - Step/action association .. 86
44 - Action block features .. 87
45 - Action qualifiers .. 88
46 - Sequence evolution .. 94
47 - Compatible SFC features ... 104
48 - SFC minimal compliance requirements ... 104
49 - Configuration and resource declaration features ... 108
50 - Task features .. 111
51 - Examples of instruction fields ... 119
52 - Instruction List (IL) operators ... 120
53 - Function block invocation features for IL language .. 121
54 - Standard function block input operators for IL language ... 121
56 - ST language statements .. 124
57 - Representation of lines and blocks .. 129
58 - Graphic execution control elements ... 133
59 - Power rails .. 134

 - 8 - IEC DIS 1131-3

CONTENTS (continued)
Clause/subclause Page

60 - Link elements .. 135
61 - Contacts .. 136
62 - Coils .. 137

IEC DIS 1131-3 - 9 -

LIST OF TABLES

Table Page

LIST OF FIGURES

Figure Page

1 - Software model... 16
2 - Communication model .. 17
3 - Combination of programmable controller language elements ... 20
4 - Examples of function usage ... 44
5 - Use of formal parameter names ... 46
6 - Examples of function declarations ... 48
7 - Examples of explicit type conversion with overloaded functions ... 49
8 - Examples of explicit type conversion with typed functions .. 50
9 - Function block instantiation example ... 62
10 - Examples of function block declarations .. 64
11 - Graphical use of function block names as variables .. 66
12 - Examples of use of input/output variables ... 69
13 - Semaphore usage example ... 70
14 - ACTION_CONTROL function block - External interface.. 89
15 - ACTION_CONTROL function block body .. 90
16 - Action control example ... 91
17 - SFC evolution rules .. 100
18 - SFC errors .. 102
19 - Configuration example ... 105
20 - Examples of CONFIGURATION and RESOURCE declaration features 109
21 - Synchronization of function blocks ... 115
22 - EXIT statement example .. 126
23 - Feedback path example ... 131
24 - Boolean OR Examples ... 138

IEC DIS 1131-3 - 10 -

LIST OF TABLES

Table Page

1. General

1.1 Scope

This part of IEC 1131 applies to the printed and displayed representation, using characters of the
ISO/IEC 646 character set, of the programming languages to be used for Programmable Controllers
as defined in Part 1 of IEC 1131. Graphic and semigraphic representation of the language elements
which are defined in this part is allowed, but is not defined in this part.

The functions of program entry, testing, monitoring, operating system, etc., are specified in Part 1 of
IEC 1131.

1.2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute
provisions of this part of IEC 1131. At the time of publication, the editions indicated were valid. All
normative documents are subject to revision, and parties to agreements based on this part of IEC
1131 are encouraged to investigate the possibility of applying the most recent editions of the
normative documents indicated below. Members of IEC and ISO maintain registers of currently valid
International Standards.

IEC 50: International Electrotechnical Vocabulary (IEV)

IEC 559: 1989, Binary floating-point arithmetic for microprocessors systems

IEC 617-12: 1991, Graphical symbols for diagrams, Part 12: Binary logic elements

IEC 617-13: 1978, Graphical symbols for diagrams, Part 13: Analogue elements

IEC 848: 1988, Preparation of function charts for control systems

ISO/AFNOR: 1989, Dictionary of computer science, ISBN 2-12-4869111-6

ISO/IEC 646: 1991, Information technology - ISO 7-bit coded character set for information
processing interchange

ISO 8601:1988, Data elements and Interchange formats - Information interchange -
Representations of dates and times

ISO 7185: 1990, Information technology - Programming languages - Pascal

ISO 7498: 1984, Information processing systems - Open systems interconnection - Basic
reference model

IEC DIS 1131-3 - 11 -

LIST OF TABLES (continued)

Table Page

1.3 Definitions

For the purposes of this part of IEC 1131, the following definitions apply. Definitions applying to all
parts of IEC 1131 are given in part 1.

NOTES

1 Terms defined in this subclause are italicized where they appear in the bodies of definitions.

2 The notation "(ISO)" following a definition indicates that the definition is taken from the
ISO/AFNOR Dictionary of computer science.

3 The ISO/AFNOR Dictionary of computer science and the International Electrotechnical
Vocabulary should be consulted for terms not defined in this standard.

1.3.1. absolute time: The combination of time of day and date information.

1.3.2. access path: The association of a symbolic name with a variable for the purpose of open
communication.

1.3.3. action: A Boolean variable, or a collection of operations to be performed, together with an
associated control structure, as specified in 2.6.4.

1.3.4. action block: A graphical language element which utilizes a Boolean input variable to
determine the value of a Boolean output variable or the enabling condition for an action, according to
a predetermined control structure as defined in 2.6.4.5.

1.3.5. aggregate: A structured collection of data objects forming a data type. (ISO)

1.3.6. argument: Synonymous with input parameter or output parameter.

1.3.7. array: An aggregate that consists of data objects, with identical attributes, each of which may be
uniquely referenced by subscripting. (ISO)

1.3.8. assignment: A mechanism to give a value to a variable or to an aggregate. (ISO)

1.3.9. based number: A number represented in a specified base other than ten.

1.3.10. bistable function block: A function block with two stable states controlled by one or more
inputs.

1.3.11. bit string: A data element consisting of one or more bits.

1.3.12. body: That portion of a program organization unit which specifies the operations to be
performed on the declared operands of the program organization unit when its execution is invoked.

1.3.13. call: A language construct for invoking the execution of a function or function block.

1.3.14. character string: An aggregate that consists of an ordered sequence of characters.

1.3.15. comment: A language construct for the inclusion of text in a program and having no impact on
the execution of the program. (ISO)

 - 12 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

1.3.16. compile: To translate a program organization unit or data type specification into its machine
language equivalent or an intermediate form.

1.3.17. configuration: A language element corresponding to a programmable controller system as
defined in IEC 1131-1.

1.3.18. counter function block: A function block which accumulates a value for the number of
changes sensed at one or more specified inputs.

1.3.19. data type: A set of values together with a set of permitted operations. (ISO)

1.3.20. date and time: The date within the year and the time of day, represented according to ISO
8601.

1.3.21. declaration: The mechanism for establishing the definition of a language element. A
declaration normally involves attaching an identifier to the language element, and allocating attributes
such as data types and algorithms to it.

1.3.22. delimiter: A character or combination of characters used to separate program language
elements.

1.3.23. direct representation: A means of representing a variable in a programmable controller
program from which a manufacturer-specified correspondence to a physical or logical location may be
determined directly.

1.3.24. double word: A data element containing 32 bits.

1.3.25. evaluation: The process of establishing a value for an expression or a function, or for the
outputs of a network or function block, during program execution.

1.3.26. execution control element: A language element which controls the flow of program
execution.

1.3.27. falling edge: The change from 1 to 0 of a Boolean variable.

1.3.28. function: A program organization unit which, when executed, yields exactly one data element
(which may be multi-valued, e.g., an array or structure), and whose invocation can be used in textual
languages as an operand in an expression.

1.3.29. function block instance (function block): An instance of a function block type.

1.3.30. function block type: A programmable controller programming language element consisting
of: (i) the definition of a data structure partitioned into input, output, and internal variables; and (ii) a set
of operations to be performed upon the elements of the data structure when an instance of the
function block type is invoked.

1.3.31. function block diagram: One or more networks of graphically represented functions, function
blocks, data elements, labels, and connective elements.

1.3.32. generic data type: A data type which represents more than one type of data, as specified in
2.3.2.

1.3.33. global scope: Scope of a declaration applying to all program organization units within a
resource or configuration.

IEC DIS 1131-3 - 13 -

LIST OF TABLES (continued)

Table Page

1.3.34. global variable: A variable whose scope is global.

1.3.35. hierarchical addressing: The direct representation of a data element as a member of a
physical or logical hierarchy, e.g., a point within a module which is contained in a rack, which in turn is
contained in a cubicle, etc.

1.3.36. identifier: A combination of letters, numbers, and underline characters, as specified in 2.1.2,
which begins with a letter or underline and which names a language element.

1.3.37. initial value: The value assigned to a variable at system start-up.

1.3.38. input parameter (input): A parameter which is used to supply an argument to a program
organization unit.

1.3.39. instance: An individual, named copy of the data structure associated with a function block
type or program type, which persists from one invocation of the associated operations to the next.

1.3.40. instance name: An identifier associated with a specific instance.

1.3.41. instantiation: The creation of an instance.

1.3.42. integer literal: A literal which directly represents a value of type SINT, INT, DINT, LINT,
BOOL, BYTE, WORD, DWORD, or LWORD, as defined in 2.3.1.

1.3.43. invocation: The process of initiating the execution of the operations specified in a program
organization unit.

1.3.44. keyword: A lexical unit that characterizes a language element, e.g., "IF".

1.3.45. label: A language construction naming an instruction, network, or group of networks, and
including an identifier.

1.3.46. language element: Any item identified by a symbol on the left-hand side of a production rule
in the formal specification given in annex B of this part of IEC 1131.

1.3.47. literal: A lexical unit that directly represents a value. (ISO)

1.3.48. local scope: The scope of a declaration or label applying only to the program organization unit
in which the declaration or label appears.

1.3.49. logical location: The location of a hierarchically addressed variable in a schema which may
or may not bear any relation to the physical structure of the programmable controller's inputs, outputs,
and memory.

1.3.50. long real: A real number represented in a long word.

1.3.51. long word: A 64-bit data element.

1.3.52. memory (user data storage): A functional unit to which the user program can store data and
from which it can retrieve the stored data.

1.3.53. named element: An element of a structure which is named by its associated identifier.

 - 14 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

1.3.54. off-delay (on-delay) timer function block: A function block which delays the falling (rising)
edge of a Boolean input by a specified duration.

1.3.55. operand: A language element on which an operation is performed.

1.3.56. operator: A symbol that represents the action to be performed in an operation.

1.3.57. output parameter (output): A parameter which is used to return the result(s) of the evaluation
of a program organization unit.

1.3.58. overloaded: With respect to an operation or function, capable of operating on data of different
types, as specified in 2.5.1.4.

1.3.59. power flow: The symbolic flow of electrical power in a ladder diagram, used to denote the
progression of a logic solving algorithm.

1.3.60. program (verb): To design, write, and test user programs.

1.3.61. program organization unit: A function, function block, or program.
NOTE - This term may refer to either a type or an instance.

1.3.62. real literal: A literal representing data of type REAL or LREAL.

1.3.63. resource: A language element corresponding to a "signal processing function" and its "man-
machine interface" and "sensor and actuator interface functions", if any, as defined in IEC 1131-1.

1.3.64. retentive data: Data stored in such a way that its value remains unchanged after a power
down / power up sequence.

1.3.65. return: A language construction within a program organization unit designating an end to the
execution sequences in the unit.

1.3.66. rising edge: The change from 0 to 1 of a Boolean variable.

1.3.67. scope: That portion of a language element within which a declaration or label applies.

1.3.68. semantics: The relationships between the symbolic elements of a programming language and
their meanings, interpretation and use.

1.3.69. semigraphic representation: Representation of graphic information by the use of a limited
set of characters.

1.3.70. single data element: A data element consisting of a single value.

1.3.71. step: A situation in which the behavior of a program organization unit with respect to its inputs
and outputs follows a set of rules defined by the associated actions of the step.

1.3.72. structured data type: An aggregate data type which has been declared using a STRUCT or
FUNCTION_BLOCK declaration.

1.3.73. subscripting: A mechanism for referencing an array element by means of an array reference
and one or more expressions that, when evaluated, denote the position of the element.

1.3.74. symbolic representation: The use of identifiers to name variables.

IEC DIS 1131-3 - 15 -

LIST OF TABLES (continued)

Table Page

1.3.75. task: An execution control element providing for periodic or triggered execution of a group of
associated program organization units.

1.3.76. time literal: A literal representing data of type TIME, DATE, TIME_OF_DAY, or
DATE_AND_TIME.

1.3.77. transition: The condition whereby control passes from one or more predecessor steps to one
or more successor steps along a directed link.

1.3.78. unsigned integer: An integer literal not containing a leading plus (+) or minus (-) sign.

1.3.79. wired OR: A construction for achieving the Boolean OR function in the LD language by
connecting together the right ends of horizontal connectives with vertical connectives.

1.3.1. 1.3.80. single-element variable: A variable which represents a single data element.

1.4 Overview and general requirements

This part of IEC 1131 specifies the syntax and semantics of a unified suite of programming languages
for programmable controllers (PCs). These consist of two textual languages, IL (Instruction List) and
ST (Structured Text), and two graphical languages, LD (Ladder Diagram) and FBD (Function Block
Diagram).

Sequential Function Chart (SFC) elements are defined for structuring the internal organization of
programmable controller programs and function blocks. Also, configuration elements are defined
which support the installation of programmable controller programs into programmable controller
systems.

In addition, features are defined which facilitate communication among programmable controllers and
other components of automated systems.

The programming language elements defined in this part may be used in an interactive programming
environment. The specification of such environments is beyond the scope of this part; however, such
an environment shall be capable of producing textual or graphic program documentation in the
formats specified in this part.

The material in this part is arranged in "bottom-up" fashion, that is, simpler language elements are
presented first, in order to minimize forward references in the text. The remainder of this subclause
provides an overview of the material presented in this part and incorporates some general
requirements.

1.4.1 Software model

The basic high-level language elements and their interrelationships are illustrated in figure 1. These
consist of elements which are programmed using the languages defined in this part, that is, programs
and function blocks; and configuration elements, namely, configurations, resources, tasks, global
variables, and access paths, which support the installation of programmable controller programs into
programmable controller systems.

 - 16 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

CONFIGURATION

RESOURCE

TASK TASK

PROGRAM PROGRAM

FB FB

RESOURCE

TASK TASK

PROGRAM PROGRAM

FB FB

GLOBAL and DIRECTLY

ACCESS PATHS

Execution control path

Variable access paths

FB Function block

Variable

or

REPRESENTED VARIABLES

Communication function (See IEC 1131-5)

NOTES

1 This figure is illustrative only. The graphical representation is not normative.

2 In a configuration with a single resource, the resource need not be explicitly represented.

Figure 1 - Software model

A configuration is the language element which corresponds to a programmable controller system as
defined in IEC 1131-1. A resource corresponds to a "signal processing function" and its "man-machine
interface" and "sensor and actuator interface" functions (if any) as defined in IEC 1131-1. A
configuration contains one or more resources, each of which contains one or more programs
executed under the control of zero or more tasks. A program may contain zero or more function blocks
or other language elements as defined in this part.

IEC DIS 1131-3 - 17 -

LIST OF TABLES (continued)

Table Page

Configurations and resources can be started and stopped via the "operator interface", "programming,
testing, and monitoring", or "operating system" functions defined in IEC 1131-1. The starting of a
configuration shall cause the initialization of its global variables according to the rules given in 2.4.2,
followed by the starting of all the resources in the configuration. The starting of a resource shall cause
the initialization of all the variables in the resource, followed by the enabling of all the tasks in the
resource. The stopping of a resource shall cause the disabling of all its tasks, while the stopping of a
configuration shall cause the stopping of all its resources. Mechanisms for the control of tasks are
defined in 2.7.2, while mechanisms for the starting and stopping of configurations and resources via
communication functions are defined in IEC 1131-5.

Programs, resources, global variables, access paths (and their corresponding access privileges), and
configurations can be loaded or deleted by the "communication function" defined in IEC 1131-1. The
loading or deletion of a configuration or resource shall be equivalent to the loading or deletion of all
the elements it contains.

Access paths and their corresponding access privileges are defined in 2.7.1.

The mapping of the language elements defined in this subclause on to communication objects is
defined in IEC 1131-5.

1.4.2 Communication model

Figure 2 illustrates the ways that values of variables can be communicated among software elements.

As shown in figure 2a, variable values within a program can be communicated directly by connection
of the output of one program element to the input of another. This connection is shown explicitly in
graphical languages and implicitly in textual languages.

Variable values can be communicated between programs in the same configuration via global
variables such as the variable x illustrated in figure 2b. These variables shall be declared as GLOBAL
in the configuration, and as EXTERNAL in the programs, as specified in 2.4.3.

As illustrated in figure 2c, the values of variables can be communicated between different parts of a
program, between programs in the same or different configurations, or between a programmable
controller program and a non-programmable controller system, using the communication function
blocks defined in IEC 1131-5 and described in 2.5.2.3.5. In addition, programmable controllers or non-
programmable controller systems can transfer data which is made available by access paths, as
illustrated in figure 2d, using the mechanisms defined in IEC 1131-5.

PROGRAM A

FB_X
a

FB1
FB_Y

b

FB2

 - 18 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Figure 2a - Data flow connection within a program

PROGRAM A

FB_X
a

FB1

PROGRAM B

FB_Y
b

FB2

x x
VAR_GLOBAL

x: BOOL;
END_VAR

VAR_EXTERNAL
x: BOOL;

END_VAR

VAR_EXTERNAL
x: BOOL;

END_VAR

CONFIGURATION C

Figure 2b - Communication via GLOBAL variables

PROGRAM A

FB_X
FB1

CONFIGURATION C

SEND

send1

a

SD1
FB_Y

b

FB2

CONFIGURATION D

RCV

rcv1

RD1

PROGRAM B

Figure 2c - Communication function blocks

IEC DIS 1131-3 - 19 -

LIST OF TABLES (continued)

Table Page

PROGRAM A

FB_X
FB1

a Z

VAR_ACCESS
CSX: P1.Z : REAL READ_ONLY;

PROGRAM B

FB_Y
b

FB2

CONFIGURATION C CONFIGURATION D

READ
TO_FB2

RD1
'CSX' VAR_1

P1

Figure 2d - Communication via access paths

NOTES

1 This figure is illustrative only. The graphical representation is not normative.

2 In these examples, configurations c and d are each considered to have a single resource.

3 The details of the communication function blocks are not shown in this figure. See 2.5.2.3.5
and IEC 1131-5.

4 As specified in 2.7, access paths can be declared on directly represented variables, global
variables, or program input, output, or internal variables.

5 IEC 1131-5 specifies the means by which both PC and non-PC systems can use access
paths for reading and writing of variables.

Figure 2 - Communication model

 - 20 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

1.4.3 Programming model

The elements of programmable controller programming languages, and the subclauses in which they
appear in this part, are classified as follows:

Data types (2.3)
Program organization units (2.5)

Functions (2.5.1)
Function blocks (2.5.2)
Programs (2.5.3)

Sequential Function Chart (SFC) elements (2.6)
Configuration elements (2.7)

Global variables (2.7.1)
Resources (2.7.1)
Tasks (2.7.2)
Access paths (2.7.1)

As shown in figure 3, the combination of these elements shall obey the following rules:

1) Derived data types shall be declared as specified in 2.3.3, using the standard data types
specified in 2.3.1 and 2.3.2 and any previously derived data types.

2) Derived functions can be declared as specified in 2.5.1.3, using standard or derived data types,
the standard functions defined in 2.5.1.5, and any previously derived functions. This declaration
shall use the mechanisms defined for the IL, ST, LD or FBD language.

3) Derived function blocks can be declared as specified in 2.5.2.2, using standard or derived data
types and functions, the standard function blocks defined in 2.5.2.3, and any previously derived
function blocks. This declaration shall use the mechanisms defined for the IL, ST, LD, or FBD
language, and can include Sequential Function Chart (SFC) elements as defined in 2.6.

4) A program shall be declared as specified in 2.5.3, using standard or derived data types,
functions, and function blocks. This declaration shall use the mechanisms defined for the IL, ST,
LD, or FBD language, and can include Sequential Function Chart (SFC) elements as defined in
2.6.

5) Programs can be combined into configurations using the elements defined in 2.7, that is, global
variables, resources, tasks, and access paths.

Reference to "previously derived" data types, functions, and function blocks in the above rules is
intended to imply that once such a derived element has been declared, its definition is available, e.g.,
in a "library" of derived elements, for use in further derivations. Therefore, the declaration of a derived
element type shall not be contained within the declaration of another derived element type.

A programming language other than one of those defined in this standard may be used in the
declaration of a function or function block. The means by which a user program written in one of the
languages defined in this standard invokes the execution of, and accesses the data associated with,
such a derived function or function block shall be as defined in this standard.

IEC DIS 1131-3 - 21 -

LIST OF TABLES (continued)

Table Page

LIBRARY ELEMENTS PRODUCTIONS DERIVED ELEMENTS

DATA TYPES
Standard (2.3.1, 2.3.2)

Derived

FUNCTIONS
Standard (2.5.1.5)

Derived

FUNCTION BLOCKS
Standard (2.5.2.3)

Derived

PROGRAMS

RESOURCES

Declaration (2.5.1.3)
IL, ST, LD, FBD

OTHERS

Declaration (2.5.2.2)
IL, ST, LD, FBD

SFC elements (2.6)
OTHERS

Declaration (2.5.3)
IL, ST, LD, FBD

SFC elements (2.6)

Tasks (2.7.2)

Declaration (2.7.1)
Global variables (2.7.1)

Access paths (2.7.1)

Derived
data
types

Derived
functions

Derived
function
blocks

PROGRAM

CONFIGURATION

Declaration (2.3.3)

(1)

(2)

(3)

(4)

(5)(2.5.3)

(2.7.1)

NOTES

1 The parenthesized numbers (1) to (5) refer to corresponding paragraphs in 1.4.3.

2 Data types are used in all productions. For clarity, the corresponding linkages are omitted in
this figure.

Figure 3 - Combination of programmable controller language elements
LD - Ladder Diagram (4.2)
FBD - Function Block Diagram (4.3)
IL - Instruction List (3.2)
ST - Structured Text (3.3)
OTHERS - Other programming languages (1.4.3)

 - 22 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

1.5 Compliance

This subclause defines the requirements which shall be met by programmable controller systems and
programs which claim compliance with this part of IEC 1131.

1.5.1 Programmable controller systems

A programmable controller system, as defined in IEC 1131-1, which claims to comply, wholly or
partially, with the requirements of this part of IEC 1131 shall do so only as described below.

A compliance statement shall be included in the documentation accompanying the system, or shall be
produced by the system itself. The form of the compliance statement shall be:

"This system complies with the requirements of IEC 1131-3, for the following language
features:",

followed by a set of compliance tables in the following format:

Table title

Table No. Feature No. Features description

...

Table and feature numbers and descriptions are to be taken from the tables given in the relevant
subclauses of this part of IEC 1131. Table titles are to be taken from the following table.

Table title For features in:
Common elements Clause 2

Common textual elements Subclause 3.1

IL language elements Subclauses 3.2.1 to 3.2.3

ST language elements Subclauses 3.3.1 to 3.3.2.4

Common graphical elements Subclauses 4.1 to 4.1.4

LD language elements Subclauses 4.2 to 4.2.6

FBD language elements Subclauses 4.3 to 4.3.3

A programmable controller system complying with the requirements of this part with respect to a
language defined in this part:

a) shall not require the inclusion of substitute or additional language elements in order to
accomplish any of the features specified in this part;

b) shall be accompanied by a document that specifies the values of all implementation-
dependent parameters as listed in annex D;

IEC DIS 1131-3 - 23 -

LIST OF TABLES (continued)

Table Page

c) shall be able to determine whether or not a user's language element violates any
requirement of this part, where such a violation is not designated an error in annex E, and
report the result of this determination to the user. In the case where the system does not
examine the whole program organization unit, the user shall be notified that the
determination is incomplete whenever no violations have been detected in the portion of the
program organization unit examined;

 - 24 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

d) shall treat each user violation that is designated an error in annex E in at least one of the
following ways:

1) there shall be a statement in an accompanying document that the error is not
reported;

2) the system shall report during preparation of the program for execution that an
occurrence of that error is possible;

3) the system shall report the error during preparation of the program for execution;

4) the system shall report the error during execution of the program and initiate
appropriate system- or user-defined error handling procedures;

and if any violations that are designated as errors are treated in the manner described in
d)1) above, then a note referencing each such treatment shall appear in a separate section
of the accompanying document;

e) shall be accompanied by a document that separately describes any features accepted by
the system that are prohibited or not specified in this part. Such features shall be described
as being "extensions to the <language> language as defined in IEC 1131-3";

f) shall be able to process in a manner similar to that specified for errors any use of any such
extension;

g) shall be able to process in a manner similar to that specified for errors any use of one of the
implementation-dependent features specified in annex D;

h) shall not use any of the standard data type, function or function block names defined in this
part for manufacturer-defined features whose functionality differs from that described in this
part;

i) shall be accompanied by a document defining, in the form specified in annex A, the formal
syntax of all textual language elements supported by the system.

The phrase "be able to" is used in this subclause to permit the implementation of a software switch
with which the user may control the reporting of errors.

In cases where compilation or program entry is aborted due to some limitation of tables, etc., an
incomplete determination of the kind "no violations were detected, but the examination is incomplete"
will satisfy the requirements of this subclause.

IEC DIS 1131-3 - 25 -

LIST OF TABLES (continued)

Table Page

1.5.2 Programs

A programmable controller program complying with the requirements of IEC 1131-3:

a) shall use only those features specified in this part for the particular language used;

b) shall not use any features identified as extensions to the language;

c) shall not rely on any particular interpretation of implementation-dependent features.

The results produced by a complying program shall be the same when processed by any complying
system which supports the features used by the program, except as these results are influenced by
program execution timing, the use of implementation-dependent features (as listed in annex D) in the
program, and the execution of error handling procedures.

 - 26 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2. Common elements

This clause defines textual and graphic elements which are common to all the programmable
controller programming languages specified in this Part of IEC 1131.

2.1 Use of printed characters

2.1.1 Character set

Textual languages and textual elements of graphic languages shall be represented in terms of the
"Basic code table" of the ISO/IEC 646 character set.

The encoding of characters from national or extended (8-bit) character sets shall be consistent with
ISO/IEC 646.

The required character set shown as feature 1 in table 1 consists of all the characters in columns 3 to
7 of the "Basic code table" given as table 1 in ISO/IEC 646, except for lower-case letters and those
character positions which are reserved or optionally available for use in national character sets.

The manufacturer shall support one option (a or b) for each of features (3a,b) to (6a,b) of table 1,
according to the following rules:

- The "pound sign" (£) shall be used in place of the "number sign" (#) when the former occupies
character position 2/3 of a national implementation of the ISO/IEC 646 character set.

- The "currency sign" shall be used in place of the "dollar sign" ($) when the former occupies
character position 2/4 of a national implementation of the ISO/IEC 646 character set.

- When the 7/12 character position in the ISO/IEC 646 character set is used by another character
in a national set, the "exclamation mark" (!) at position 2/1 shall be used to represent vertical
lines.

- For delimitation of subscripts, the left and right parentheses "()" shall be used in place of the left
and right brackets "[]" when the latter occupy character positions of a national implementation
of the ISO/IEC 646 character set.

NOTE - The use of characters from national character sets is a typical extension of this
standard.

IEC DIS 1131-3 - 27 -

LIST OF TABLES (continued)

Table Page

Table 1 - Character set features

No. Description

1 Required character set
(see 2.1.1)

2 Lower case characters
3a Number sign (#) OR
3b Pound sign (£)
4a Dollar sign ($) OR
4b Currency sign
5a
5b

Vertical bar (|) OR
Exclamation mark (!)

6a
6b

Subscript delimiters:
Left and right brackets "[]" OR
Left and right parentheses "()"

NOTE - When lower-case letters (feature 2) are supported, the case of letters
shall not be significant in language elements (except within terminal symbols as
defined in annexes A and B, comments as defined in 2.1.5, string literals as
defined in 2.2.2, and variables of type STRING as defined in 2.3.1), e.g., the
identifiers "abcd", "ABCD", and "aBCd" shall be interpreted identically.

2.1.2 Identifiers

An identifier is a string of letters, digits, and underline characters which shall begin with a letter or
underline character.

Underlines shall be significant in identifiers, e.g., "A_BCD" and "AB_CD" shall be interpreted as
different identifiers. Multiple leading or multiple embedded underlines are not allowed.

Identifiers shall not contain imbedded space (SP) characters.

At least six characters of uniqueness shall be supported in all systems which support the use of
identifiers, e.g., "ABCDE1" shall be interpreted as different from "ABCDE2" in all such systems.

Identifier features and examples are shown in table 2.

Table 2 - Identifier features

No. Feature description Examples

1 Upper case and numbers IW215 IW215Z QX75 IDENT

2 Upper and lower case, numbers,
embedded underlines

All the above plus:
LIM_SW_5 LimSw5 abcd ab_Cd

 - 28 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

3 Upper and lower case, numbers,
leading or embedded underlines

All the above plus: _MAIN _12V7

IEC DIS 1131-3 - 29 -

LIST OF TABLES (continued)

Table Page

2.1.3 Keywords

Keywords are unique combinations of characters utilized as individual syntactic elements as defined in
annex B. All keywords used in this part are listed in annex C. Keywords shall not contain imbedded
spaces. The keywords listed in annex C shall not be used for any other purpose, e.g., variable names
or extensions as defined in 1.5.1.

NOTE - National standards organizations can publish tables of translations of the keywords
given in annex C.

2.1.4 Use of spaces

The user shall be allowed to insert one or more spaces (code position 2/0 in the ISO/IEC 646
character set) anywhere in the text of programmable controller programs except within keywords,
literals, identifiers, directly represented variables as described in subclause 2.4.1.1, or delimiter
combinations (e.g., for comments as defined below).

2.1.5 Comments

User comments shall be delimited at the beginning and end by the special character combinations "(*"
and "*)", respectively, as shown in table 3. Except in the IL language as defined in 3.2, comments
shall be permitted anywhere in the program where spaces are allowed, except within character string
literals as defined in 2.2.2. Comments shall have no syntactic or semantic significance in any of the
languages defined in this part.

Nested comments are not allowed, e.g., (* (* NESTED *) *).

Table 3 - Comment feature

No. Feature description Examples

1

Comments

(*****************************)
(* A framed comment *)
(*****************************)

2.2 External representation of data

External representations of data in the various programmable controller programming languages shall
consist of numeric literals, character strings, and time literals.

2.2.1 Numeric literals

There are two classes of numeric literals: integer literals and real literals. A numeric literal is defined
as a decimal number or a based number. The maximum number of digits for each kind of numeric
literal shall be sufficient to express the entire range and precision of values of all the data types which
are represented by the literal in a given implementation.

 - 30 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Single underline characters (_) inserted between the digits of a numeric literal shall not be significant.
No other use of underline characters in numeric literals is allowed.

Decimal literals shall be represented in conventional decimal notation. Real literals shall be
distinguished by the presence of a decimal point. An exponent indicates the integer power of ten by
which the preceding number is to be multiplied to obtain the value represented. Decimal literals and
their exponents can contain a preceding sign (+ or -).

Integer literals can also be represented in base 2, 8, or 16. The base shall be in decimal notation. For
base 16, an extended set of digits consisting of the letters A through F shall be used, with the
conventional significance of decimal 10 through 15, respectively. Based numbers shall not contain a
leading sign (+ or -).

Boolean data shall be represented by integer literals with the value zero (0) or one (1), or the
keywords FALSE or TRUE, respectively.

Numeric literal features and examples are shown in table 4.

Table 4 - Numeric literals

No. Feature description Examples

1 Integer literals -12 0 123_456 +986

2 Real literals -12.0 0.0 0.4560 3.14159_26

3

Real literals with exponents

-1.34E-12 or -1.34e-12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

4 Base 2 literals 2#1111_1111 (255 decimal)
2#1110_0000 (240 decimal)

5 Base 8 literals 8#377 (255 decimal)
8#340 (240 decimal)

6 Base 16 literals 16#FF or 16#ff (255 decimal)
16#E0 or 16#e0 (240 decimal)

7 Boolean zero and one 0 1

8 Boolean FALSE and TRUE FALSE TRUE
NOTE - The keywords FALSE and TRUE correspond to Boolean values of 0 and 1,
respectively.

2.2.2 Character string literals

A character string literal is a sequence of zero or more characters prefixed and terminated by the
single quote character ('). In character strings, the three-character combination of the dollar sign ($)
followed by two hexadecimal digits shall be interpreted as the hexadecimal representation of the eight-
bit character code, as shown in table 5. Additionally, two-character combinations beginning with the
dollar sign shall be interpreted as shown in table 6 when they occur in character strings.

IEC DIS 1131-3 - 31 -

LIST OF TABLES (continued)

Table Page

Table 5 - Character string literal feature

No. Example Explanation

1 '' Empty string (length zero)

 'A' String of length one containing the single character A

 ' ' String of length one containing the "space" character

 '$'' String of length one containing the "single quote" character

 'RL'
'$0D$0A'

Strings of length two containing CR and LF characters

 '$$1.00' String of length five which would print as "$1.00"

Table 6 - Two-character combinations in character strings

No. Combination Interpretation when printed

2 $$ Dollar sign

3 $' Single quote

4 $L or $l Line feed

5 $N or $n Newline

6 $P or $p Form feed (page)

7 $R or $r Carriage return

8 $T or $t Tab
NOTE - The "newline" character provides an implementation-independent means of defining
the end of a line of data for both physical and file I/O; for printing, the effect is that of ending a
line of data and resuming printing at the beginning of the next line.

2.2.3 Time literals

The need to provide external representations for two distinct types of time-related data is recognized:
duration data for measuring or controlling the elapsed time of a control event, and time of day data
(which may also include date information) for synchronizing the beginning or end of a control event to
an absolute time reference.

Duration and time of day literals shall be delimited on the left by the keywords defined in 2.2.3.1 and
2.2.3.2.

 - 32 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.2.3.1 Duration

Duration data shall be delimited on the left by the keyword T#, TIME#, t#, or time#. The
representation of duration data in terms of days, hours, minutes, seconds, and milliseconds, or any
combination thereof, shall be supported as shown in table 7. The least significant time unit can be
written in real notation without exponent.

The units of duration literals can be separated by underline characters.

"Overflow" of the most significant unit of a duration literal is permitted, e.g., the notation T#25h_15m is
permitted.

Time units, e.g., seconds, milliseconds, etc., can be represented in upper- or lower- case letters.

Table 7 - Duration literal features

No. Feature description Examples

1a

Duration literals without underlines:
 short prefix

T#14ms T#-14ms T#14.7s T#14.7m
T#14.7h t#14.7d t#25h15m
t#5d14h12m18s3.5ms

1b long prefix TIME#14ms TIME#-14ms time#14.7s

2a

Duration literals with underlines:
 short prefix

t#25h_15m t#5d_14h_12m_18s_3.5ms

2b long prefix TIME#25h_15m
time#5d_14h_12m_18s_3.5ms

2.2.3.2 Time of day and date

Prefix keywords for time of day and date literals shall be as shown in table 8. As illustrated in table 9,
representation of time-of-day and date information shall be as specified in ISO 8601.

Table 8 - Date and time of day literals

No. Feature description Prefix Keyword

1 Date literals
(long prefix)

DATE#

2 Date literals
(short prefix)

D#

3 Time of day literals
(long prefix)

TIME_OF_DAY#

4 Time of day literals
(short prefix)

TOD#

5 Date and time literals
(long prefix)

DATE_AND_TIME#

IEC DIS 1131-3 - 33 -

LIST OF TABLES (continued)

Table Page

6 Date and time literals
(short prefix)

DT#

 - 34 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 9 - Examples of date and time of day literals

Long prefix notation Short prefix notation

DATE#1984-06-25
date#1984-06-25

D#1984-06-25
d#1984-06-25

TIME_OF_DAY#15:36:55.36
time_of_day#15:36:55.36

TOD#15:36:55.36
tod#15:36:55.36

DATE_AND_TIME#1984-06-25-15:36:55.36
date_and_time#1984-06-25-15:36:55.36

DT#1984-06-25-15:36:55.36
dt#1984-06-25-15:36:55.36

2.3 Data types

A number of elementary (pre-defined) data types are recognized by this standard. Additionally,
generic data types are defined for use in the definition of overloaded functions (see 2.5.1.4). A
mechanism for the user or manufacturer to specify additional data types is also defined.

2.3.1 Elementary data types

The elementary data types, keyword for each data type, number of bits per data element, and range
of values for each elementary data type shall be as shown in table 10.

IEC DIS 1131-3 - 35 -

LIST OF TABLES (continued)

Table Page

Table 10 - Elementary data types

No. Keyword Data type Bits Range

1 BOOL Boolean 1 Note 8

2 SINT Short integer 8 Note 2

3 INT Integer 16 Note 2

4 DINT Double integer 32 Note 2

5 LINT Long integer 64 Note 2

6 USINT Unsigned short integer 8 Note 3

7 UINT Unsigned integer 16 Note 3

8 UDINT Unsigned double integer 32 Note 3

9 ULINT Unsigned long integer 64 Note 3

10 REAL Real numbers 32 Note 4

11 LREAL Long reals 64 Note 5

12 TIME Duration Note 1 Note 6

13 DATE Date (only) Note 1 Note 6

14 TIME_OF_DAY or TOD Time of day (only) Note 1 Note 6

15 DATE_AND_TIME or DT Date and time of Day Note 1 Note 6

16 STRING Variable-length character string Note 1 Note 7

17 BYTE Bit string of length 8 8 Note 7

18 WORD Bit string of length 16 16 Note 7

19 DWORD Bit string of length 32 32 Note 7

20 LWORD Bit string of length 64 64 Note 7

NOTES

1 The length of these data elements is implementation-dependent.

2 The range of values for variables of this data type is from -(2**(Bits-1)) to (2**(Bits-1))-1.

3 The range of values for variables of this data type is from 0 to (2**Bits)-1.

4 The range of values for variables of this data type shall be as defined in IEC 559 for the
basic single width floating-point format.

5 The range of values for variables of this data type shall be as defined in IEC 559 for the
basic double width floating-point format.

6 The range of values for variables of this data type is implementation-dependent.

7 A numeric range of values does not apply to this data type.

8 The possible values of variables of this data type shall be 0 and 1, corresponding to the
keywords FALSE and TRUE, respectively.

 - 36 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.3.2 Generic data types

In addition to the data types shown in table 10, the hierarchy of generic data types shown in table 11
can be used in the specification of inputs and outputs of standard functions and function blocks (see
subclause 2.5.1.4). Generic data types are identified by the prefix "ANY".

Table 11 - Hierarchy of generic data types

ANY
ANY_NUM

ANY_REAL
LREAL
REAL

ANY_INT
LINT, DINT, INT, SINT
ULINT, UDINT, UINT, USINT

ANY_BIT
LWORD, DWORD, WORD, BYTE, BOOL

STRING
ANY_DATE

DATE_AND_TIME
DATE
TIME_OF_DAY

TIME
Derived (see notes)

NOTES

1 The use of generic data types in non-standard functions or function blocks is beyond the
scope of this Standard.

2 The generic type of a subrange derived type (feature 3 of table 12) shall be ANY_INT.

3 The generic type of a directly derived type (feature 1 of table 12) shall be the same as the
generic type of the elementary type from which it is derived.

4 The generic type of all other derived types defined in table 12 shall be ANY.

2.3.3 Derived data types

2.3.3.1 Declaration

Derived (i.e., user- or manufacturer-specified) data types can be declared using the
TYPE...END_TYPE textual construction shown in table 12. These derived data types can then be
used, in addition to the elementary data types defined in 2.3.1, in variable declarations as defined in
2.4.3.

IEC DIS 1131-3 - 37 -

LIST OF TABLES (continued)

Table Page

An enumerated data type declaration specifies that the value of any data element of that type can only
take on one of the values given in the associated list of identifiers, as illustrated in table 12.

A subrange declaration specifies that the value of any data element of that type can only take on
values between and including the specified upper and lower limits, as illustrated in table 12.

A STRUCT declaration specifies that data elements of that type shall contain sub-elements of
specified types which can be accessed by the specified names. For instance, an element of data type
ANALOG_CHANNEL_CONFIGURATION as declared in table 12 will contain a RANGE sub-element
of type ANALOG_SIGNAL_RANGE, a MIN_SCALE sub-element of type ANALOG_DATA, and a
MAX_SCALE element of type ANALOG_DATA.

An ARRAY declaration specifies that a sufficient amount of data storage shall be allocated for each
element of that type to store all the data which can be indexed by the specified index subrange(s).
Thus, any element of type ANALOG_16_INPUT_CONFIGURATION as shown in table 12 contains
(among other elements) sufficient storage for 16 CHANNEL elements of type
ANALOG_CHANNEL_CONFIGURATION. Mechanisms for access to array elements are defined in
2.4.1.2.

2.3.3.2 Initialization

The default initial value of an enumerated data type shall be the first identifier in the associated
enumeration list, or a value specified by the assignment operator ":=". For instance, as shown in
tables 12 and 14, the default initial values of elements of data types ANALOG_SIGNAL_TYPE and
ANALOG_SIGNAL_RANGE are SINGLE_ENDED and UNIPOLAR_1_5V, respectively.

For data types with subranges, the default initial values shall be the first (lower) limit of the subrange,
unless otherwise specified by an assignment operator. For instance, as declared in table 12, the
default initial value of elements of type ANALOG_DATA is -4095, while the default initial value for the
FILTER_PARAMETER sub-element of elements of type ANALOG_16_INPUT_CONFIGURATION is
zero. In contrast, the default initial value of elements of type ANALOG_DATAZ as declared in table 14
is zero.

For other derived data types, the default initial values, unless specified otherwise by the use of the
assignment operator ":=" in the TYPE declaration, shall be the default initial values of the underlying
elementary data types as defined in table 13. Further examples of the use of the assignment operator
for initialization are given in 2.4.2.

The default maximum length of elements of type STRING shall be an implementation-dependent value
unless specified otherwise by a parenthesized maximum length (which shall not exceed the
implementation-dependent default value) in the associated declaration. For example, if type STR10 is
declared by

TYPE STR10 : STRING[10] := 'ABCDEF'; END_TYPE
the maximum length, default initial value, and default initial length of data elements of type STR10 are
10 characters, 'ABCDEF', and 6 characters, respectively.

 - 38 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 12 - Data type declaration features

No. Feature/textual example

1 Direct derivation from elementary types, e.g.:
TYPE R : REAL ; END_TYPE

2 Enumerated data types, e.g.:
TYPE ANALOG_SIGNAL_TYPE : (SINGLE_ENDED, DIFFERENTIAL) ; END_TYPE

3 Subrange data types, e.g.:
TYPE ANALOG_DATA : INT (-4095..4095) ; END_TYPE

4 Array data types, e.g.:
TYPE ANALOG_16_INPUT_DATA : ARRAY [1..16] OF ANALOG_DATA ; END_TYPE

5 Structured data types, e.g.:
TYPE
 ANALOG_CHANNEL_CONFIGURATION :
 STRUCT
 RANGE : ANALOG_SIGNAL_RANGE ;
 MIN_SCALE : ANALOG_DATA ;
 MAX_SCALE : ANALOG_DATA ;
 END_STRUCT ;
 ANALOG_16_INPUT_CONFIGURATION :
 STRUCT
 SIGNAL_TYPE : ANALOG_SIGNAL_TYPE ;
 FILTER_PARAMETER : SINT (0..99) ;
 CHANNEL : ARRAY [1..16] OF ANALOG_CHANNEL_CONFIGURATION ;
 END_STRUCT ;
END_TYPE
NOTE - For examples of the use of these types in variable declarations, see 2.3.3.3, 2.4.1.2,
and table 17.

Table 13 - Default initial values

Data type(s) Initial value

BOOL, SINT, INT, DINT, LINT 0

USINT, UINT, UDINT, ULINT 0

BYTE, WORD, DWORD, LWORD 0

REAL, LREAL 0.0

TIME T#0S

DATE D#0001-01-01

TIME_OF_DAY TOD#00:00:00

DATE_AND_TIME DT#0001-01-01-00:00:00

IEC DIS 1131-3 - 39 -

LIST OF TABLES (continued)

Table Page

STRING '' (the empty string)

 - 40 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 14 - Data type initial value declaration features

No. Feature/textual example

1 Initialization of directly derived types, e.g.:
TYPE FREQ : REAL := 50.0 ; END_TYPE

2 Initialization of enumerated data types, e.g.:
TYPE ANALOG_SIGNAL_RANGE :
 (BIPOLAR_10V, (* -10 to +10 VDC *)
 UNIPOLAR_10V, (* 0 to +10 VDC *)
 UNIPOLAR_1_5V, (* + 1 to + 5 VDC *)
 UNIPOLAR_0_5V, (* 0 to + 5 VDC *)
 UNIPOLAR_4_20_MA, (* + 4 to +20 mADC *)
 UNIPOLAR_0_20_MA (* 0 to +20 mADC *)
) := UNIPOLAR_1_5V ;
END_TYPE

3 Initialization of subrange data types, e.g.:
TYPE ANALOG_DATAZ : INT (-4095..4095) := 0 ; END_TYPE

4 Initialization of array data types, e.g.:
TYPE ANALOG_16_INPUT_DATAI :
 ARRAY [1..16] OF ANALOG_DATA := [8(-4095), 8(4095)] ;
END_TYPE

5 Initialization of structured data type elements, e.g.:
TYPE ANALOG_CHANNEL_CONFIGURATIONI :
 STRUCT
 RANGE : ANALOG_SIGNAL_RANGE ;
 MIN_SCALE : ANALOG_DATA := -4095 ;
 MAX_SCALE : ANALOG_DATA := 4095 ;
 END_STRUCT ;
END_TYPE

6 Initialization of derived structured data types, e.g.:
TYPE ANALOG_CHANNEL_CONFIGZ :
 ANALOG_CHANNEL_CONFIGURATIONI(MIN_SCALE := 0,
 MAX_SCALE := 4000);
END_TYPE

2.3.3.3 Usage

The usage of variables which are declared (as defined in 2.4.3.1) to be of derived data types shall
conform to the following rules:

(1) A single-element variable, as defined in 2.4.1.1, of a derived type, can be used anywhere that a
variable of its "parent's" type can be used, e.g. variables of the types R and FREQ as shown in
tables 12 and 14 can be used anywhere that a variable of type REAL could be used, and
variables of type ANALOG_DATA can be used anywhere that a variable of type INT could be
used.

This rule can be applied recursively. For example, given the declarations below, the variable R3
of type R2 can be used anywhere a variable of type REAL can be used:

IEC DIS 1131-3 - 41 -

LIST OF TABLES (continued)

Table Page

TYPE R1 : REAL := 1.0 ; END_TYPE
TYPE R2 : R1 ; END_TYPE
VAR R3: R2; END_VAR

(2) An element of a multi-element variable, as defined in 2.4.1.2, can be used anywhere the
"parent" type can be used, e.g., given the declaration of ANALOG_16_INPUT_DATA in table 12
and the declaration

 VAR INS : ANALOG_16_INPUT_DATA ; END_VAR

the variables INS[1] through INS[16] can be used anywhere that a variable of type INT could be
used.

This rule can also be applied recursively, e.g., given the declarations of
ANALOG_16_INPUT_CONFIGURATION, ANALOG_CHANNEL_CONFIGURATION, and
ANALOG_DATA in table 12 and the declaration

 VAR CONF : ANALOG_16_INPUT_CONFIGURATION ; END_VAR

the variable CONF.CHANNEL[2].MIN_SCALE can be used anywhere that a variable of type
INT could be used.

2.4 Variables

In contrast to the external representations of data described in 2.2, variables provide a means of
identifying data objects whose contents may change, e.g., data associated with the inputs, outputs, or
memory of the programmable controller. A variable can be declared to be one of the elementary types
defined in 2.3.1, or one of the derived types which are declared as defined in 2.3.3.1.

2.4.1 Representation

2.4.1.1 Single-element variables

A single-element variable is defined as a variable which represents a single data element of one of the
elementary types defined in 2.3.1; a derived enumeration or subrange type as defined in 2.3.3.1; or a
derived type whose "parentage", as defined recursively in 2.3.3.3, is traceable to an elementary,
enumeration or subrange type. This subclause defines the means of representing such variables
symbolically, or alternatively in a manner which directly represents the association of the data element
with physical or logical locations in the programmable controller's input, output, or memory structure.

Identifiers, as defined in 2.1.2, shall be used for symbolic representation of variables.

Direct representation of a single-element variable shall be provided by a special symbol formed by the
concatenation of the percent sign "%" (position 2/5 in the ISO/IEC 646 code table), a location prefix
and a size prefix from table 15, and one or more unsigned integers, separated by periods “.”.

Examples of directly represented variables are:

 %QX75 and %Q75 Output bit 75
 %IW215 Input word location 215
 %QB7 Output byte location 7
 %MD48 Double word at memory location 48

 - 42 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

 %IW2.5.7.1 See explanation below

The manufacturer shall specify the correspondence between the direct representation of a variable
and the physical or logical location of the addressed item in memory, input or output. When a direct
representation is extended with additional integer fields separated by periods, it shall be interpreted as
a hierarchical physical or logical address with the leftmost field representing the highest level of the
hierarchy, with successively lower levels appearing to the right. For instance, the variable %IW2.5.7.1
may represent the first "channel" (word) of the seventh "module" in the fifth "rack" of the second "I/O
bus" of a programmable controller system.

The use of hierarchical addressing to permit a program in one programmable controller system to
access data in another programmable controller shall be considered a language extension.

The use of directly represented variables is only permitted in programs, as defined in 2.5.3, and in
configurations and resources as defined in 2.7.1. The maximum number of levels of hierarchical
addressing is an implementation-dependent parameter.

Table 15 - Location and size prefix features for directly represented variables

No. Prefix Meaning Default data type

1 I Input location

2 Q Output location

3 M Memory location

4 X Single bit size BOOL

5 None Single bit size BOOL

6 B Byte (8 bits) size BYTE

7 W Word (16 bits) size WORD

8 D Double word (32 bits) size DWORD

9 L Long (quad) word (64 bits) size LWORD
NOTE - National standards organizations can publish tables of translations of these
prefixes.

2.4.1.2 Multi-element variables

The multi-element variable types defined in this standard are arrays and structures.

An array is a collection of data elements of the same data type referenced by one or more subscripts
enclosed in brackets and separated by commas. In the ST language defined in subclause 3.3, a
subscript shall be an expression yielding a value corresponding to one of the sub-types of generic
type ANY_INT as defined in table 11. The form of subscripts in the IL language defined in subclause
3.2, and the graphic languages defined in clause 4, is restricted to single-element variables or integer
literals.

An example of the use of array variables in the ST language as defined in 3.3 is:

IEC DIS 1131-3 - 43 -

LIST OF TABLES (continued)

Table Page

OUTARY[%MB6,SYM] := INARY[0] + INARY[7] - INARY[%MB6] * %IW62 ;

The maximum number of subscripts, and the maximum range of subscript values, which may be used
to access array variables is an implementation-dependent parameter.

A structured variable is a variable which is declared to be of a type which has previously been
specified to be a data structure, i.e., a data type consisting of a collection of named elements.

An element of a structured variable shall be represented by two or more identifiers or array accesses
separated by single periods “.”. The first identifier represents the name of the structured element, and
subsequent identifiers represent the sequence of component names to access the particular data
element within the data structure.

For instance, if the variable MODULE_5_CONFIG has been declared to be of type
ANALOG_16_INPUT_CONFIGURATION as shown in table 12, the following statements in the ST
language defined in 3.3 would cause the value SINGLE_ENDED to be assigned to the element
SIGNAL_TYPE of the variable MODULE_5_CONFIG, while the value BIPOLAR_10V would be
assigned to the RANGE sub-element of the fifth CHANNEL element of MODULE_5_CONFIG:

MODULE_5_CONFIG.SIGNAL_TYPE := SINGLE_ENDED;
MODULE_5_CONFIG.CHANNEL[5].RANGE := BIPOLAR_10V;

The maximum number of levels of structure element addressing is an implementation-dependent
parameter.

2.4.2 Initialization

When a configuration element (resource or configuration) is "started" as defined in 1.4.1, each of the
variables associated with the configuration element and its programs can take on one of the following
initial values:

- the value the variable had when the configuration element was "stopped" (a retained value);

- a user-specified initial value;

- the default initial value for the variable's associated data type.

The user can declare that a variable is to be retentive by using the RETAIN qualifier specified in table
16, when this feature is supported by the implementation.

The initial value of a variable upon starting of its associated configuration element shall be determined
according to the following rules:

 1) If the starting operation is a "warm restart" as defined in IEC 1131-1, the initial values of retentive
variables shall be their retained values as defined above.

 2) If the operation is a "cold restart" as defined in IEC 1131-1, the initial values of retentive variables
shall be the user-specified initial values, or the default value, as defined in 2.3.3.2, for the
associated data type of any variable for which no initial value is specified by the user.

 - 44 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

 3) Non-retained variables shall be initialized to the user-specified initial values, or to the default value,
as defined in 2.3.3.2, for the associated data type of any variable for which no initial value is
specified by the user.

 4) Variables which represent inputs of the programmable controller system as defined in IEC 1131-1
shall be initialized in an implementation-dependent manner.

2.4.3 Declaration

Each programmable controller program organization unit type declaration (i.e., each declaration of a
program, function, or function block, as defined in 2.5) shall contain at its beginning at least one
declaration part which specifies the types (and, if necessary, the physical or logical location) of the
variables used in the organization unit. This declaration part shall have the textual form of one of the
keywords VAR, VAR_INPUT, or VAR_OUTPUT as defined in table 16, followed in the case of VAR by
zero or one occurrence of the qualifier RETAIN or the qualifier CONSTANT, and in the case of
VAR_OUTPUT by zero or one occurrence of the qualifier RETAIN, followed by one or more
declarations separated by semicolons and terminated by the keyword END_VAR. When a
programmable controller supports the declaration by the user of initial values for variables, this
declaration shall be accomplished in the declaration part(s) as defined in this subclause.

The scope (range of validity) of the declarations contained in the declaration part shall be local to the
program organization unit in which the declaration part is contained. That is, the declared variables
shall not be accessible to other program organization units except by explicit parameter passing via
variables which have been declared as inputs or outputs of those units. The one exception to this rule
is the case of variables which have been declared to be global, as defined in 2.7.1. Such variables
are only accessible to a program organization unit via a VAR_EXTERNAL declaration. The type of a
variable declared in a VAR_EXTERNAL block shall agree with the type declared in the VAR_GLOBAL
block of the associated program, configuration or resource.

IEC DIS 1131-3 - 45 -

LIST OF TABLES (continued)

Table Page

Table 16 - Variable declaration keywords

Keyword Variable usage

VAR Internal to organization unit

VAR_INPUT Externally supplied, not modifiable within organization unit

VAR_OUTPUT Supplied by organization unit to external entities

VAR_IN_OUT Supplied by external entities
Can be modified within organization unit
NOTE - Examples of the use of these variables are given in figures 11b and
12

VAR_EXTERNAL Supplied by configuration via VAR_GLOBAL (2.7.1)
Can be modified within organization unit

VAR_GLOBAL Global variable declaration (2.7.1)

VAR_ACCESS Access path declaration (2.7.1)

RETAIN Retentive variables (see preceding text)

CONSTANT Constant (variable cannot be modified)

AT Location assignment (2.4.3.1)

NOTE - The usage of these keywords is a feature of the program organization unit or
configuration element in which they are used; see 2.5 and 2.7.

2.4.3.1 Type assignment

As shown in table 17, the VAR...END_VAR construction shall be used to specify data types and
retentivity for directly represented variables. This construction shall also be used to specify data
types, retentivity, and (where necessary, in programs only) the physical or logical location of
symbolically represented single- or multi-element variables. The usage of the VAR_INPUT,
VAR_OUTPUT, and VAR_IN_OUT constructions is defined in 2.5.

The assignment of a physical or logical address to a symbolically represented variable shall be
accomplished by the use of the AT keyword. Where no such assignment is made, automatic
allocation of the variable to an appropriate location in the programmable controller memory shall be
provided.

Table 17 - Variable type assignment features

No. Feature/examples

1 Declaration of directly represented, non-retentive variables

 - 46 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

 VAR
 AT %IW6.2 : WORD;
 AT %MW6 : INT ;
END_VAR

16-bit string (note 2)
16-bit integer, initial value = 0

2 Declaration of directly represented retentive variables

 VAR RETAIN
 AT %QW5 : WORD ;
END_VAR

At cold restart, %QW5 will be initialized to a 16-bit string
with value 0

3 Declaration of locations of symbolic variables

 VAR_GLOBAL

 LIM_SW_S5 AT %IX27 : BOOL;

 CONV_START AT %QX25 : BOOL;

 TEMPERATURE AT %IW28: INT ;

END_VAR

Assigns input bit 27 to the Boolean variable
LIM_SW_5 (note 2)

Assigns output bit 25 to the Boolean variable
CONV_START

Assigns input word 28 to the integer variable
TEMPERATURE (note 2)

4 Array location assignment

 VAR
 INARY AT %IW6 :
 ARRAY [0..9] OF INT ;
END_VAR

Declares an array of 10 integers to be allocated to
contiguous input locations starting at %IW6 (note 2)

5 Automatic memory allocation of symbolic variables

 VAR
 CONDITION_RED : BOOL;

 IBOUNCE : WORD ;

 MYDUB : DWORD ;

 AWORD, BWORD, CWORD : INT;

 MYSTR: STRING[10] ;

END_VAR

Allocates a memory bit to the Boolean variable
CONDITION_RED.
Allocates a memory word to the 16-bit string
variable IBOUNCE.
Allocates a double memory word to the 32-bit-string
variable MYDUB.
Allocates 3 separate memory words for the integer
variables AWORD, BWORD, and CWORD.
Allocates memory to contain a string with a
maximum length of 10 characters. After initializa-
tion, the string has length 0 and contains the empty
string ''.

6 Array declaration

 VAR THREE :
 ARRAY[1..5,1..10,1..8] OF INT;
END_VAR

Allocates 400 memory words for a three-
dimensional array of integers

7 Retentive array declaration

 VAR RETAIN RTBT:
 ARRAY[1..2,1..3] OF INT;
END_VAR

Declares retentive array RTBT with "cold restart"
initial values of 0 for all elements

8 Declaration of structured variables

IEC DIS 1131-3 - 47 -

LIST OF TABLES (continued)

Table Page

 VAR MODULE_8_CONFIG :
 ANALOG_16_INPUT_CONFIGURATION;
END_VAR

Declaration of a variable of derived data type
(see table 12)

NOTES

1 Features 1 to 4 can only be used in PROGRAM and VAR_GLOBAL declarations, as
defined in 2.5.3 and 2.7.1 respectively.

2 Initialization of system inputs is implementation-dependent; see 2.4.2.

 - 48 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.4.3.2 Initial value assignment

The VAR...END_VAR construction shown in table 18 shall be used to specify initial values of directly
represented variables. This construction shall also be used to assign initial values of symbolically
represented single- or multi-element variables (the usage of the VAR_INPUT, VAR_OUTPUT, and
VAR_IN_OUT constructions is defined in 2.5).

Initial values cannot be given in VAR_EXTERNAL declarations.

During initialization of arrays, the rightmost subscript of an array shall vary most rapidly with respect to
filling the array from the list of initialization variables.

Parentheses can be used as a repetition factor in array initialization lists, e.g., "2(1,2,3)" is equivalent
to the initialization sequence "1,2,3,1,2,3".

If the number of initial values given in the initialization list exceeds the number of array entries, the
excess (rightmost) initial values shall be ignored. If the number of initial values is less than the
number of array entries, the remaining array entries shall be filled with the default initial values for the
corresponding data type. In either case, the user shall be warned of this condition during preparation
of the program for execution.

When a variable is declared to be of a derived, structured data type as defined in 2.3.3.1, initial values
for the elements of the variable can be declared in a parenthesized list following the data type
identifier, as shown in table 18. Elements for which initial values are not listed in the initial value list
shall have the default initial values declared for those elements in the data type declaration.

Table 18 - Variable initial value assignment features

No. Feature/examples

1 Initialization of directly represented, non-retentive variables

 VAR AT %QX5.1 : BOOL :=1;
 AT %MW6 : INT := 8 ;
END_VAR

Boolean type, initial value =1
Initializes a memory word to integer 8

2 Initialization of directly represented retentive variables

 VAR RETAIN
 AT %QW5 : WORD := 16#FF00 ;
END_VAR

At cold restart, the 8 most significant bits of the
16-bit string at output word 5 are to be initialized
to 1 and the 8 least significant bits to 0

3 Location and initial value assignment to symbolic variables

 VAR
 VALVE_POS AT %QW28 : INT :=
100;
END_VAR

Assigns output word 28 to the integer variable
VALVE_POS, with an initial value of 100

4 Array location assignment and initialization

 VAR OUTARY AT %QW6 :
 ARRAY [0..9] OF INT := [10(1)] ;
END_VAR

Declares an array of 10 integers to be allocated
to contiguous output locations starting at %QW6,
each with an initial value of 1

5 Initialization of symbolic variables

IEC DIS 1131-3 - 49 -

LIST OF TABLES (continued)

Table Page

 VAR
 MYBIT : BOOL := 1 ;

 OKAY : STRING[10] := 'OK';
END_VAR

Allocates a memory bit to the Boolean variable MYBIT
with an initial value of 1.

Allocates memory to contain a string with a maximum
length of 10 characters. After initialization, the string has
length 2 and contains the two-byte sequence of
characters 'OK' in the ISO/IEC 646 character set, in an
order appropriate for printing as a character string.

6 Array initialization

 VAR
 BITS : ARRAY[0..7] OF BOOL
 := [1,1,0,0,0,1,0,0] ;

 TBT : ARRAY [1..2,1..3]
 OF INT
 := [1,2,3(4),6] ;
END_VAR

Allocates 8 memory bits to contain initial values
 BITS[0]:= 1, BITS[1] := 1,...,
 BITS[6]:= 0, BITS[7] := 0.

Allocates a 2-by-3 integer array TBT with initial values
 TBT[1,1]:=1, TBT[1,2]:=2,
 TBT[1,3]:=4, TBT[2,1]:=4,
 TBT[2,2]:=4, TBT[2,3]:=6.

7 Retentive array declaration and initialization

 VAR RETAIN RTBT :
 ARRAY(1..2,1..3) OF INT
 := [1,2,3(4)];
END_VAR

Declares retentive array RTBT with "cold restart"
initial values of: RTBT[1,1] := 1, RTBT[1,2] := 2,
 RTBT[1,3] := 4, RTBT[2,1] := 4,
 RTBT[2,2] := 4, RTBT[2,3] := 0.

8 Initialization of structured variables

 VAR MODULE_8_CONFIG :
 ANALOG_16_INPUT_CONFIGURATION
 (SIGNAL_TYPE := DIFFERENTIAL,
 CHANNEL := [4((RANGE :=
UNIPOLAR_1_5)),
 (RANGE := BIPOLAR_10_V,
 MIN_SCALE := 0,
 MAX_SCALE := 500)]) ;
END_VAR

Initialization of a variable of derived data
type (see table 12)

NOTE - This example illustrates the
declaration of a non-default initial
value for the fifth element of the
CHANNEL array of the variable
MODULE_8_CONFIG.

9 Initialization of constants

 VAR CONSTANT PI : REAL := 3.141592 ; END_VAR

NOTE - Features 1 to 4 can only be used in PROGRAM and VAR_GLOBAL declarations, as
defined in 2.5.3 and 2.7.1 respectively.

2.5 Program organization units

The program organization units defined in this Part of IEC 1311 are the function, function block, and
program. These program organization units can be delivered by the manufacturer, or programmed by
the user by the means defined in this part of the standard.

Program organization units shall not be recursive; that is, the invocation of a program organization unit
shall not cause the invocation of another program organization unit of the same type.

 - 50 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.5.1 Functions

For the purposes of programmable controller programming languages, a function is defined as a
program organization unit which, when executed, yields exactly one data element (which can be multi-
valued, e.g., an array or structure), and whose invocation can be used in textual languages as an
operand in an expression. For example, the SIN and COS functions could be used as shown in figure
4.

a) Z := SIN(X)*COS(Y) + COS(X)*SIN(Y) ;

b)

 +-----+
 X----+--| SIN |--+
 | +-----+ |
 | | +---+ +---+
 | +-----+ +--| * |-----| + |---Z
 Y--+----| COS |-----| | +--| |
 | | +-----+ +---+ | +---+
 | | |
 | | +-----+ +---+ |
 | +--| COS |-----| * |--+
 | +-----+ +--| |
 | | +---+
 | +-----+ |
 +----| SIN |--+
 +-----+

Figure 4 - Examples of function usage
 a) Structured Text (ST) language; see subclause 3.3
 b) Function Block Diagram (FBD) language;
 see subclause 4.3

Functions shall contain no internal state information, i.e., invocation of a function with the same
arguments (input parameters) shall always yield the same value (output).

Any function type which has already been declared can be used in the declaration of another program
organization unit, as shown in figure 3.

IEC DIS 1131-3 - 51 -

LIST OF TABLES (continued)

Table Page

2.5.1.1 Representation

Functions and their invocation can be represented either graphically or textually.

In the graphic languages defined in clause 4 of this part, functions shall be represented as graphic
blocks according to the following rules:

 1) The form of the block shall be rectangular or square.

 2) The size and proportions of the block may vary depending on the number of inputs and other
information to be displayed.

 3) The direction of processing through the block shall be from left to right (input parameters on the
left and output parameter on the right).

 4) The function name or symbol, as specified below, shall be located inside the block.

 5) Provision shall be made for formal input parameter names appearing at the inside left of the
block when the block represents:

- one of the standard functions defined in subclause 2.5.1.5, when the given graphical form
includes the formal parameter names; or

- any additional function declared as specified in subclause 2.5.1.3.

 6) Since the name of the function is used for the assignment of its output value as specified in
2.5.1.3, no formal output parameter name shall be shown at the right side of the block.

 7) Actual parameter connections shall be shown by signal flow lines.

 8) Negation of Boolean signals shall be shown by placing an open circle just outside of the input or
output line intersection with the block. In the ISO/IEC 646 character set, this shall be
represented by the upper case alphabetic "O", as shown in table 19.

 9) The output of a graphically represented function shall be represented by a single line at the right
side of the block, even though the output may be a multi-element variable.

Table 19 - Graphical negation of Boolean signals

No. Feature Representation

1

Negated input

 +---+
 ---O| |---
 +---+

2

Negated output

 +---+
 ----| |O---
 +---+

NOTE - If either of these features is supported for functions, it shall
also be supported for function blocks as defined in 2.5.2, and vice
versa.

 - 52 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Figure 5 illustrates both the graphical and equivalent textual use of functions, including the use of a
standard function (ADD) with no defined formal parameter names, and another standard function
(SHL) with defined formal parameter names.

IEC DIS 1131-3 - 53 -

LIST OF TABLES (continued)

Table Page

Example Explanation

 +-----+
 | ADD |
B---| |---A
C---| |
D---| |
 +-----+

Graphical use of "ADD" function
(See 2.5.1.5.2)
(FBD language; see 4.3)
(No formal parameter names)

A := ADD(B,C,D); Textual use of "ADD" function
(ST language; see 3.3)

 +-----+
 | SHL |
B---|IN |---A
C---|N |
 +-----+

Graphical use of "SHL" function
(See 2.5.1.5.3)
(FBD language; see 4.3)
(Formal parameter names)

A := SHL(IN := B,N := C); Textual use of "SHL" function
(ST language; see 3.3)

Figure 5 - Use of formal parameter names

Features for the textual invocation of functions are defined in table 19a. Textual invocation of a
function shall consist of the function name followed by a list of comma-separated parameters. In the
ST language defined in subclause 3.3, this list shall be delimited on the left and right by parentheses.
In features 1 and 3 of table 19a, this list shall contain exactly the same number of parameters, in
exactly the same order and types as given in the function definition. In features 1 and 2 of table 19a,
this list has the form of a set of assignments of actual values to the formal parameter names. In
feature 2 of table 19a, any parameter not assigned a value in the list shall have the default value, if
any, assigned in the function specification, or the default value for the associated data type.

TABLE 19a - Textual invocation of functions

No. Feature Example

 Parameter
assignment

Parameter
order

Number of
parameters

1 yes fixed fixed A := LIMIT(MN:=1, IN:= B, MX:= 5);

2 yes any any A := LIMIT(IN := B, MX := 5) ;

3 no fixed fixed A := ADD(B,C,D) ;

NOTES:

1 Feature #3 is required for invocation of any of the standard functions defined in
subclause 2.5.1.5 without formal names for one or more input parameters.

 - 54 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2 In the example given in feature #2, the MN parameter will have the default value 0
(zero).

2.5.1.2 Execution control

As shown in table 20, an additional Boolean "EN" (Enable) input and "ENO" (Enable Out) output shall
be used with functions in the LD language defined in 4.2, and their use shall also be possible in the
FBD language defined in this part. These variables are considered to be available in every function
according to the implicit declarations

VAR_INPUT EN: BOOL := 1; END_VAR
VAR_OUTPUT ENO: BOOL; END_VAR

When these variables are used, the execution of the operations defined by the function shall be
controlled according to the following rules:

 1) If the value of EN is FALSE (0) when the function is invoked, the operations defined by the
function body shall not be executed and the value of "ENO" shall be reset to FALSE (0) by the
programmable controller system.

 2) Otherwise, the value of ENO shall be set to TRUE (1) by the programmable controller system,
and the operations defined by the function body shall be executed. These operations can
include the assignment of a Boolean value to ENO.

 3) If one of the errors defined in annex E occurs during the execution of one of the standard
functions defined in 2.5.1.5, the ENO output of that function shall be reset to FALSE (0) by the
programmable controller system.

NOTE - The use of the ENO output is an allowable exception to the rule that the execution of
a function yields exactly one output.

IEC DIS 1131-3 - 55 -

LIST OF TABLES (continued)

Table Page

Table 20 - Use of EN input and ENO output

No. Feature Example

1

Use of "EN" and "ENO"
Required for LD
(Ladder Diagram) language
 (see 4.2)

 +-------+ |
 | ADD_EN | + | ADD_OK |
 +---||---|EN ENO|---()---+
A---		---C
B---		
 +-------+ |

2

Use of "EN" and "ENO"
Optional for FBD
(Function Block Diagram)
language (see 4.3)

 +-------+
 | + |
 ADD_EN--|EN ENO|---ADD_OK
 A---| |---C
 B---| |
 +-------+

3

FBD without "EN" and "ENO"

 +-----+
 A---| + |---C
 B---| |
 +-----+

2.5.1.3 Declaration

A function shall be declared textually or graphically.

As illustrated in figure 6, the textual declaration of a function shall consist of the following elements:

 1) The keyword FUNCTION, followed by an identifier specifying the name of the function being
declared, a colon (:), and the data type of the value to be returned by the function;

 2) A VAR_INPUT...END_VAR construct as defined in 2.4.2, specifying the names and types of the
function's input parameters;

 3) A VAR...END_VAR construct, if required, specifying the names and types of the function's
internal variables;

 4) A function body, written in one of the languages defined in this part, or another programming
language as defined in 1.4.3, which specifies the operations to be performed upon the input
parameter(s) in order to assign one or more values to a variable with the same name as the
function, which represents the value to be returned by the function;

 5) The terminating keyword END_FUNCTION.

As illustrated in figure 6, the graphic declaration of a function shall consist of the following elements:

 1) The bracketing keywords FUNCTION...END_FUNCTION or a graphical equivalent;

 2) A graphic specification of the function name and the names and types of the function's inputs
and output;

 - 56 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

 3) A specification of the names and types of the internal variables used in the function, e.g., using
the VAR...END_VAR construct;

 4) A function body as defined above.

a) FUNCTION SIMPLE_FUN : REAL

 VAR_INPUT
 A,B : REAL ; (* External interface specification *)
 C : REAL := 1.0;
 END_VAR

 SIMPLE_FUN := A*B/C; (* Function body specification *)

 END_FUNCTION

b) FUNCTION
 +-------------+
 | SIMPLE_FUN |
 REAL----|A |----REAL
 REAL----|B |(* External interface specification *)
 REAL----|C |
 +-------------+

 +---+ (* Function body specification *)
 A---| * | +---+
 B---| |---| / |---SIMPLE_FUN
 +---+ | |
 C-----------| |
 +---+
 END_FUNCTION

 NOTE - In example a), the input variable C is given a default value of 1.0, as specified in
2.4.3.2, to avoid a "division by zero" error if the input is not specified when the func-
tion is invoked, for example, if a graphical input to the function is left unconnected.

Figure 6 - Examples of function declarations
a) Textual declaration in ST language (see 3.3)
b) Graphical declaration in FBD language (see 4.3)

2.5.1.4 Typing, overloading, and type conversion

A standard function, function block type, operator, or instruction is said to be overloaded when it can
operate on input data elements of various types within a generic type designator as defined in 2.3.2.
For instance, an overloaded addition function on generic type ANY_NUM can operate on data of types
LREAL, REAL, DINT, INT, and SINT.

When a programmable controller system supports an overloaded standard function, function block
type, operator, or instruction, this standard function, function block type, operator, or instruction shall
apply to all data types of the given generic type which are supported by that system. For example, if a
programmable controller system supports the overloaded function ADD and the data types SINT, INT,
and REAL, then the system shall support the ADD function on inputs of type SINT, INT, and REAL.

When a function which normally represents an overloaded operator is to be typed, i.e., the types of its
inputs and outputs restricted to a particular subtype, this shall be done by appending an "underline"
character followed by the required type, as shown in table 21.

IEC DIS 1131-3 - 57 -

LIST OF TABLES (continued)

Table Page

Table 21 - Typed and overloaded functions

No. Feature Example

1

 Overloaded functions

 +-----+
 | ADD |
 ANY_NUM-----| |----ANY_NUM
 ANY_NUM-----| |
 . -----| |
 . -----| |
 ANY_NUM-----| |
 +-----+

2

 Typed functions

 +---------+
 | ADD_INT |
 INT-----| |----INT
 INT-----| |
 . -----| |
 . -----| |
 INT-----| |
 +---------+

NOTES

 1 If feature 2 is supported, the manufacturer shall provide a table of which functions are
overloaded and which are typed in the implementation.

 2 The overloading of non-standard functions or function block types is beyond the scope of
this Standard.

When all the formal input parameters to a standard function defined in 2.5.1.5 are of the same generic
type then all the actual parameters shall be of the same type. If necessary, the type conversion
functions defined in 2.5.1.5.1 can be used to meet this requirement. The output value of the function, if
it is of the same generic type as the inputs, shall then have the same type as the actual inputs, except
as noted in Tables 22 and 30. Examples of the application of this rule are given in figures 7 and 8.

Type declaration
(ST language - see 3.3)

Usage
(FBD language - see 4.3)
(ST language - see 3.3)

 VAR
 . A : INT ;
 . B : INT ;
 . C : INT ;
 END_VAR

 +---+
 A---| + |---C
 B---| |
 +---+

C := A+B;

 VAR
 A : INT ;
 B : REAL ;
 C : REAL;
 END_VAR

 +-----------+ +---+
 A---|INT_TO_REAL|---| + |---C
 +-----------+ | |
 B-------------------| |
 +---+

C := INT_TO_REAL(A)+B;

 - 58 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

 VAR
 A : INT ;
 B : INT ;
 C : REAL;
 END_VAR

 +---+ +-----------+
A----| + |---|INT_TO_REAL|---C
B----| | +-----------+
 +---+

C := INT_TO_REAL(A+B);

NOTE - Type conversion is not required in the first example shown above.
Figure 7 - Examples of explicit type conversion with overloaded functions

IEC DIS 1131-3 - 59 -

LIST OF TABLES (continued)

Table Page

Type declaration

(ST language - see 3.3)
Usage

(FBD language - see 4.3)
(ST language - see 3.3)

 VAR
 A : INT ;
 B : INT ;
 C : INT ;
 END_VAR

 +---------+
 A---| ADD_INT |---C
 B---| |
 +---------+

C := ADD_INT(A,B);

 VAR
 A : INT ;
 B : REAL ;
 C : REAL;
 END_VAR

 +-----------+ +----------+
 A---|INT_TO_REAL|---| ADD_REAL |---C
 +-----------+ | |
 B-------------------| |
 +----------+

C := ADD_REAL(INT_TO_REAL(A),B);

 VAR
 A : INT ;
 B : INT ;
 C : REAL;
 END_VAR

 +---------+ +-----------+
 A---| ADD_INT |---|INT_TO_REAL|---C
 | | +-----------+
 B---| |
 +---------+

C := INT_TO_REAL(ADD_INT(A,B));

NOTE - Type conversion is not required in the first example shown above.
Figure 8 - Examples of explicit type conversion with typed functions

2.5.1.5 Standard functions

Definitions of functions common to all programmable controller programming languages are given in
this subclause. Where graphical representations of standard functions are shown in this subclause,
equivalent textual declarations may be written as specified in 2.5.1.3.

A standard function specified in this subclause to be extensible is allowed to have a variable number
of inputs, and shall be considered as applying the indicated operation to each input in turn, e.g.,
extensible addition shall give as its output the sum of all its inputs. The maximum number of inputs of
an extensible function is an implementation-dependent parameter.

2.5.1.5.1 Type conversion functions

As shown in table 22, type conversion functions shall have the form *_TO_**, where "*" is the type of
the input variable IN, and "**" the type of the output variable OUT, e.g., INT_TO_REAL.

 - 60 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 22 - Type conversion function features

No. Graphical form Usage example Notes

1

 +---------+
 * ---| *_TO_** |--- **
 +---------+

 (*) - Input data type, e.g., INT
 (**) - Output data type, e.g.,REAL
 (*_TO_**) - Function name, e.g., INT_TO_REAL

A := INT_TO_REAL(B) ;

 1
 2
 5

2

 +-------+
 ANY_REAL---| TRUNC |---ANY_INT
 +-------+

 A := TRUNC(B) ;

3

3

 +-----------+
 ANY_BIT--| BCD_TO_** |---ANY_INT
 +-----------+

 A := BCD_TO_INT(B) ;

4

4

 +----------+
 ANY_INT--| *_TO_BCD |---ANY_BIT
 +----------+

 A := INT_TO_BCD(B) ;

4

IEC DIS 1131-3 - 61 -

LIST OF TABLES (continued)

Table Page

NOTES

1 A statement of conformance to feature 1 of this table shall include a list of the specific type
conversions supported, and a statement of the effects of performing each conversion.

2 Conversion from type REAL or LREAL to SINT, INT, DINT or LINT shall round according
to the convention of IEC 559, according to which, if the two nearest integers are equally near,
the result shall be the nearest even integer, e.g.:

REAL_TO_INT(1.6) is equivalent to 2
REAL_TO_INT(-1.6) is equivalent to -2
REAL_TO_INT(1.5) is equivalent to 2
REAL_TO_INT(-1.5) is equivalent to -2
REAL_TO_INT(1.4) is equivalent to 1
REAL_TO_INT(-1.4) is equivalent to-1
REAL_TO_INT(2.5) is equivalent to 2
REAL_TO_INT(-2.5) is equivalent to.-2

3 The function TRUNC shall be used for truncation toward zero of a REAL or LREAL,
yielding one of the integer types, for instance,

TRUNC(1.6) is equivalent to 1
TRUNC(-1.6) is equivalent to -1
TRUNC(1.4) is equivalent to 1
TRUNC(-1.4) is equivalent to -1

4 The conversion functions *_TO_BCD and BCD_TO_** are defined to perform conversions
between variables of type BYTE, WORD, DWORD, and LWORD and variables of type SINT,
INT, and DINT (represented by "*" or "**"), when the corresponding bit-string variables
contain data encoded in BCD format. For example, the value of INT_TO_BCD(25) would be
2#0010_0101, and the value of BCD_TO_INT (2#0011_0110_1001) would be 369.

5 When an input or output of a type conversion function is of type STRING, the character
string data shall conform to the external representation of the corresponding data, as
specified in 2.2, in the ISO/IEC 646 character set.

6 Usage examples are given in the ST language defined in 3.3.

 - 62 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.5.1.5.2 Numerical functions

The standard graphical representation, function names, input and output variable types, and function
descriptions of functions of a single numeric variable shall be as defined in table 23. These functions
shall be overloaded on the defined generic types, and can be typed as defined in 2.5.1.4. For these
functions, the types of the input and output shall be the same.

The standard graphical representation, function names and symbols, and descriptions of arithmetic
functions of two or more variables shall be as shown in table 24. These functions shall be overloaded
on all numeric types, and can be typed as defined in 2.5.1.4.

Table 23 - Standard functions of one numeric variable

Graphical form Usage example

 +---------+
* ---| ** |--- *
 +---------+
(*) - Input/Output (I/O) type
(**) - Function name

A := SIN(B) ;

(ST language - see 3.3)

No. Function

name

I/O type Description

 General functions

1 ABS ANY_NUM Absolute value

2 SQRT ANY_REAL Square root

 Logarithmic functions

3 LN ANY_REAL Natural logarithm

4 LOG ANY_REAL Logarithm base 10

5 EXP ANY_REAL Natural exponential

 Trigonometric functions

6 SIN ANY_REAL Sine of input in radians

7 COS ANY_REAL Cosine in radians

8 TAN ANY_REAL Tangent in radians

9 ASIN ANY_REAL Principal arc sine

10 ACOS ANY_REAL Principal arc cosine

11 ATAN ANY_REAL Principal arc tangent

IEC DIS 1131-3 - 63 -

LIST OF TABLES (continued)

Table Page

Table 24 - Standard arithmetic functions

Graphical form Usage example

 +-----+
 ANY_NUM ---| *** |--- ANY_NUM
 ANY_NUM ---| |
 . ---| |
 . ---| |
 ANY_NUM ---| |
 +-----+

(***) - Name or Symbol

A := ADD(B,C,D) ;

or
A := B+C+D ;

No. Name Symbol

(note 1)

Description

(notes 2 and 8)

 Extensible arithmetic functions

12 ADD + OUT := IN1 + IN2 + ... + INn

13 MUL * OUT := IN1 * IN2 * ... * INn

 Non-extensible arithmetic functions

14 SUB - OUT := IN1 - IN2

15 DIV / OUT := IN1 / IN2 (note 5)

16 MOD OUT := IN1 modulo IN2 (note 3)

17 EXPT ** Exponentiation: OUT := IN1IN2 (note 4)

18 MOVE := OUT := IN (note 9)

 - 64 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

NOTES

1 These symbols are suitable for use as operators in textual languages, as shown in
tables 52 and 55.

2 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers to
the output.

3 IN1 and IN2 shall be of generic type ANY_INT for this function. The result of evaluating
this function shall be the equivalent of executing the following statements in the ST
language as defined in 3.3:

IF (IN2 = 0) THEN OUT := 0 ; ELSE OUT := IN1 - (IN1/IN2)*IN2 ; END_IF

4 IN1 shall be of type ANY_REAL, and IN2 of type ANY_NUM for this function. The
output shall be of the same type as IN1.

5 The result of division of integers shall be an integer of the same type with truncation
toward zero, for instance, 7/3 = 2 and (-7)/3 = -2.

6 When the named representation of a function is supported, this shall be indicated by the
suffix "n" in the compliance statement. For example, "12n" represents the notation "ADD".

7 When the symbolic representation of a function is supported, this shall be indicated by
the suffix "s" in the compliance statement. For example, "12s" represents the notation "+".

8 Usage examples and descriptions are given in the ST language defined in Clause 3.3.

9 The MOVE function has exactly one input (IN) of type any and one output (OUT) of type
ANY.

IEC DIS 1131-3 - 65 -

LIST OF TABLES (continued)

Table Page

2.5.1.5.3 Bit string functions

The standard graphical representation, function names and descriptions of shift functions for a single
bit-string variable shall be as defined in table 25. These functions shall be overloaded on all bit-string
types, and can be typed as defined in 2.5.1.4.

The standard graphical representation, function names and symbols, and descriptions of bitwise
Boolean functions shall be as defined in table 26. These functions shall be extensible, except for NOT,
and overloaded on all bit-string types, and can be typed as defined in 2.5.1.4.

Table 25 - Standard bit shift functions

Graphical form Usage example

 +-----+
 | *** |
 ANY_BIT ---|IN |--- ANY_BIT
 UINT ------|N |
 +-----+
 (***) - Function Name

 A := SHL(IN:=B, N:=5) ;

(ST language - see 3.3)

No. Name Description

1 SHL OUT := IN left-shifted by N bits, zero-filled on right

2 SHR OUT := IN right-shifted by N bits, zero-filled on left

3 ROR OUT := IN right-rotated by N bits, circular

4 ROL OUT := IN left-rotated by N bits, circular

 NOTE - The notation "OUT" refers to the function output.

2.5.1.5.4 Selection and comparison functions

Selection and comparison functions shall be overloaded on all data types. The standard graphical
representations, function names and descriptions of selection functions shall be as shown in table 27.

The standard graphical representation, function names and symbols,and descriptions of comparison
functions shall be as defined in table 28. All comparison functions (except NE) shall be extensible.

Comparisons of bit string data shall be made bitwise from the most significant to the least significant
bit, and shorter bit strings shall be considered to be filled on the left with zeros when compared to
longer bit strings; that is, comparison of bit string variables shall have the same result as comparison
of unsigned integer variables.

 - 66 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 26 - Standard bitwise Boolean functions

Graphical form Usage examples

 +-----+
 ANY_BIT ---| *** |--- ANY_BIT
 ANY_BIT ---| |
 . ---| |
 . ---| |
 ANY_BIT ---| |
 +-----+

 (***) - Name or symbol

A := AND(B,C,D) ;

or

A := B & C & D ;

No. Name Symbol Description

5 AND & (note 1) OUT := IN1 & IN2 & ... & INn

6 OR >=1 (note 2) OUT := IN1 OR IN2 OR ... OR INn

7 XOR =2k+1 (note 2) OUT := IN1 XOR IN2 XOR ... XOR INn

8 NOT OUT := NOT IN1 (Note 4)
NOTES

1 This symbol is suitable for use as an operator in textual languages, as shown in tables
52 and 55.

2 This symbol is not suitable for use as an operator in textual languages.

3 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers to
the output.

4 Graphic negation of signals of type BOOL can also be accomplished as shown in table
19.

5 When the named representation of a function is supported, this shall be indicated by the
suffix "n" in the compliance statement. For example, "5n" represents the notation "AND".

6 When the symbolic representation of a function is supported, this shall be indicated by
the suffix "s" in the compliance statement. For example, "5s" represents the notation "&".

7 Usage examples and descriptions are given in the ST language defined in 3.3.

IEC DIS 1131-3 - 67 -

LIST OF TABLES (continued)

Table Page

Table 27 - Standard selection functions

No. Graphical form Explanation/example

1

 +-----+
 | SEL |
 BOOL----|G |----ANY
 ANY-----|IN0 |
 ANY-----|IN1 |
 +-----+

Binary selection:
OUT := IN0 if G = 0
OUT := IN1 if G = 1

Example:
A := SEL(G:=0,IN0:=X,IN1:=5) ;

2a

 +-----+
 | MAX |
(Note 1)---| |----ANY
 : ---| |
(Note 1)---| |
 +-----+

Extensible maximum function:
OUT := MAX (IN1,IN2, ...,INn)

Example:
A := MAX(B,C,D) ;

2b

 +-----+
 | MIN |
(Note 1)---| |----ANY
 : ---| |
(Note 1)---| |
 +-----+

Extensible minimum function:
OUT := MIN (IN1,IN2, ...,INn)

Example:
A := MIN(B,C,D) ;

3

 +-------+
 | LIMIT |
(Note 1)--|MN |----ANY
(Note 1)--|IN |
(Note 1)--|MX |
 +-------+

Limiter:
OUT := MIN(MAX(IN,MN),MX)

Example:
A := LIMIT(IN:=B,MN:=0,MX:=5);

4

 +-----+
 | MUX |
 ANY_INT---|K |----ANY
 ANY---| |
 : ---| |
 ANY---| |
 +-----+

Extensible multiplexer:
Select one of "N" inputs
 depending on input K

Example:
A := MUX(0, B, C, D);

would have the same effect as
 A := B ;

NOTES

1 These inputs can be of type ANY_BIT, ANY_NUM, STRING, ANY_DATE, or TIME. The
type conversion rules given in 2.5.1.4 shall be followed for these inputs.

2 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers to the
output.

3 Usage examples and descriptions are given in the ST language defined in 3.3.

 - 68 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 28 - Standard comparison functions

Graphical form Usage examples

 +-----+
(Note 1)--| *** |--- BOOL
 : --| |
(Note 1)--| |
 +-----+
 (***) - Name or Symbol

A := GT(B,C,D) ;

or

A := (B>C) & (C>D) ;

No. Name Symbol Description

5 GT > Decreasing sequence:
OUT := (IN1>IN2) & (IN2>IN3) & ... & (INn-1 > INn)

6 GE >= Monotonic sequence:
OUT := (IN1>=IN2) & (IN2>=IN3) & ... & (INn-1 >= INn)

7 EQ = Equality:
OUT := (IN1=IN2) & (IN2=IN3) & ... & (INn-1 = INn)

8 LE <= Monotonic sequence:
OUT := (IN1<=IN2) & (IN2<=IN3) & ... & (INn-1 <= INn)

9 LT < Increasing sequence:
OUT := (IN1<IN2) & (IN2<IN3) & ... & (INn-1 < INn)

10 NE <> Inequality (non-extensible)
 OUT := (IN1 <> IN2)

NOTES

1 These inputs can be of type ANY_BIT, ANY_NUM, STRING, ANY_DATE, or TIME. The
type conversion rules given in 2.5.1.4 shall be followed for these inputs.

2 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers to the
output.

3 All the symbols shown in this table are suitable for use as operators in textual languages,
as shown in tables 52 and 55.

4 When the named representation of a function is supported, this shall be indicated by the
suffix "n" in the compliance statement. For example, "5n" represents the notation "GT".

5 When the symbolic representation of a function is supported, this shall be indicated by the
suffix "s" in the compliance statement. For example, "5s" represents the notation ">".

6 Usage examples and descriptions are given in the ST language defined in 3.3.

IEC DIS 1131-3 - 69 -

LIST OF TABLES (continued)

Table Page

2.5.1.5.5 Character string functions

All the functions defined in 2.5.1.5.4 shall be applicable to character strings. For the purposes of
comparison of two strings of unequal length, the shorter string shall be considered to be extended on
the right to the length of the longer string by characters with the value zero. Comparison shall
proceed from left to right, based on the numeric value of the character codes in the ISO/IEC 646 code
table. For example, the character string 'Z' shall be greater than the character string 'AZ', and 'AZ'
shall be greater than 'ABC'.

The standard graphical representations, function names and descriptions of additional functions of
character strings shall be as shown in table 29. For the purpose of these operations, character
positions within the string shall be considered to be numbered 1,2,...,L, beginning with the leftmost
character position, where L is the length of the string.

Table 29 - Standard character string functions

No. Graphical form Explanation/example

1 +-----+
 STRING---| LEN |---INT
 +-----+

String length function
Example:

A := LEN('ASTRING')
is equivalent to A := 7;

2 +------+
 | LEFT |
 STRING----|IN |--STRING
 UINT------|L |
 +------+

Leftmost L characters of IN
Example:

A := LEFT(IN:='ASTR',L:=3);
is equivalent to

A := 'AST' ;

3 +-------+
 | RIGHT |
 STRING----|IN |--STRING
 UINT------|L |
 +-------+

Rightmost L characters of IN
Example:

A := RIGHT(IN:='ASTR',L:=3);
is equivalent to

A := 'STR' ;

4 +-------+
 | MID |
 STRING----|IN |--STRING
 UINT------|L |
 UINT------|P |
 +-------+

L characters of IN,
beginning at the P-th

Example:
A := MID(IN:='ASTR',L:=2,P:=2);

is equivalent to
A := 'ST' ;

5 +--------+
 | CONCAT |
 STRING---| |--STRING
 : ---| |
 STRING---| |
 +--------+

Extensible concatenation
Example:

A := CONCAT('AB','CD','E') ;
is equivalent to
A := 'ABCDE' ;

 - 70 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

6 +--------+
 | INSERT |
 STRING---|IN1 |--STRING
 STRING---|IN2 |
 UINT-----|P |
 +--------+

Insert IN2 into IN1 after the
P-th character position

Example:
A:=INSERT(IN1:='ABC',IN2:='XY',P=2);

is equivalent to
A := 'ABXYC' ;

(continued on following page)

IEC DIS 1131-3 - 71 -

LIST OF TABLES (continued)

Table Page

Table 29 - Standard character string functions - continued
No. Graphical form Explanation/example

7 +--------+
 | DELETE |
 STRING---|IN |--STRING
 UINT-----|L |
 UINT-----|P |
 +--------+

Delete L characters of IN, beginning
at the P-th character position

Example:
A := DELETE(IN:='ABXYC',L:=2, P:=3) ;

is equivalent to
A := 'ABC' ;

8 +---------+
 | REPLACE |
 STRING---|IN1 |--STRING
 STRING---|IN2 |
 UINT-----|L |
 UINT-----|P |
 +---------+

Replace L characters of IN1 by IN2,
starting at the P-th character position

Example:
A := REPLACE(IN1:='ABCDE',IN2:='X',

L:=2, P:=3) ;
is equivalent to
A := 'ABXE' ;

9 +--------+
 | FIND |
 STRING---|IN1 |---INT
 STRING---|IN2 |
 +--------+

Find the character position of the beginning
of the first occurrence of IN2 in IN1. If no

occurrence of IN2 is found, then OUT := 0.
Example:

A := FIND(IN1:='ABCBC',IN2:='BC') ;
is equivalent to A := 2 ;

NOTE - The examples in this table are given in the Structured Text (ST) language defined in 3.3.

2.5.1.5.6 Functions of time data types

In addition to the comparison and selection functions defined in 2.5.1.5.4, the combinations of input
and output time data types shown in table 30 shall be allowed with the associated functions.

2.5.1.5.7 Functions of enumerated data types

The selection and comparison functions listed in table 31 can be applied to inputs which are of an
enumerated data type as defined in 2.3.3.1.

 - 72 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 30 - Functions of time data types

 Numeric and concatenation functions

No. Name Symbol IN1 IN2 OUT

1 ADD + TIME TIME TIME

2 TIME_OF_DAY TIME TIME_OF_DAY

3 DATE_AND_TIME TIME DATE_AND_TIME

4 SUB - TIME TIME TIME

5 DATE DATE TIME

6 TIME_OF_DAY TIME TIME_OF_DAY

7 TIME_OF_DAY TIME_OF_DAY TIME

8 DATE_AND_TIME TIME DATE_AND_TIME

9 DATE_AND_TIME DATE_AND_TIME TIME

10 MUL * TIME ANY_NUM TIME

11 DIV / TIME ANY_NUM TIME

12 CONCAT DATE TIME_OF_DAY DATE_AND_TIME

 Type conversion functions

13
14

DATE_AND_TIME_TO_TIME_OF_DAY
DATE_AND_TIME_TO_DATE

NOTES

1 The type conversion functions shall have the effect of "extracting" the appropriate data, e.g., the
ST language statements

X := DT#1986-04-28-08:40:00 ;
Y := DATE_AND_TIME_TO_TIME_OF_DAY(X) ;
W := DATE_AND_TIME_TO_DATE(X)

shall have the same result as the statements

X := DT#1986-04-28-08:40:00 ;
W := DATE#1986-04-28 ;
Y := TIME_OF_DAY#08:40:00

2 The provisions of NOTES 2-5 of table 28 apply to this table.

Table 31 - Functions of enumerated data types

No. Name Symbol Feature No. in Tables 27 and 28

1 SEL 1

2 MUX 4

3 EQ = 7

4 NE <> 10

IEC DIS 1131-3 - 73 -

LIST OF TABLES (continued)

Table Page

NOTE - The provisions of NOTES 2-5 of table 28 apply to this table.

2.5.2 Function blocks

For the purposes of programmable controller programming languages, a function block is a program
organization unit which, when executed, yields one or more values. Multiple, named instances
(copies) of a function block can be created. Each instance shall have an associated identifier (the
instance name), and a data structure containing its output and internal variables, and, depending on
the implementation, values of or references to its input parameters. All the values of the output
variables and the necessary internal variables of this data structure shall persist from one execution of
the function block to the next; therefore, invocation of a function block with the same arguments (input
parameters) need not always yield the same output values.

Only the input and output parameters shall be accessible outside of an instance of a function block,
i.e., the function block's internal variables shall be hidden from the user of the function block.

Execution of the operations of a function block shall be invoked as defined in clause 3 for textual
languages, according to the rules of network evaluation given in clause 4 for graphic languages, or
under the control of sequential function chart (SFC) elements as defined in 2.6.

Any function block type which has already been declared can be used in the declaration of another
function block type or program type as shown in figure 3.

The scope of an instance of a function block shall be local to the program organization unit in which it
is instantiated, unless it is declared to be global in a VAR_GLOBAL block as defined in 2.7.1.

As illustrated in 2.5.2.2, the instance name of a function block instance can be used as the input to a
function or function block if declared as an input variable in a VAR_INPUT declaration, or as an
input/output variable of a function block in a VAR_IN_OUT declaration, as defined in 2.4.3.

2.5.2.1 Representation

As illustrated in figure 9, an instance of a function block can be created textually, by declaring a data
element using the declared function block type in a VAR...END_VAR construct, identically to the use
of a structured data type, as defined in 2.4.3.

As further illustrated in figure 9, an instance of a function block can be created graphically, by using a
graphic representation of the function block, with the function block type name inside the block, and
the instance name above the block, following the rules for representation of functions given in 2.5.1.1
with the following additional conditions:

 1) The size and orientation of the block may vary depending on the number of inputs, outputs, and
other information to be displayed.

 2) Formal input and output parameter names shall be shown at the inside left and right sides of the
block, respectively.

As shown in figure 9, input and output variables of an instance of a function block can be represented
as elements of structured data types as defined in 2.3.6.1.

If either of the two graphical negation features defined in table 19 is supported for function blocks, it
shall also be supported for functions as defined in 2.5.1, and vice versa.

 - 74 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Function block instances can be declared to be retentive, as shown in feature 3 of table 33.

IEC DIS 1131-3 - 75 -

LIST OF TABLES (continued)

Table Page

Graphical (FBD language) Textual (ST language)

 FF75
 +------+
 | SR |
 %IX1---|S1 Q1|---%QX3
 %IX2---|R |
 +------+

VAR FF75: SR; END_VAR (* Declaration *)

FF75(S1:=%IX1, R:=%IX2); (* Invocation *)

%QX3 := FF75.Q1 ; (* Assign Output *)

Figure 9 - Function block instantiation example

Assignment of a value to an output variable of a function block is not allowed except from within the
function block. The assignment of a value to the input of a function block is permitted only as part of
the invocation of the function block. Allowable usages of function block inputs and outputs are
summarized in table 32, using the function block FF75 of type SR shown in figure 9. The examples
are shown in the ST language.

Table 32 - Examples of function block I/O parameter usage

Usage Inside function block Outside function block

Input read IF S1 THEN ... Not allowed (note 1 and 2)

Input write Not allowed (notes 1 and 3) FF75(S1:=%IX1,R:=%IX2);

Output read Q1 := Q1 AND NOT R; %QX3 := FF75.Q1;

Output write Q1 := 1; Not Allowed (note 1)
NOTES

1 Those usages listed as "not allowed" in this table could lead to implementation-
dependent, unpredictable side effects.

2 Reading of an input of a function block may be performed by the "communication
function", "operator interface function", or the "programming, testing, and monitoring
functions" defined in Part 1 of this standard.

3 As illustrated in 2.5.2.2, modification within the function block of a variable declared in a
VAR_IN_OUT block is permitted.

 - 76 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.5.2.2 Declaration

As illustrated in figure 10, a function block shall be declared textually or graphically in the same
manner as defined for functions in 2.5.1.3, with the differences described below and summarized in
table 33:

 1) The delimiting keywords for declaration of function blocks shall be FUNCTION_BLOCK...
END_FUNCTION_BLOCK.

 2) A function block can have more than one output parameter, declared textually with the
VAR_OUTPUT...END_VAR construct defined in 2.4.3, or graphically as illustrated in figure 10.

 3) The RETAIN qualifier defined in 2.4.3 can be used for internal and output variables of a function
block, as shown in features 1, 2, and 3 in table 33.

 4) The values of variables which are passed to the function block via a VAR_IN_OUT or
VAR_EXTERNAL construct can be modified from within the function block, as shown in feature
4 of table 33.

 5) The output values of a function block instance whose name is passed into the function block via
a VAR_INPUT, VAR_IN_OUT, or VAR_EXTERNAL construct can be accessed, but not
modified, from within the function block, as shown in features 5, 6, and 7 of table 33.

 6) A function block whose instance name is passed into the function block via a VAR_IN_OUT or
VAR_EXTERNAL construction can be invoked from inside the function block, as shown in
features 6 and 7 of table 33.

 7) In textual declarations, the R_EDGE and F_EDGE qualifiers can be used to indicate an edge-
detection function on Boolean inputs. This shall cause the implicit declaration of a function
block of type R_TRIG or F_TRIG, respectively, as defined in 2.5.2.3.2, to perform the required
edge detection. For an example of this construction, see features 8a and 8b of table 33 and the
accompanying NOTE.

 8) The construction illustrated in table 33, features 9a and 9b shall be used in graphical
declarations for rising and falling edge detection. When the ISO/IEC 646 character set is used,
the "greater than" (>) or "less than" (<) character shall be in line with the edge of the function
block. When graphic or semigraphic representations are employed, the notation of IEC 617,
Part 12 for dynamic inputs shall be used.

 9) The variable initialization constructs defined in 2.4.3.2 can be used for the declaration of default
values of function block inputs and initial values of their internal and output variables.

10) If the generic data types given in table 11 are used in the declaration of standard function block
inputs and outputs, then the rules for inferring the actual types of the outputs of such function
block types shall be part of the function block type definition.

As illustrated in figure 12, only variables or function block instance names can be passed into a
function block via the VAR_IN_OUT construct, i.e., function or function block outputs cannot be
passed via this construction. This is to prevent the inadvertent modifications of such outputs.
However, "cascading" of VAR_IN_OUT constructions is permitted, as illustrated in figure 12c.

IEC DIS 1131-3 - 77 -

LIST OF TABLES (continued)

Table Page

a) FUNCTION_BLOCK DEBOUNCE

(*** External Interface ***)
VAR_INPUT
 IN : BOOL ; (* Default = 0 *)
 DB_TIME : TIME := t#10ms ; (* Default = t#10ms *)
END_VAR
VAR_OUTPUT OUT : BOOL ; (* Default = 0 *)
 ET_OFF : TIME ; (* Default = t#0s *)
END_VAR
VAR DB_ON : TON ; (** Internal Variables **)
 DB_OFF : TON ; (** and FB Instances **)
 DB_FF : SR ;
END_VAR

(** Function Block Body **)
DB_ON(IN := IN, PT := DB_TIME) ;
DB_OFF(IN := NOT IN, PT:=DB_TIME) ;
DB_FF(S1 :=DB_ON.Q, R := DB_OFF.Q) ;
OUT := DB_FF.Q ;
ET_OFF := DB_OFF.ET ;

END_FUNCTION_BLOCK

b) FUNCTION_BLOCK
(** External Interface **)
 +---------------+
 | DEBOUNCE |
 BOOL---|IN OUT|---BOOL
 TIME---|DB_TIME ET_OFF|---TIME
 +---------------+
(** Function Block Body **)

 DB_ON DB_FF
 +-----+ +----+
 | TON | | SR |
 IN----+------|IN Q|-----|S1 Q|---OUT
 | +---|PT ET| +--|R |
 | | +-----+ | +----+
 | | | | |
 | | DB_OFF |
 | | +-----+ |
 | | | TON | |
 +--|--O|IN Q|--+
 DB_TIME--+---|PT ET|--------------ET_OFF
 +-----+
 END_FUNCTION_BLOCK

Figure 10 - Examples of function block declarations
a) Textual declaration in ST language (see 3.3)
b) Graphical declaration in FBD language (see 4.3)

 - 78 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 33 - Function block declaration features

No. Description Example

1 RETAIN qualifier on internal variables VAR RETAIN X : REAL ; END_VAR

2 RETAIN qualifier on output variables VAR_OUTPUT RETAIN X : REAL ; END_VAR

3 RETAIN qualifier on internal function blocks VAR RETAIN TMR1: TON ; END_VAR

4a Input/output declaration (textual)

VAR_IN X: INT; END_VAR
VAR_IN_OUT A: INT ; END_VAR
A := A+X ;

4b Input/output declaration (graphical) See figure 12

5a Function block instance name as input
(textual)

VAR_INPUT I_TMR: TON ; END_VAR
EXPIRED := I_TMR.Q; (* Note 1 *)

5b Function block instance name as input
(graphical)

See figure 11a

6a Function block instance name as
input/output (textual)

VAR_IN_OUT IO_TMR: TOF ; END_VAR
IO_TMR(IN:=A_VAR, PT:=T#10S);
EXPIRED := IO_TMR.Q; (* Note 1 *)

6b Function block instance name as
input/output (graphical)

See figure 11b

7a Function block instance name as external
variable (textual)

VAR_EXTERNAL EX_TMR : TOF ;END_VAR
EX_TMR(IN:=A_VAR, PT:=T#10S);
EXPIRED := EX_TMR.Q; (* Note 1 *)

7b Function block instance name as external
variable (graphical)

See figure 11c

8a
8b

Textual declaration of:
rising edge inputs
falling edge inputs

FUNCTION_BLOCK AND_EDGE (* Note 2 *)
VAR_INPUT X : BOOL R_EDGE;
 Y : BOOL F_EDGE;
END_VAR
VAR_OUTPUT Z : BOOL ; END_VAR
Z := X AND Y ; (* ST language example *)
END_FUNCTION_BLOCK (*- see 3.3 *)

9a

9b

Graphical declaration of:
rising edge inputs

falling edge inputs

FUNCTION_BLOCK (* Note 2 *)
 +-----------+ (* External interface *)
 | AND_EDGE |
BOOL--->X Z|---BOOL
 | |
BOOL---<Y |
 | |
 +-----------+
 +---+ (* Function block body *)
 X---| & |---Z (* FBD language example *)
 Y---| | (* - see 4.3 *)
 +---+
END_FUNCTION_BLOCK

(continued on following page)

IEC DIS 1131-3 - 79 -

LIST OF TABLES (continued)

Table Page

Table 33 - Function block declaration features - continued
NOTES

1 It is assumed in these examples that the variables EXPIRED and A_VAR have been
declared of type BOOL.

2 The declaration of function block AND_EDGE in the above examples is equivalent to:
 FUNCTION_BLOCK AND_EDGE
 VAR INPUT X : BOOL; Y : BOOL; END_VAR
 VAR X_TRIG : R_TRIG ; Y_TRIG : F_TRIG ; END_VAR
 X_TRIG(CLK := X) ;
 Y_TRIG(CLK := Y) ;
 Z := X_TRIG.Q AND Y_TRIG.Q;
 END_FUNCTION_BLOCK

See 2.5.2.3.2 for the definition of the edge detection function blocks R_TRIG and F_TRIG.

FUNCTION_BLOCK

 +--------------+ (* External interface *)
 | INSIDE_A |
 TON---|I_TMR EXPIRED|---BOOL
 +--------------+

 I_TMR (* Function Block body *)
 +-----+
 | TON |
 |IN Q|---EXPIRED
 |PT ET|
 +-----+
END_FUNCTION_BLOCK

FUNCTION_BLOCK

 +--------------+ (* External interface *)
 | EXAMPLE_A |
 BOOL---|GO DONE|---BOOL
 +--------------+

 E_TMR (* Function Block body *)
 +-----+ I_BLK
 | TON | +--------------+
 GO---|IN Q| | INSIDE_A |
 t#100ms---|PT ET| E_TMR---|I_TMR EXPIRED|---DONE
 +-----+ +--------------+
END_FUNCTION_BLOCK

Figure 11a - Graphical use of a function block name as an input variable
(table 33, feature 5b)

 - 80 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

FUNCTION_BLOCK

 +--------------+ (* External interface *)
 | INSIDE_B |
 TON---|I_TMR----I_TMR|---TON
 BOOL--|TMR_GO EXPIRED|---BOOL
 +--------------+

 I_TMR (* Function Block body *)
 +-----+
 | TON |
 TMR_GO---|IN Q|---EXPIRED
 |PT ET|
 +-----+
END_FUNCTION_BLOCK

FUNCTION_BLOCK

 +--------------+ (* External interface *)
 | EXAMPLE_B |
 BOOL---|GO DONE|---BOOL
 +--------------+

 E_TMR (* Function Block body *)
 +-----+ I_BLK
 | TON | +---------------+
 |IN Q| | INSIDE_B |
 t#100ms---|PT ET| E_TMR---|I_TMR-----I_TMR|
 +-----+ GO------|TMR_GO EXPIRED|---DONE
 +---------------+
END_FUNCTION_BLOCK

Figure 11b - Graphical use of a function block name as an input/output variable
(table 33, feature 6b)

IEC DIS 1131-3 - 81 -

LIST OF TABLES (continued)

Table Page

FUNCTION_BLOCK
 +--------------+ (* External interface *)
 | INSIDE_C |
 BOOL--|TMR_GO EXPIRED|---BOOL
 +--------------+

VAR_EXTERNAL X_TMR : TON ; END_VAR

 X_TMR (* Function Block body *)
 +-----+
 | TON |
 TMR_GO---|IN Q|---EXPIRED
 |PT ET|
 +-----+
END_FUNCTION_BLOCK

PROGRAM
 +--------------+ (* External interface *)
 | EXAMPLE_C |
 BOOL---|GO DONE|---BOOL
 +--------------+

 VAR_GLOBAL X_TMR : TON ; END_VAR

 I_BLK (* Program body *)
 +---------------+
 | INSIDE_C |
 GO------|TMR_GO EXPIRED|---DONE
 +---------------+
END_PROGRAM

NOTE - PROGRAM declaration is defined in 2.5.3.

Figure 11c - Graphical use of a function block name as an external variable
(table 33, feature 7b)

 - 82 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

a) +-------+

 | ACCUM |
 INT---|A-----A|---INT
 INT---|X |
 +-------+
 +---+
 A---| + |---A
 X---| |
 +---+

FUNCTION_BLOCK ACCUM
 VAR_IN_OUT A : INT ; END_VAR
 VAR_INPUT X : INT ; END_VAR
 A := A+X ;
END_FUNCTION_BLOCK

b) ACC1
 +-------+
 | ACCUM |
 ACC----------|A-----A|---ACC
 +---+ | |
 X1---| * |---|X |
 X2---| | +-------+
 +---+

Note 1

c) ACC1 ACC2
 +-------+ +-------+
 | ACCUM | | ACCUM |
ACC----------|A-----A|----------------|A-----A|---ACC
 +---+ | | +---+ | |
X1---| * |---|X | X3---| * |---|X |
X2---| | +-------+ X4---| | +-------+
 +---+ +---+

Note 2

d) ACC1
 +---+ +-------+
 X1---| * | | ACCUM |
 X2---| |---|A-----A|---ACC
 +---+ | |
 X3-----------|X |
 +-------+

Note 3

 NOTES

1 A declaration such as
VAR
 ACC : INT ;
 X1 : INT ;
 X2 : INT ;
END_VAR
is assumed.

2 Declarations as in b) are assumed for ACC, X1, X2, X3, and X4.

3 ILLEGAL USAGE:
Input/output A is not a variable or function block name (see preceding text).

IEC DIS 1131-3 - 83 -

LIST OF TABLES (continued)

Table Page

Figure 12 - Examples of use of input/output variables
a) Graphical and textual declarations
b), c) Legal usage
d) Illegal usage

 - 84 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.5.2.3 Standard function blocks

Definitions of function blocks common to all programmable controller programming languages are
given in this subclause.

Where graphical declarations of standard function blocks are shown in this subclause, equivalent
textual declarations, as specified in 2.5.2.2, can also be written, as for example in table 35.

2.5.2.3.1 Bistable elements

The representation and function block bodies for standard bistable elements are shown in table 34.
The notation for these elements is chosen to be as consistent as possible with symbols 12-09-01 and
12-09-02 of IEC 617-12.

Table 34 - Standard bistable function blocks

No. Graphical form Function block body

1 Bistable Function Block (set dominant) (notes 1 and 2)

 +-----+
 | SR |
 BOOL---|S1 Q1|---BOOL
 BOOL---|R |
 +-----+

 +-----+
 S1----------------| >=1 |---Q1
 +---+ | |
 R------O| & |----| |
 Q1------| | | |
 +---+ +-----+

2 Bistable Function Block (reset dominant) (notes 1 and 2)

 +-----+
 | RS |
 BOOL---|S Q1|---BOOL
 BOOL---|R1 |
 +-----+

 +---+
 R1----------------O| & |---Q1
 +-----+ | |
 S-------| >=1 |----| |
 Q1------| | | |
 +-----+ +---+

NOTES

1 The function block body is specified in the Function Block Diagram (FBD) language
defined in 4.3.

2 The initial state of the output variable Q1 shall be the normal default value of zero for
Boolean variables.

IEC DIS 1131-3 - 85 -

LIST OF TABLES (continued)

Table Page

2.5.2.3.2 Edge detection

The graphic representation of standard rising- and falling-edge detecting function blocks shall be as
shown in table 35. The behaviors of these blocks shall be equivalent to the definitions given in this
table. This behavior corresponds to the following rules:

 1) The "Q" output of an R_TRIG function block shall stand at the Boolean "1" value from one
execution of the function block to the next, following the "0" to "1" transition of the "CLK" input,
and shall return to "0" at the next execution.

 2) The "Q" output of an F_TRIG function block shall stand at the Boolean "1" value from one
execution of the function block to the next, following the "1" to "0" transition of the "CLK" input,
and shall return to "0" at the next execution.

Table 35 - Standard edge detection function blocks

No. Graphical form Definition
(ST language - see 3.3)

1 Rising edge detector

 +--------+
 | R_TRIG |
 BOOL---|CLK Q|---BOOL
 +--------+

FUNCTION_BLOCK R_TRIG
 VAR_INPUT CLK: BOOL; END_VAR
 VAR_OUTPUT Q: BOOL; END_VAR
 VAR RETAIN M: BOOL; END_VAR
Q := CLK AND NOT M;
M := CLK;
END_FUNCTION_BLOCK

2 Falling edge detector

 +--------+
 | F_TRIG |
 BOOL---|CLK Q|---BOOL
 +--------+

FUNCTION_BLOCK F_TRIG
 VAR_INPUT CLK: BOOL; END_VAR
 VAR_OUTPUT Q: BOOL; END_VAR
 VAR RETAIN M: BOOL; END_VAR
Q := NOT CLK AND NOT M;
M := NOT CLK;
END_FUNCTION_BLOCK

 - 86 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.5.2.3.3 Counters

The graphic representations of standard counter function blocks, with the types of the associated
inputs and outputs, shall be as shown in table 36. The operation of these function blocks shall be as
specified in the corresponding function block bodies.

Table 36 - Standard counter function blocks

No. Graphical form Function block body
(ST language - see 3.3)

1 Up-counter

 +-----+
 | CTU |
 BOOL--->CU Q|---BOOL
 BOOL---|R |
 INT---|PV CV|---INT
 +-----+

 IF R THEN CV := 0 ;
 ELSIF CU AND (CV < PVmax)
 THEN CV := CV+1;
 END_IF ;
 Q := (CV >= PV) ;

2 Down-counter

 +-----+
 | CTD |
 BOOL--->CD Q|---BOOL
 BOOL---|LD |
 INT---|PV CV|---INT
 +-----+

 IF LD THEN CV := PV ;
 ELSIF CD AND (CV > PVmin)
 THEN CV := CV-1;
 END_IF ;
 Q := (CV <= 0) ;

3 Up-down counter

 +------+
 | CTUD |
 BOOL--->CU QU|---BOOL
 BOOL--->CD QD|---BOOL
 BOOL---|R |
 BOOL---|LD |
 INT---|PV CV|---INT
 +------+

 IF R THEN CV := 0 ;
 ELSIF LD THEN CV := PV ;
 ELSE
 IF NOT (CU AND CD) THEN
 IF CU AND (CV < PVmax)
 THEN CV := CV+1;
 ELSIF CD AND (CV > PVmin)
 THEN CV := CV-1;
 END_IF;
 END_IF;
 END_IF ;
 QU := (CV >= PV) ;
 QD := (CV <= 0) ;

NOTE - The numerical values of the limit variables PVmin and PVmax are implementation-
dependent.

IEC DIS 1131-3 - 87 -

LIST OF TABLES (continued)

Table Page

2.5.2.3.4 Timers

The graphic form for standard timer function blocks shall be as shown in table 37. The operation of
these function blocks shall be as defined in the timing diagrams given in table 38.

The RTC function block shown as feature No. 4 in table 37 shall set the output CDT to the input value
PDT at the next evaluation of the function block following a transition from 0 to 1 of the IN input. The
CDT output of the RTC function block shall be undefined when the value of IN is 0.

Table 37 - Standard timer function blocks

No. Description Graphical form

1
2a
2b
3a
3b

*** is: TP (Pulse)

 TON (On-delay)

 T---0 (On-delay)

 TOF (Off-delay)

 0---T (Off-delay)

 +-------+
 | *** |
 BOOL---|IN Q|---BOOL
 TIME---|PT ET|---TIME
 +-------+

4 Real-time clock

 PDT = Preset date and time,
 loaded on rising edge of EN
CDT = Current date and time,
 valid when EN=1
Q = copy of EN

+-------+
| RTC |

BOOL---|IN Q|---BOOL
DT-----|PDT CDT|-----DT

+-------+

NOTES

1 In textual languages, features 2b and 3b shall not be used.

2 The effect of a change in the value of the PT input during the timing operation is an
implementation-dependent parameter."

Table 38 - Standard timer function blocks - timing diagrams

 - 88 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

 Pulse (TP) timing

 +--------+ ++ ++ +--------+
 IN | | || || | |
 --+ +-----++-++---+ +---------
 t0 t1 t2 t3 t4 t5

 +----+ +----+ +----+
 Q | | | | | |
 --+ +---------+ +--+ +-------------
 t0 t0+PT t2 t2+PT t4 t4+PT

 PT +---+ + +---+
 : / | /| / |
 ET : / | / | / |
 : / | / | / |
 : / | / | / |
 0-+ +-----+ +--+ +---------
 t0 t1 t2 t4 t5

(continued on following page)

IEC DIS 1131-3 - 89 -

LIST OF TABLES (continued)

Table Page

Table 38 - Standard timer Function Blocks - timing diagrams - continued

On-delay (TON) timing

 +--------+ +---+ +--------+
 IN | | | | | |
 --+ +--------+ +---+ +-------------
 t0 t1 t2 t3 t4 t5

 +---+ +---+
 Q | | | |
 -------+ +---------------------+ +-------------
 t0+PT t1 t4+PT t5

 PT +---+ +---+
 : / | + / |
 ET : / | /| / |
 : / | / | / |
 : / | / | / |
 0-+ +--------+ +---+ +-------------
 t0 t1 t2 t3 t4 t5

Off-delay (TOF) timing

 +--------+ +---+ +--------+
 IN | | | | | |
 ---+ +--------+ +---+ +-----------
 t0 t1 t2 t3 t4 t5

 +-------------+ +---------------------+
 Q | | | |
 ---+ +---+ +------
 t0 t1+PT t2 t5+PT

 PT +---+ +------
 : / | + /
 ET : / | /| /
 : / | / | /
 : / | / | /
 0------------+ +---+ +--------+
 t1 t3 t5

 - 90 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.5.2.3.5 Communication function blocks

Standard communication function blocks for programmable controllers are defined in IEC 1131-5.
These function blocks provide programmable communications functionality such as device verification,
polled data acquisition, programmed data acquisition, parametric control, interlocked control,
programmed alarm reporting, and connection management and protection.

2.5.3 Programs

A program is defined in IEC 1131-1 as a "logical assembly of all the programming language elements
and constructs necessary for the intended signal processing required for the control of a machine or
process by a programmable controller system."

Subclause 1.4.1 of this part describes the place of programs in the overall software model of a
programmable controller; subclause 1.4.2 describes the means available for inter- and intra-program
communication; and subclause 1.4.3 describes the overall process of program development.

The declaration and usage of programs is identical to that of function blocks as defined in 2.5.2.1 and
2.5.2.2, with the additional features shown in table 39 and the following differences:

 1) The delimiting keywords for program declarations shall be PROGRAM...END_PROGRAM.

 2) A program can contain a VAR_ACCESS...END_VAR construction, which provides a means of
specifying named variables which can be accessed by some of the communication services
specified in IEC 1131-5. An access path associates each such variable with an input, output or
internal variable of the program. The format and usage of this declaration shall be as described
in 2.7.1 and in IEC 1131-5.

 3) Programs can only be instantiated within resources, as defined in 2.7.1, while function blocks
can only be instantiated within programs or other function blocks.

The declaration and use of programs are illustrated in figure 19, and in examples F.7 and F.8 of annex
F.

Table 39 - Program declaration features

No. DESCRIPTION

1 to 9b Same as features 1 to 9b, respectively, of table 33

10 Formal input and output parameters

11 to 14 Same as features 1 to 4, respectively, of table 17

15 to 18 Same as features 1 to 4, respectively, of table 18

19 Use of directly represented variables (subclause 2.4.1.1)

20 VAR_GLOBAL...END_VAR declaration within a PROGRAM (see 2.4.3 and 2.7.1)

21 VAR_ACCESS...END_VAR declaration within a PROGRAM

IEC DIS 1131-3 - 91 -

LIST OF TABLES (continued)

Table Page

2.6 Sequential Function Chart (SFC) elements

2.6.1 General

This subclause defines sequential function chart (SFC) elements for use in structuring the internal
organization of a programmable controller program organization unit, written in one of the languages
defined in this standard, for the purpose of performing sequential control functions. The definitions in
this subclause are derived from IEC 848, with the changes necessary to convert the representations
from a documentation standard to a set of execution control elements for a programmable controller
program organization unit.

The SFC elements provide a means of partitioning a programmable controller program organization
unit into a set of steps and transitions interconnected by directed links. Associated with each step is a
set of actions, and with each transition is associated a transition condition.

Since SFC elements require storage of state information, the only program organization units which
can be structured using these elements are function blocks and programs.

If any part of a program organization unit is partitioned into SFC elements, the entire program
organization unit shall be so partitioned. If no SFC partitioning is given for a program organization
unit, the entire program organization unit shall be considered to be a single action which executes
under the control of the invoking entity.

2.6.2 Steps

A step represents a situation in which the behavior of a program organization unit with respect to its
inputs and outputs follows a set of rules defined by the associated actions of the step. A step is either
active or inactive. At any given moment, the state of the program organization unit is defined by the
set of active steps and the values of its internal and output variables.

As shown in table 40, a step shall be represented graphically by a block containing a step name in the
form of an identifier as defined in 2.1.2, or textually by a STEP...END_STEP construction. The
directed link(s) into the step can be represented graphically by a vertical line attached to the top of the
step. The directed link(s) out of the step can be represented by a vertical line attached to the bottom
of the step. Alternatively, the directed links can be represented textually by the TRANSITION...
END_TRANSITION construction defined in 2.6.3.

The step flag (active or inactive state of a step) can be represented by the logic value of a Boolean
structure element ***.X, where *** is the step name, as shown in table 40. This Boolean variable has
the value "1" when the corresponding step is active, and "0" when it is inactive. The state of this
variable is available for graphical connection at the right side of the step as shown in table 40.

Similarly, the elapsed time, ***.T, since initiation of a step can be represented by a structure element
of type TIME, as shown in table 40. When a step is deactivated, the value of the step elapsed time
shall remain at the value it had when the step was deactivated. When a step is activated, the value of
the step elapsed time shall be reset to t#0s.

The scope of step names, step flags, and step times shall be local to the program organization unit in
which the steps appear.

The initial state of the program organization unit is represented by the initial values of its internal and
output variables, and by its set of initial steps, i.e., the steps which are initially active. Each SFC
network, or its textual equivalent, shall have exactly one initial step.

 - 92 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

An initial step can be drawn graphically with double lines for the borders, and with the ISO 646
character set shall be drawn as shown in table 40.

For system initialization as defined in 2.4.2, the default initial elapsed time for steps is t#0s, and the
default initial state is Boolean 0 for ordinary steps and Boolean 1 for initial steps. However, when an
instance of a function block or a program is declared to be retentive (for instance, as in feature 3 of
table 33), the states and (if supported) elapsed times of all steps contained in the program or function
block shall be treated as retentive for system initialization as defined in 2.4.2.

IEC DIS 1131-3 - 93 -

LIST OF TABLES (continued)

Table Page

Table 40 - Step features

No. REPRESENTATION DESCRIPTION

1 |
 +-----+
 | *** |
 +-----+
 |

Step - Graphical form

with directed links
"***" = step name

 |
 +=======+
 || *** ||
 || ||
 +=======+
 |

Initial step - Graphical form with directed links
"***" = Name of initial step

(note 2)

2 STEP *** :
 (* Step body *)
END_STEP

Step - Textual form
without directed links (see 2.6.3)

"***" = Step name

 INITIAL_STEP *** :
 (* Step body *)
END_STEP

Initial step - Textual form
without directed links (see 2.6.3)

"***" = Name of initial step

3a

***.X

Step flag - General form
"***" = Step name

***.X = Boolean 1 when *** is active, Boolean 0
otherwise

3b

 |
 +-----+
 | *** |----
 +-----+
 |

Step flag - Direct connection
of Boolean variable ***.X to

right side of step "***"

4

***.T

Step elapsed time - General form
"***" = Step name

***.T = A variable of type TIME

(See 2.6.2)
NOTES

1. When feature 3a, 3b, or 4 is supported, it shall be an error if the user program
attempts to modify the associated variable. For example, if S4 is a step name, then
the following statements would be errors in the ST language defined in 3.3:

S4.X := 1 ; (* ERROR *)
S4.T := t#100ms ; (* ERROR *)

2. The upper directed link is not required if the initial step has no predecessors.

 - 94 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.6.3 Transitions

A transition represents the condition whereby control passes from one or more steps preceding the
transition to one or more successor steps along the corresponding directed link. The transition shall
be represented by a horizontal line across the vertical directed link.

The direction of evolution following the directed links shall be from the bottom of the predecessor
step(s) to the top of the successor step(s).

Each transition shall have an associated transition condition which is the result of the evaluation of a
single Boolean expression. A transition condition which is always true shall be represented by the
symbol "1" or the keyword TRUE.

A transition condition can be associated with a transition by one of the following means, as shown in
table 41:

 1) By placing the appropriate Boolean expression in the ST language defined in 3.3 to the right
of the vertical directed link.

 2) By a ladder diagram network in the LD language defined in 4.2, whose output intersects the
vertical directed link instead of a right rail.

 3) By a network in the FBD language defined in 4.3, whose output intersects the vertical
directed link.

 4) By a LD or FBD network whose output intersects the vertical directed link via a connector as
defined in 4.1.1.

 5) By a TRANSITION...END_TRANSITION construct using the ST language. This shall consist
of:

- The keywords TRANSITION FROM followed by the step name of the predecessor step (or, if
there is more than one predecessor, by a parenthesized list of predecessor steps);

- The keyword TO followed by the step name of the successor step (or, if there is more than one
successor, by a parenthesized list of successor steps);

- The assignment operator (:=), followed by a Boolean expression in the ST language, specifying
the transition condition;

- The terminating keyword END_TRANSITION.

 6) By a TRANSITION...END_TRANSITION construct using the IL language defined in 3.2.
This shall consist of:

- The keywords TRANSITION FROM followed by the step name of the predecessor step (or, if
there is more than one predecessor, by a parenthesized list of predecessor steps), followed by
a colon (‘:’);

- The keyword TO followed by the step name of the successor step (or, if there is more than one
successor, by a parenthesized list of successor steps);

- Beginning on a separate line, a list of instructions in the IL language, the result of whose
evaluation determines the transition condition;

- The terminating keyword END_TRANSITION on a separate line.

IEC DIS 1131-3 - 95 -

LIST OF TABLES (continued)

Table Page

 7) By the use of a transition name in the form of an identifier to the right of the directed link.
This identifier shall refer to a TRANSITION...END_TRANSITION construction defining one of
the following entities, whose evaluation shall result in the assignment of a Boolean value to
the variable denoted by the transition name:
- A network in the LD or FBD language;
- A list of instructions in the IL language;
- An assignment of a Boolean expression in the ST language.

The scope of a transition name shall be local to the program organization unit in which the transition is
located.

It shall be an error in the sense of 1.5.1 if any "side effect" (for instance, the assignment of a value to a
variable other than the transition name) occurs during the evaluation of a transition condition.

Table 41 - Transitions and transition conditions

No. EXAMPLE DESCRIPTION

1

 |
 +-----+
 |STEP7|
 +-----+
 |
 + %IX2.4 & %IX2.3
 |
 +-----+
 |STEP8|
 +-----+
 |

Predecessor step

Transition condition
using ST language

(see 3.3)

Successor step

2

 |
 +-----+
 |STEP7|
 +-----+
 | %IX2.4 %IX2.3 |
 +---||-----||--------+
 | |
 +-----+
 |STEP8|
 +-----+
 |

Predecessor step

Transition condition
using LD language

(see 4.2)

Successor step

 - 96 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

3

 |
 +-----+
 |STEP7|
 +-------+ +-----+
 | & | |
%IX2.4---| |-----+
%IX2.3---| | |
 +-------+ +-----+
 |STEP8|
 +-----+
 |

Predecessor step

Transition condition
using FBD language

(see 4.3)

Successor step

(continued on following page)

IEC DIS 1131-3 - 97 -

LIST OF TABLES (continued)

Table Page

Table 41 - Transitions and transition conditions (continued)

No. Example Description

4

 |
 +-----+
 |STEP7|
 +-----+
 |
 >TRANX>-------------+
 |
 +-----+
 |STEP8|
 +-----+
 |

Use of connector:

Predecessor step

Transition connector

Successor step

4a

4b

 | %IX2.4 %IX2.3
 +---||-----||---->TRANX>
 |
 +-------+
 | & |
 %IX2.4---| |-->TRANX>
 %IX2.3---| |
 +-------+

Transition condition:
Using LD language

(see 4.2)

Using FBD language
(see 4.3)

5

STEP STEP7: END_STEP
TRANSITION FROM STEP7 TO STEP8
 := %IX2.4 & %IX2.3 ;
END_TRANSITION
STEP STEP8: END_STEP

Textual equivalent
of feature 1

using ST language
(see 3.3)

6

STEP STEP7: END_STEP
TRANSITION FROM STEP7 TO STEP 8:
 LD %IX2.4
 AND %IX2.3
END_TRANSITION
STEP STEP8: END_STEP

Textual equivalent
of feature 1

using IL language
(see 3.2)

(continued on following page)

 - 98 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 41 - Transitions and transition conditions (continued)

No. Example Description

7

|
+-----+
|STEP7|
+-----+

|
 + TRAN78

|
+-----+
|STEP8|
+-----+

|

Use of transition name:

Predecessor step

Transition name

Successor step

7a

TRANSITION TRAN78:
 | |
 | %IX2.4 %IX2.3 TRAN78 |
 +---||-----||------()---+
 | |
 END_TRANSITION

Transition condition
using LD language

(see 4.2)

7b

TRANSITION TRAN78:
 +-------+
 | & |
 %IX2.4---| |--TRAN78
 %IX2.3---| |
 +-------+
END_TRANSITION

Transition condition
using FBD language

(see 4.3)

7c

TRANSITION TRAN78:
 LD %IX2.4
 AND %IX2.3
END_TRANSITION

Transition condition
using IL language

(see 3.2)

7d

TRANSITION TRAN78
 := %IX2.4 & %IX2.3 ;
END_TRANSITION

Transition condition
using ST language

(see 3.3)
NOTES

1. If feature 1 of table 40 is supported, then one or more of features 1, 2, 3, 4, or 7 of this
table shall be supported.

2. If feature 2 of table 40 is supported, then feature 5 or 6 of this table, or both, shall be
supported.

IEC DIS 1131-3 - 99 -

LIST OF TABLES (continued)

Table Page

2.6.4 Actions

Zero or more actions shall be associated with each step. A step which has zero associated actions
shall be considered as having a WAIT function, that is, waiting for a successor transition condition to
become true.

An action can be a Boolean variable, a collection of instructions in the IL language defined in 3.2, a
collection of statements in the ST language defined in 3.3, a collection of rungs in the LD language
defined in 4.2, a collection of networks in the FBD language defined in 4.3, or a sequential function
chart (SFC) organized as defined in this subclause (2.6).

Actions shall be declared via one or more of the mechanisms defined in 2.6.4.1, and shall be
associated with steps via textual step bodies or graphical action blocks, as defined in 2.6.4.2. The
details of action block representation are defined in 2.6.4.3. Control of actions shall be expressed by
action qualifiers as defined in 2.6.4.4.

2.6.4.1 Declaration

A programmable controller implementation which supports SFC elements shall provide one or more of
the mechanisms defined in table 42 for the declaration of actions. The scope of the declaration of an
action shall be local to the program organization unit containing the declaration.

 - 100 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 42 - Declaration of actions

No. Feature

1 Any Boolean variable declared in a VAR or VAR_OUTPUT block, or their graphical
equivalents, can be an action.

 Example Feature

2l

+--+
| ACTION_4 |
+--+
	%IX1 %MX3 S8.X %QX17					
+---		-----		----		-----()---+
	+------+					
+----	EN ENO	%MX10				
	C--	LT	----------(S)---+			
	D--					
	+------+					
+--+

Graphical
declaration

in LD
language
(see 4.2)

2s

+--+
| OPEN_VALVE_1 |
+--+
| | ... |
| +=================+ |
| || VALVE_1_READY || |
| +=================+ |
| | |
| + STEP8.X |
| | |
| +-----------------+ +---+-----------+ |
| | VALVE_1_OPENING |--| N |VALVE_1_FWD| |
| +-----------------+ +---+-----------+ |
| | ... |
+--+

Inclusion of
SFC

elements
in action

2f

+--+
| ACTION_4 |
+--+
| +---+ |
%IX1--	&	
%MX3--		--%QX17
S8.X---------		
+---+ FF28		
+----+		
	SR	
+------+	Q1	-%MX10
C--	LT	--
D--		+----+
+------+		
+--+

Graphical
declaration

in FBD
language
(see 4.3)

(continued on following page)

IEC DIS 1131-3 - 101 -

LIST OF TABLES (continued)

Table Page

Table 42 - Declaration of actions (continued)

No. Example Feature

3s

ACTION ACTION_4:
 %QX17 := %IX1 & %MX3 & S8.X ;
 FF28(S1 := (C<D));
 %MX10 := FF28.Q;
END_ACTION

Textual
declaration

in ST
language
(see 3.3)

3i

ACTION ACTION_4:
LD S8.X
AND %IX1
AND %MX3
ST %QX17
LD C
LT D
S1 FF28
LD FF28.Q
ST %MX10
END_ACTION

Textual
declaration

in IL
language
(see 3.2)

NOTES

1 - The step flag S8.X is used in these examples to obtain the desired result that, when S8
is deactivated, %QX17 := 0.

2 - If feature 1 of table 40 is supported, then one or more of the features in this table, or
feature 4 of table 43, shall be supported.

3 - If feature 2 of table 40 is supported, then one or more of features 1,3s, or 3i of this table
shall be supported.

 - 102 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.6.4.2 Association with steps

A programmable controller implementation which supports SFC elements shall provide one or more of
the mechanisms defined in table 43 for the association of actions with steps.

Table 43 - Step/action association

No. Example Feature

1

 |
 +----+ +-----+----------+---+
 | S8 |--| L | ACTION_1 |DN1|
 +----+ |t#10s| | |
 | +-----+----------+---+
 + DN1
 |

Action block
(see 2.6.4.3)

2

 |
 +----+ +-----+---------------------+---+
 | S8 |--| L | ACTION_1 |DN1|
 +----+ |t#10s| | |
 | +-----+---------------------+---+
 +DN1 | P | ACTION_2 | |
 | +-----+---------------------+---+
 | | N | ACTION_3 | |
 | +-----+---------------------+---+

Concatenated
action blocks

3

STEP S8:
 ACTION_1(L,t#10s,DN1) ;
 ACTION_2(P) ;
 ACTION_3(N) ;
END_STEP

Textual

step body

4

 +-----+----------------------+---+
 ----| N | ACTION_4 | |---
 +-----+----------------------+---+
 | %QX17 := %IX1 & %MX3 & S8.X ; |
 | FF28 (S1 := (C<D)); |
 | %MX10 := FF28.Q; |
 +--------------------------------+

Action block
"d" Field

(see 2.6.4.3)

NOTE - When feature 4 is used, the corresponding action name cannot be used in any other
action block.

IEC DIS 1131-3 - 103 -

LIST OF TABLES (continued)

Table Page

2.6.4.3 Action blocks

As shown in table 44, an action block is a graphical element for the combination of a Boolean variable
with one of the action qualifiers specified in subclause 2.6.4.4 to produce an enabling condition,
according to the rukes given in subclause 2.6.4.5, par an associated action.

The action block provides a means of optionally specifying Boolean "indicator" variables, indicated by
the "c" field in table 44, which can be set by the specified action to indicate its completion, timeout,
error conditions, etc. If the "c" field is not present, and the "b" field specifies that the action shall be a
Boolean variable, then this variable shall be interpreted as the "c" variable when required.

When action blocks are concatenated graphically as illustrated in table 43, such concatenations can
have multiple indicator variables, but shall have only a single common Boolean input variable, which
shall act simultaneously upon all the concatenated blocks.

As well as being associated with a step, an action block can be used as a graphical element in the LD
or FBD languages specified in clause 4. In this case, signal or power flow through an action block
shall follow the rules specified in 4.1.1.

Table 44 - Action block features

No. Feature Graphical form

1
2
3

4
5
6
7

"a" : Qualifier as per 2.6.4.4
"b" : Action name
"c" : Boolean "indicator"
 variables
"d" : Action using:

 IL language (3.2)
 ST language (3.3)
 LD language (4.2)
 FBD language (4.3)

+-----+--------------+-----+

---| "a" | "b" | "c" |---
+-----+--------------+-----+
| "d" |
| |
+--------------------------+

No. Feature/Example

8 Use of action blocks in ladder diagrams (see 4.2):

 | S8.X %IX7.5 +---+------+---+ OK1 |
+--| |----| |----| N | ACT1 |DN1|--()--+
| +---+------+---+ |

9 Use of action blocks in function block diagrams (see 4.3):

 +---+ +---+------+-----+
 S8.X---| & |-----| N | ACT1 | DN1 |---OK1
 %IX7.5---| | +---+------+-----+
 +---+

NOTES

 1. Field "a" can be omitted when the qualifier is "N".

 2. Field "c" can be omitted when no feedback variable is used.

 - 104 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.6.4.4 Action qualifiers

Associated with each step/action association defined in 2.6.4.2, or each occurrence of an action block
as defined in 2.6.4.3, shall be an action qualifier. The value of this qualifier shall be one of the values
listed in table 45. In addition, the qualifiers L, D, SD, DS, and SL shall have an associated duration of
type TIME.

NOTE - IEC 848 gives informal definitions and examples of the use of these qualifiers.
This standard formalizes these definitions, redefining the "S" qualifier and introducing the
"R" qualifier. The control of actions using these qualifiers is defined in the following
subclause, and additional examples of their use are given in annex F.

Table 45 - Action qualifiers

No. Qualifier Explanation

1 None Non-stored (null qualifier)

2 N Non-stored

3 R overriding Reset

4 S Set (Stored)

5 L time Limited

6 D time Delayed

7 P Pulse

8 SD Stored and time Delayed

9 DS Delayed and Stored

10 SL Stored and time Limited

2.6.4.5 Action control

The control of actions shall be functionally equivalent to the application of the following rules:

 1) Associated with each action shall be the functional equivalent of an instance of the
ACTION_CONTROL function block defined in figures 14 and 15. If the action is declared as
a Boolean variable, as defined in 2.6.4.1, the "Q" output of this block shall be the state of this
Boolean variable. If the action is declared as a collection of statements or networks, as
defined in 2.6.4.1, then this collection shall be executed upon each invocation of the
program organisation unit (POU) in which the action is contained while the "Q" output of the
ACTION_CONTROL function block stands at Boolean 1. The statements or networks shall
be executed one final time after the falling edge of "Q".

 2) A Boolean input to the ACTION_CONTROL block for an action shall be said to have an
association with a step as defined in 2.6.4.2, or with an action block as defined in 2.6.4.3, if
the corresponding qualifier is equivalent to the input name (N, R, S, L, D, P, SD, DS, or SL).
The association shall be said to be active if the associated step is active, or if the associated
action block's input has the value Boolean 1. The active associations of an action are
equivalent to the set of active associations of all inputs to its ACTION_CONTROL function
block.

IEC DIS 1131-3 - 105 -

LIST OF TABLES (continued)

Table Page

A Boolean input to an ACTION_CONTROL block shall have the value Boolean 1 if it has at least
one active association, and the value Boolean 0 otherwise.

 3) The value of the T input to an ACTION_CONTROL block shall be the value of the duration
portion of a time-related qualifier (L, D, SD, DS, or SL) of an active association. If no such
association exists, the value of the T input shall be t#0s.

4) It shall be an error in the sense of subclause 1.5.1 if one or more of the following conditions
exist:

 a) More than one active association of an action has a time-related qualifier (L, D, SD, DS, or SL).

 b) The SD input to an ACTION_CONTROL block has the Boolean value 1 when the Q1 output of
its SL_FF block has the Boolean value 1.

 c) The SL input to an ACTION_CONTROL block has the Boolean value 1 when the Q1 output of
its SD_FF block has the Boolean value 1.

 5) It is not required that the ACTION_CONTROL block itself be implemented, but only that the
control of actions be equivalent to the preceding rules. Only those portions of the action
control appropriate to a particular action need be instantiated, as illustrated in figure 16. In
particular, note that simple MOVE (:=) and Boolean OR functions suffice for control of
Boolean variable actions if the latter's associations have only "N" qualifiers.

 +----------------+
 | ACTION_CONTROL |
BOOL---|N Q|---BOOL
BOOL---|R |
BOOL---|S |
BOOL---|L |
BOOL---|D |
BOOL---|P |
BOOL---|SD |
BOOL---|DS |
BOOL---|SL |
TIME---|T |
 +----------------+

Figure 14 - ACTION_CONTROL function block - External interface
(Not visible to the user)

 - 106 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

 +---+
 +---O| & |---Q
 | +-----+ | |
N--|---| >=1 |--| |
 | S_FF | | +---+
R--+ +----+ | |
 | | RS | | |
S--|----------------------|S Q1|-----------------| |
 +----------------------|R1 | | |
 | +----+ +---+ | |
L--|---------+--------------------| & |----------| |
	L_TMR +--O				
	+-----+	+---+			
		TON			
+------	IN Q	---+ D_TMR			
+-------------	PT	+-----+			
	+-----+	TON			
D--	--	-----------------------------	IN Q	------	
+-----------------------------	PT				
	P_TRIG +-----+				
	+--------+				
		R_TRIG			
P--	--	------------	CLK Q	--------------------	
	SD_FF +--------+ SD_TMR				
	+----+ +-----+				
		RS		TON	
SD-	--	---	S Q1	----------------	IN Q
+--	---	R1	+------------	PT	
	+----+	DS_TMR +-----+ DS_FF			
+------------+ +-----+ +----+					
		TON		RS	
DS-	--	----------------	IN Q	----------	S Q1
+----------------	PT	+---	R1		
	+-----+	+----+			
+--	-----------------------------+				
	SL_FF				
	+----+				
		RS	+---+		
SL-|--|--------|S Q1|--+------------------| & |--| |
 +--|--------|R1 | | SL_TMR +--O| | +-----+
 | +----+ | +-----+ | +---+
 | | | TON | |
 | +----|IN Q|---+
T-----+---------------------|PT |
 +-----+

Figure 15 - ACTION_CONTROL function block body
(not visible to the user)

IEC DIS 1131-3 - 107 -

LIST OF TABLES (continued)

Table Page

 |
 +-----+ +---+------------+----------------+
 | S22 |---| N | HV_BREAKER | HV_BRKR_CLOSED |
 +-----+ +---+------------+----------------+
 | | S | START_INDICATOR |
 | +---+-----------------------------+
 + HV_BRKR_CLOSED
 |
 +-----+ +----+---------------+
 | S23 |---| SL | RUNUP_MONITOR |
 +-----+ |t#1m| |
 | +----+---------------+
 | | D | START_WAIT |
 | |t#1s| |
 | +----+---------------+
 + START_WAIT
 |
 +-----+ +-----+-----------------+------------------+
 | S24 |---| N | ADVANCE_STARTER | STARTER_ADVANCED |
 +-----+ +-----+-----------------+------------------+
 | | L | START_MONITOR |
 | |t#30s| |
 | +-----+------------------------------------+
 + STARTER_ADVANCED
 |
 +-----+ +-----+-----------------+-------------------+
 | S26 |---| N | RETRACT_STARTER | STARTER_RETRACTED |
 +-----+ +-----+-----------------+-------------------+
 |
 |
 + STARTER_RETRACTED
 |
 +-----+ +-----+-----------------+
 | S27 |---| R | START_INDICATOR |
 +-----+ +-----+-----------------+
 | | R | RUNUP_MONITOR |
 | +-----+-----------------+

NOTE - The complete SFC network and its associated declarations are not
shown in this example.

Figure 16a - Action control example - SFC representation

 - 108 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

S22.X---HV_BREAKER
S24.X--ADVANCE_STARTER
S26.X--RETRACT_STARTER

 START_INDICATOR_S_FF
 +----+
 | RS |
S22.X-----------------------|S Q1|-----------------START_INDICATOR
S27.X-----------------------|R1 |
 +----+

 START_WAIT_D_TMR
 +-----+
 | TON |
S23.X-----------------------|IN Q|---------------------START_WAIT
t#1s------------------------|PT |
 +-----+
RUNUP_MONITOR_SL_FF
 +----+
 | RS | +---+
S23.X---|S Q1|--+-----------------------------| & |--RUNUP_MONITOR
S27.X---|R1 | | RUNUP_MONITOR_SL_TMR +--O| |
 +----+ | +-----+ | +---+
 | | TON | |
 +---------|IN Q|---------+
t#1m----------------------|PT |
 +-----+
 +---+
S24.X------------+---------------------------| & |---START_MONITOR
 | START_MONITOR_L_TMR +---O| |
 | +-----+ | +---+
 | | TON | |
 +--------|IN Q|-------+
t#30s---------------------|PT |
 +-----+

Figure 16b - Action control example - functional equivalent
2.6.5 Rules of evolution

The initial situation of a SFC network is characterized by the initial step which is in the active state
upon initialization of the program or function block containing the network.

Evolutions of the active states of steps shall take place along the directed links when caused by the
clearing of one or more transitions.

A transition is enabled when all the preceding steps, connected to the corresponding transition symbol
by directed links, are active. The clearing of a transition occurs when the transition is enabled and
when the associated transition condition is true.

The clearing of a transition causes the deactivation (or "resetting") of all the immediately preceding
steps connected to the corresponding transition symbol by directed links, followed by the activation of
all the immediately following steps.

IEC DIS 1131-3 - 109 -

LIST OF TABLES (continued)

Table Page

The alternation Step/Transition and Transition/Step shall always be maintained in SFC element
connections, that is:

- Two steps shall never be directly linked; they shall always be separated by a transition.

- Two transitions shall never be directly linked; they shall always be separated by a step.

When the clearing of a transition leads to the activation of several steps at the same time, the
sequences to which these steps belong are called simultaneous sequences. After their simultaneous
activation, the evolution of each of these sequences becomes independent. In order to emphasize the
special nature of such constructs, the divergence and convergence of simultaneous sequences shall
be indicated by a double horizontal line.

Table 46 defines the syntax and semantics of the allowed combinations of steps and transitions.

The clearing time of a transition may theoretically be considered as short as one may wish, but it can
never be zero. In practice, the clearing time will be imposed by the programmable controller
implementation. For the same reason, the duration of a step activity can never be considered to be
zero.

Several transitions which can be cleared simultaneously shall be cleared simultaneously, within the
timing constraints of the particular programmable controller implementation and the priority constraints
defined in table 46.

Testing of the successor transition condition(s) of an active step shall not be performed until the
effects of the step activation have propagated throughout the program organization unit in which the
step is declared.

Figure 17 illustrates the application of these rules. In this figure, the active state of a step is indicated
by the presence of an asterisk (*) in the corresponding block. This notation is used for illustration only,
and is not a required language feature.

The application of the rules given in this subclause cannot prevent the formulation of "unsafe" SFCs,
such as the one shown in figure 18a, which may exhibit uncontrolled proliferation of tokens. Likewise,
the application of these rules cannot prevent the formulation of "unreachable" SFCs, such as the one
shown in figure 18b, which may exhibit "locked up" behavior. The programmable controller system
shall treat the existence of such conditions as errors as defined in 1.5.1.

 - 110 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 46 - Sequence evolution

No. Example Rule

1

|
+----+
| S3 |
+----+

|
 + c

|
+----+
| S4 |
+----+

|

Single sequence:
The alternation step-transition is repeated

in series.

Example:
An evolution from step S3 to step S4 shall
take place if and only if step S3 is in the
active state and the transition condition c

is true.

2a

 |
 +----+
 | S5 |
 +----+
 |
 +-----*----+--...
 | |
 + e + f
 | |
+----+ +----+
| S6 | | S8 |
+----+ +----+
 | |

Divergence of sequence selection:
A selection between several sequences

is represented by as many transition
symbols, under the horizontal line, as
there are different possible evolutions.

The asterisk denotes left-to-right priority
of transition evaluations.

Example:
An evolution shall take place from S5 to
S6 only if S5 is active and the transition
condition "e" is true, or from S5 to S8

only if S5 is active and "f" is true and "e"
is false.

2b

 |
 +----+
 | S5 |
 +----+

 |
 +-----*-----+--...

 |2 |1
 + e + f
 | |

 +----+ +----+
 | S6 | | S8 |
 +----+ +----+

 | |

Divergence of sequence selection:
The asterisk, followed by numbered
branches, indicates a user-defined

priority of transition evaluation, with the
lowest-numbered branch having the

highest priority.

Example:
An evolution shall take place from S5 to
S8 only if S5 is active and the transition

condition "f" is true, or from S5 to S6
only if S5 is active, and "e" is true, and

"f" is false.

IEC DIS 1131-3 - 111 -

LIST OF TABLES (continued)

Table Page

2c |
 +----+
 | S5 |
 +----+
 |
 +------+----+--...
 | |
 +e +NOT e & f
 | |
 +----+ +----+
 | S6 | | S8 |
 +----+ +----+
 | |

Divergence of sequence selection:
The connection of the branch indicates

that the user must assure that
transitionconditions are mutually

exclusive, asspecified by IEC 848.

Example:
S6 only if S5 is active and the transition
condition "e" is true, or from S5 to S8
only if S5 is active and "e" is false and

"f" is true.

 - 112 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 46 - Sequence evolution (continued)

3

| |
+----+ +----+
| S7 | | S9 |
+----+ +----+

| |
 + h + j
| |

 +-----+-----+--...
|

+----+
|S10 |
+----+

|

Convergence of sequence selection:
The end of a sequence selection is
represented by as many transition

symbols, above the horizontal line, as
there are selection paths to be ended.

Example:
An evolution shall take place

from S7 to S10 only if S7 is active and
the transition condition "h" is true, or

from S9 to S10 only if S9 is active and
"j" is true.

4

|
+----+
|S11 |
+----+

|
 + b

|
 ==+=====+=====+==...

| |
+----+ +----+
| S12| | S14|
+----+ +----+

| |

Simultaneous sequences -
divergence:

Only one common transition symbol
shall be possible, immediately above

the double horizontal line of
synchronization.

Example:
An evolution shall take place from S11
to S12, S14,... only if S11 is active and

the transition condition "b" associated to
the common transition is true. After the

simultaneous activation of S12, S14,
etc., the evolution of each sequence

proceeds independently.

 | |
+----+ +----+
| S13| | S15|
+----+ +----+

| |
 ==+=====+=====+==...

|
 + d

|
+----+
|S16 |
+----+

|

Simultaneous sequences -
convergence:

Only one common transition symbol
shall be possible, immediately under the

double horizontal line of
synchronization.

Example:
An evolution shall take place from S13,
S15,... to S16 only if all steps above and
connected to the double horizontal line
are active and the transition condition

"d" associated to the common transition
is true.

IEC DIS 1131-3 - 113 -

LIST OF TABLES (continued)

Table Page

Table 46 - Sequence evolution (continued)

No. Example Rule

5a
5b
5c

 |
 +-----+
 | S30 |
 +-----+

 |
 +---*---+
 | |
 + a +d
 | |
+-----+ |
| S31 | |
+-----+ |
 | |
 + b |
 | |
+-----+ |
| S32 | |
+-----+ |
 | |
 + c |
 | |
 +---+---+

 |
 +-----+
 | S33 |
 +-----+

 |

Sequence skip:
A "sequence skip" is a special case of

sequence selection (Feature 2) in which
one or more of the branches contain no

steps. Features 5a, 5b, and 5c
correspond to the representation

options given in features 2a, 2b, and 2c,
respectively.

Example:
(Feature 5a shown)

An evolution shall take place from S30
to S33 if "a" is false and "d" is true, that

is, the sequence (S31, S32) will be
skipped.

 - 114 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

6a
6b
6c

|
+-----+
| S30 |
+-----+

|
 + a

|
 +---------+
 | |
 +-----+ |
 | S31 | |
 +-----+ |
 | |
 + b |
 | |
 +-----+ |
 | S32 | |
 +-----+ |
 | |
 *-----+ |
 | | |
 + c + d |
 | | |
 +-----+ +---+

| S33 |
+-----+

|

Sequence loop:
A "sequence loop" is a special case of

sequence selection (Feature 2) in which
one or more of the branches returns to
a preceding step. Features 6a, 6b, and

6c correspond to the representation
options given in features 2a, 2b, and 2c,

respectively.

Example:
(Feature 6a shown)

An evolution shall take place from S32
to S31 if "c" is false and "d" is true, that

is, the sequence (S31, S32) will be
repeated.

Table 46 - Sequence evolution (concluded)

No. Example Rule

IEC DIS 1131-3 - 115 -

LIST OF TABLES (continued)

Table Page

7

|
+-----+
| S30 |
+-----+

|
 + a

|
 +----<----+
 | |
 +-----+ |
 | S31 | |
 +-----+ |
 | |
 + b |
 | |
 +-----+ |
 | S32 | |
 +-----+ |
 | |
 *-----+ |
 | | |
 + c + d |
 | | |
 +-----+ +->-+

| S33 |
+-----+

|

Directional arrows:
When necessary for clarity, the "less
than" (<) character of the ISO 646

character set can be used to indicate
right-to-left control flow, and the "greater
than" (>) character to represent left-to-
right control flow. When this feature is

used, the corresponding character shall
be located between two "-" characters,
that is, in the character sequence "-<-"
or "->-" as shown in the accompanying

example.

 - 116 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

a) Transition not
enabled
(X = Don’t
care)

 | | | |
+------+ +-----+ +------+ +------+
|STEP10| |STEP9| |STEP13| |STEP22|
| | | | | * | | * |
+------+ +-----+ +------+ +------+
 | | | |
 + X ====+========+=========+====
 | |
+------+ + X
|STEP11| |
| | ====+====+===+====
+------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | | | |
 +------+ +------+
 | |

b) Transition
enabled but
not cleared
(X = 0)

 | | | |
+------+ +-----+ +------+ +------+
|STEP10| |STEP9| |STEP13| |STEP22|
| * | | * | | * | | * |
+------+ +-----+ +------+ +------+
 | | | |
 + X ===+========+=========+====
 | |
+------+ + X
|STEP11| |
| | ====+====+====+====
+------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | | | |
 +------+ +------+
 | |

c) Transition
cleared
 (X = 1)

 | | | |
+------+ +-----+ +------+ +------+
|STEP10| |STEP9| |STEP13| |STEP22|
| | | | | | | |
+------+ +-----+ +------+ +------+
 | | | |
 + X ====+========+=========+====
 | |
+------+ + X
|STEP11| |
| * | ====+====+===+====
+------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | * | | * |
 +------+ +------+
 | |

IEC DIS 1131-3 - 117 -

LIST OF TABLES (continued)

Table Page

NOTE - In this figure, the active state of a step is indicated by the presence of an asterisk (*) in the corresponding
block. This notation is used for illustration only, and is not a required language feature.

Figure 17 - SFC evolution rules

+----------------------+
| |
| +=====+
| || A ||
| +=====+
| |
| + t1
| |
| ======+==========+============+=======
| | |
| +-----+ +-----+
| | B | | C |
| +-----+ +-----+
| | |
| | *--------+
| | | |
| | + t2 + t3
| | | |
| | +---+ +---+
| | | D | | E |
| | +---+ +---+
| | | |
| ===+==========+============+=== |
| | |
| + t4 + t5
| | |
| +---+ +---+
| | F | | G |
| +---+ +---+
| | |
| + t6 + t7
| | |
+----------------------+---------------------+

Figure 18a - SFC errors: an "unsafe" SFC (see 2.6.5)

 - 118 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

+----------------------+
| |
| +=====+
| || A ||
| +=====+
| |
| + t1
| |
| ======+==========+============+=======
| | |
| +-----+ +-----+
| | B | | C |
| +-----+ +-----+
| | |
| | *--------+
| | | |
| | + t2 + t3
| | | |
| | +---+ +---+
| | | D | | E |
| | +---+ +---+
| | | |
| ===+==========+============+=== |
| | |
| + t4 + t5
| | |
| +---+ +---+
| | F | | G |
| +---+ +---+
| | |
| ====+==========+==========+===
| |
| + t6
| |
+---------------------------------+

Figure 18b - SFC errors: an "unreachable" SFC (see 2.6.5)

IEC DIS 1131-3 - 119 -

LIST OF TABLES (continued)

Table Page

2.6.6 Compatibility of SFC elements

SFCs can be represented graphically or textually, utilizing the elements defined above. Table 47
summarizes for convenience those elements which are mutually compatible for graphical and textual
representation, respectively.

Table 47 - Compatible SFC features

Table Graphical representation Textual representation

40 1, 3a, 3b, 4 2, 3a, 4

41 1,2,3,4,4a,4b,7,7a,7b 5, 6, 7c, 7d

42 1, 2l, 2s, 2f 3s,3i

43 1, 2, 4 3

44 1 to 9 --

45 1 to 10 1 to 10 (textual equivalent)

46 1 to 7 1 to 6

57 All --

2.6.7 Compliance requirements

In order to claim compliance with the requirements of 2.6, the elements shown in table 48 shall be
supported and the compatibility requirements defined in 2.6.6 shall be observed.

Table 48 - SFC minimal compliance requirements

Table Graphical representation Textual representation

40 1 2

41 1 or 2 or 3 or (4 and (4a or 4b))
 or (7 and (7a or 7b or 7c or 7d))

5 or 6

42 1 or 2l or 2f 3s or 3i

43 1 or 2 or 4 3

45 1 or 2 1 or 2

46 1 and (2a or 2b or 2c) and 3 and 4 Same (textual equivalent)

57 (1 or 2) and (3 or 4) and (5 or 6) and
(7 or 8) and (9 or 10) and (11 or 12)

Not required

 - 120 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.7 Configuration elements

As described in 1.4.1, a configuration consists of resources, tasks (which are defined within
resources), global variables, and access paths. Each of these elements is defined in detail in this
subclause.

A graphic example of a simple configuration is shown in figure 19a. Skeleton declarations for the
corresponding function blocks and programs are given in figure 19b. This figure serves as a
reference point for the examples of configuration elements given in the remainder of this subclause
such as in figure 20.

CONFIGURATION CELL_1
RESOURCE STATION_1 RESOURCE STATION_2

GLOBAL AND DIRECTLY REPRESENTED VARIABLES

ACCESS PATHS

w

BAKER ABLE CHARLIE DOG GAMMA ALPHA BETA

Communication function (See IEC 1131-5)

PROGRAM F PROGRAM G

A B

P1 P2

x1

y1

FB1 FB2

z1

x2

out1

y2
SLOW_1 FAST_1

SLOW_1

%IX1.1

b1
b2

y1

TASK TASK
SLOW_1 FAST_1

C D

TASK TASK
PER_2 INT_2

P1 P4

y1

y2

FB1 FB2

z2

x1
x2

PER_2

PROGRAM F PROGRAM H

HOUT1

%QW5

INT_2

c1 d1

PER_2

Figure
19a - Graphical example of a configuration

IEC DIS 1131-3 - 121 -

LIST OF TABLES (continued)

Table Page

FUNCTION_BLOCK A
 VAR_OUTPUT y1 : UINT ;
 y2 : BYTE ;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK B
 VAR_INPUT b1 : UINT ;
 b2 : BYTE ;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK C
 VAR_OUTPUT c1 : BOOL ;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK D
 VAR_INPUT d1 : BOOL ; END_VAR
 VAR_OUTPUT y2 : INT ; END_VAR
END_FUNCTION_BLOCK

 PROGRAM F
 VAR_INPUT x1 : BOOL ; x2 : UINT ; END_VAR
 VAR_OUTPUT y1 : BYTE ; END_VAR
 END_PROGRAM

 PROGRAM G
 VAR_OUTPUT out1 : UINT ; END_VAR
 VAR_EXTERNAL z1 : BYTE ; END_VAR
 VAR FB1 : A ; FB2 : B ; END_VAR
 FB1(...); out1 := FB1.y1; z1 := FB1.y2;
 FB2(b1 := FB1.y1, b2 := FB1.y2) ;
 END_PROGRAM

 PROGRAM H
 VAR_OUTPUT HOUT1: INT ; END_VAR
 VAR FB1 : C ; FB2 : D ; END_VAR
 FB1(...) ;
 FB2(d1 := FB1.c1); HOUT1 := FB2.y2;
 END_PROGRAM

Figure 19b - Skeleton function block and program declarations
 for configuration example

2.7.1 Configurations, resources, and access paths

Table 49 enumerates the language features for declaration of configurations, resources, global
variables, and access paths. Partial enumeration of TASK declaration features is also given;
additional information on tasks is provided in 2.7.2. The formal syntax for these features is given in
B.1.7. Figure 20 provides examples of these features, corresponding to the example configuration
shown in figure 19a and the supporting declarations in figure 19b.

The ON qualifier in the RESOURCE...ON...END_RESOURCE construction is used to specify the type
of "processing function" and its "man-machine interface" and "sensor and actuator interface" functions
upon which the resource and its associated programs and tasks are to be implemented. The
manufacturer shall supply a resource library of such functions, as illustrated in figure 3. Associated
with each element in this library shall be an identifier (the resource type name) for use in resource
declaration.

 - 122 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

The scope of a VAR_GLOBAL declaration shall be limited to the configuration or resource in which it
is declared, with the exception that an access path can be declared to a global variable in a resource
using feature 10d in table 49.

The VAR_ACCESS...END_VAR construction provides a means of specifying named variables which
can be accessed by some of the communication services specified in IEC 1131-5. An access path
associates each such variable with an input or output variable of a program, a global variable, or a
directly represented variable as defined in 2.4.1.1. If such a variable is a multi-element variable
(structure or array), an access path can be specified to an element of the variable. The direction of
the access path can be specified as READ_WRITE or READ_ONLY, indicating that the
communication services can both read and modify the value of the variable in the first case, or read
but not modify the value in the second case. If no direction is specified, the default direction is
READ_ONLY.

Table 49 - Configuration and resource declaration features

No. DESCRIPTION

1 CONFIGURATION...END_CONFIGURATION construction

2 VAR_GLOBAL...END_VAR construction within CONFIGURATION

3 RESOURCE...ON...END_RESOURCE construction

4 VAR_GLOBAL...END_VAR construction within RESOURCE

5a Periodic TASK construction within RESOURCE (Note 1)

5b Non-periodic TASK construction within RESOURCE (Note 1)

6a PROGRAM declaration with PROGRAM-to-TASK association using the
WITH construction (Note 1)

6b PROGRAM declaration with Function Block-to-TASK association using the
WITH construction (Note 1)

6c PROGRAM declaration with no TASK association (Note 1)

7 Declaration of directly represented variables in VAR_GLOBAL (Note 2)

8a Connection of directly represented variables to PROGRAM inputs

8b Connection of GLOBAL variables to PROGRAM inputs

9a Connection of PROGRAM outputs to directly represented variables

9b Connection of PROGRAM outputs to GLOBAL variables

10a VAR_ACCESS...END_VAR construction

10b Access paths to directly represented variables

10c Access paths to PROGRAM inputs

10d Access paths to GLOBAL variables in RESOURCES

10e Access paths to GLOBAL variables in CONFIGURATIONS

10f Access paths to PROGRAM outputs

IEC DIS 1131-3 - 123 -

LIST OF TABLES (continued)

Table Page

NOTES

1. See 2.7.2 for further description of TASK features.
2. See 2.4.3.1 for further description of related features.

 - 124 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

No. EXAMPLE

1 CONFIGURATION CELL_1

2 VAR_GLOBAL w: UINT; END_VAR

3 RESOURCE STATION_1 ON PROCESSOR_TYPE_1

4 VAR_GLOBAL z1: BYTE; END_VAR

5a TASK SLOW_1(INTERVAL := t#20ms, PRIORITY := 2) ;

5a TASK FAST_1(INTERVAL := t#10ms, PRIORITY := 1) ;

6a

8a

 PROGRAM P1 WITH SLOW_1 :

 F(x1 := %IX1.1) ;

9b PROGRAM P2 : G(OUT1 => w,

6b FB1 WITH SLOW_1,

6b FB2 WITH FAST_1) ;

3 END_RESOURCE

3 RESOURCE STATION_2 ON PROCESSOR_TYPE_2

4 VAR_GLOBAL z2 : BOOL ;

7 AT %QW5 : INT ;

4 END_VAR

5a TASK PER_2(INTERVAL := t#50ms, PRIORITY := 2) ;

5b TASK INT_2(SINGLE := z2, PRIORITY := 1) ;

6a

8b

 PROGRAM P1 WITH PER_2 :

 F(x1 := z2, x2 := w) ;

6a

9a

 PROGRAM P4 WITH INT_2 :

 H(HOUT1 => %QW5,

6b FB1 WITH PER_2);

3 END_RESOURCE

10a VAR_ACCESS

10b ABLE : STATION_1.%IX1.1 : BOOL READ_ONLY ;

10c BAKER : STATION_1.P1.x2 : UINT READ_WRITE ;

10d CHARLIE : STATION_1.z1 : BYTE ;

10e DOG : w : UINT READ_ONLY ;

10f ALPHA : STATION_2.P1.y1 : BYTE READ_ONLY ;

10f BETA : STATION_2.P4.HOUT1 : INT READ_ONLY ;

10d GAMMA : STATION_2.z2 : BOOL READ_WRITE ;

10a END_VAR

1 END_CONFIGURATION

NOTES

1. Graphical and semigraphic representation of these features is allowed but is beyond the scope of
this Part of IEC 1131.

2. It is an error if the data type declared for a variable in a VAR_ACCESS statement is not the same
as the data type declared for the variable elsewhere, e.g., if variable BAKER is declared of type
WORD in the above examples.

IEC DIS 1131-3 - 125 -

LIST OF TABLES (continued)

Table Page

Figure 20 - Examples of CONFIGURATION and RESOURCE declaration features

 - 126 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

2.7.2 Tasks

For the purposes of IEC 1131-3, a task is defined as an execution control element which is capable of
invoking, either on a periodic basis or upon the occurrence of the rising edge of a specified Boolean
variable, the execution of a set of program organization units, which can include programs and
function blocks whose instances are specified in the declaration of programs.

Tasks and their association with program organization units can be represented graphically or
textually using the WITH construction, as shown in table 50, as part of resources within configurations.
A task is implicitly enabled or disabled by its associated resource according to the mechanisms
defined in 1.4.1. The control of program organization units by enabled tasks shall conform to the
following rules:

1) The associated program organization units shall be scheduled for execution upon each rising edge
of the SINGLE input of the task.

2) If the INTERVAL input is non-zero, the associated program organization units shall be scheduled
for execution periodically at the specified interval as long as the SINGLE input stands at zero (0). If
the INTERVAL input is zero (the default value), no periodic scheduling of the associated program
organization units shall occur.

3) The PRIORITY input of a task establishes the scheduling priority of the associated program
organization units, with zero (0) being highest priority and successively lower priorities having
successively higher numeric values. As shown in table 50, the priority of a program organization
unit (that is, the priority of its associated task) can be used for preemptive or non-preemptive
scheduling.

a) In non-preemptive scheduling, processing power becomes available on a resource when
execution of a program organization unit or operating system function is complete. When
processing power is available, the program organization unit with highest scheduled priority
shall begin execution. If more than one program organization unit is waiting at the highest
scheduled priority, then the program organization unit with the longest waiting time at the
highest scheduled priority shall be executed.

b) In preemptive scheduling, when a program organization unit is scheduled, it can interrupt the
execution of a program organization unit of lower priority on the same resource, that is, the
execution of the lower-priority unit can be suspended until the execution of the higher-priority
unit is completed. A program organization unit shall not interrupt the execution of another unit
of the same or higher priority.

NOTE - Depending on schedule priorities, a program organization unit might not begin
execution at the instant it is scheduled. However, in the examples shown in
table 50, all program organization units meet their deadlines, that is, they all
complete execution before being scheduled for re-execution. The manufacturer
shall provide information to enable the user to determine whether all deadlines
will be met in a proposed configuration.

4) A program with no task association shall have the lowest system priority. Any such program shall
be scheduled for execution upon "starting" of its resource, as defined in 1.4.1, and shall be re-
scheduled for execution as soon as its execution terminates.

5) When a function block instance is associated with a task, its execution shall be under the exclusive
control of the task, independent of the rules of evaluation of the program organization unit in which
the task-associated function block instance is declared.

IEC DIS 1131-3 - 127 -

LIST OF TABLES (continued)

Table Page

6) Execution of a function block instance which is not directly associated with a task shall follow the
normal rules for the order of evaluation of language elements for the program organization unit
(which can itself be under the control of a task) in which the function block instance is declared.

7) The execution of function blocks within a program shall be synchronized to ensure that data
concurrency is achieved according to the following rules:

a) If a function block receives more than one input from another function block, then when the
former is executed, all inputs from the latter shall represent the results of the same evaluation.
For instance, in the example represented by figure 21a, when Y2 is evaluated, the inputs Y2.A
and Y2.B shall represent the outputs Y1.C and Y1.D from the same (not two different)
evaluations of Y1.

b) If two or more function blocks receive inputs from the same function block, and if the
"destination" blocks are all explicitly or implicitly associated with the same task, then the inputs
to all such "destination" blocks at the time of their evaluation shall represent the results of the
same evaluation of the "source" block. For instance, in the example represented by figures 21b
and 21c, when Y2 and Y3 are evaluated in the normal course of evaluating program P1, the
inputs Y2.A and Y2.B shall be the results of the same evaluation of Y1 as the inputs Y3.A and
Y3.B.

Provision shall be made for storage of the outputs of functions or function blocks which have explicit
task associations, or which are used as inputs to program organization units which have explicit task
associations, as necessary to satisfy the rules given above.

 - 128 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 50 - Task features

No. Description/Examples

1a Textual declaration of periodic TASK (feature 5a of table 49)

1b Textual declaration of non-periodic TASK (feature 5b of table 49)

 Graphical representation of TASKs within a RESOURCE

 TASKNAME
 +---------+
 | TASK |
BOOL---|SINGLE |
TIME---|INTERVAL |
UINT---|PRIORITY |
 +---------+

2a Graphical representation of periodic TASKs

 SLOW_1 FAST_1
 +---------+ +---------+
 | TASK | | TASK |
 |SINGLE | |SINGLE |
t#20ms---|INTERVAL | t#10ms---|INTERVAL |
 2---|PRIORITY | 1---|PRIORITY |
 +---------+ +---------+

2b Graphical representation of non-periodic TASK

 INT_2

 +---------+
 | TASK |
 %IX2---|SINGLE |
 |INTERVAL |
 1---|PRIORITY |
 +---------+

3a Textual association with PROGRAMs (feature 6a of table 49)

3b Textual association with FUNCTION BLOCKs (feature 6b of table 49)

4a Graphical association with PROGRAMs (within RESOURCEs)

 RESOURCE STATION_2
P1 P4

+-------+ +-------+
F		H
+-------+ +-------+		
PER_2		INT_2

+-------+ +-------+

END_RESOURCE

IEC DIS 1131-3 - 129 -

LIST OF TABLES (continued)

Table Page

Table 50 - Task features (continued)

No. Description/Examples

4b Graphical association with FUNCTION BLOCKs
(within PROGRAMs inside RESOURCEs)

 RESOURCE STATION_1

 P2
 +---+
 | G |
 | |
 | FB1 FB2 |
 | +------+ +------+ |
	A		B	
+------+ +------+				
	SLOW_1		FAST_1	
+------+ +------+				
 +---+

 END_RESOURCE
5a Non-preemptive scheduling
 Example 1:
 - RESOURCE STATION_1 as configured in figure 20
 - Execution times: P1 = 2 ms; P2 = 8 ms;

- P2.FB1 = P2.FB2 = 2 ms (NOTE 3)
 - STATION_1 starts at t = 0

 SCHEDULE (repeats every 40 ms)

 t(ms) Executing Waiting

 0 P2.FB2 @ 1 P1 @ 2, P2.FB1 @ 2, P2
 2 P1 @ 2 P2.FB1 @ 2, P2
 4 P2.FB1 @ 2 P2
 6 P2
 10 P2 P2.FB2 @ 1
 14 P2.FB2 @ 1 P2
 16 P2 (P2 restarts)
 20 P2 P2.FB2 @ 1, P1 @ 2, P2.FB1 @ 2
 24 P2.FB2 @ 1 P1 @ 2, P2.FB1 @ 2, P2
 26 P1 @ 2 P2.FB1 @ 2, P2
 28 P2.FB1 @ 2 P2
 30 P2.FB2 @ 1 P2
 32 P2
 40 P2.FB2 @ 1 P1 @ 2, P2.FB1 @ 2, P2

 - 130 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 50 - Task features (continued)

No. Description/Examples

5a Non-preemptive scheduling
 Example 2:
 - RESOURCE STATION_2 as configured in figure 20

- Execution times: P1 = 30 ms, P4 = 5 ms, P4.FB1 = 10 ms (NOTE 4)
- INT_2 is triggered at t = 25, 50, 90, ... ms
- STATION_2 starts at t = 0

 SCHEDULE
 t(ms) Executing Waiting

 0 P1 @ 2 P4.FB1 @ 2
 25 P1 @ 2 P4.FB1 @ 2, P4 @ 1
 30 P4 @ 1 P4.FB1 @ 2
 35 P4.FB1 @ 2
 50 P4 @ 1 P1 @ 2, P4.FB1 @ 2
 55 P1 @ 2 P4.FB1 @ 2
 85 P4.FB1 @ 2
 90 P4.FB1 @ 2 P4 @ 1
 95 P4 @ 1
 100 P1 @ 2 P4.FB1 @ 2

5b Preemptive scheduling
 Example 3:
 - RESOURCE STATION_1 as configured in figure 20
 - Execution times: P1 = 2 ms; P2 = 8 ms; P2.FB1 = P2.FB2 = 2 ms (NOTE 3)
 - STATION_1 starts at t = 0
 SCHEDULE
 t(ms) Executing Waiting
 0 P2.FB2 @ 1 P1 @ 2, P2.FB1 @ 2, P2
 2 P1 @ 2 P2.FB1 @ 2, P2
 4 P2.FB1 @ 2 P2
 6 P2
 10 P2.FB2 @ 1 P2
 12 P2
 16 P2 (P2 restarts)
 20 P2.FB2 @ 1 P1 @ 2, P2.FB1 @ 2, P2

IEC DIS 1131-3 - 131 -

LIST OF TABLES (continued)

Table Page

Table 50 - Task features (concluded)

No. Description/Examples

5b Preemptive scheduling
 Example 4:
 - RESOURCE STATION_2 as configured in figure 20
 - Execution times: P1 = 30 ms, P4 = 5 ms, P4.FB1 = 10 ms (NOTE 4)
 - INT_2 is triggered at t = 25, 50, 90, ... ms
 - STATION_2 starts at t = 0

 SCHEDULE

 t(ms) Executing Waiting

 0 P1 @ 2 P4.FB1 @ 2
 25 P4 @ 1 P1 @ 2, P4.FB1 @ 2
 30 P1 @ 2 P4.FB1 @ 2
 35 P4.FB1 @ 2
 50 P4 @ 1 P1 @ 2, P4.FB1 @ 2
 55 P1 @ 2 P4.FB1 @ 2
 85 P4.FB1 @ 2
 90 P4 @ 1 P4.FB1 @ 2
 95 P4.FB1 @ 2
 100 P1 @ 2 P4.FB1 @ 2

NOTES

1. Details of RESOURCE and PROGRAM declarations are not shown; see
2.7 and 2.7.1.

2. The notation "X @ Y" indicates that program organization unit X is
scheduled or executing at priority Y.

3. The execution times of P2.FB1 and P2.FB2 are not included in the
execution time of P2.

4. The execution time of P4.FB1 is not included in the execution time of P4.

 - 132 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

 RESOURCE R1
 fast1
 +----------+
 | TASK |
t#10ms---|INTERVAL |
 1---|PRIORITY |
 +----------+

 slow1
 +----------+
 | TASK |
t#20ms---|INTERVAL |
 2---|PRIORITY |
 +----------+

 P1

 PROGRAM X
 Y1 Y2
 +-----+ +-----+
 | Y | | Y |
 ---|A C|----+--------|A C|---
 ---|B D|----|--+-----|B D|---
 +-----+ | | +-----+
 |slow1| | | |fast1|
 +-----+ | | +-----+
 | |
 | | Y3
 | | +-----+
 | | | Y |
 +--|--|A C|---
 +--|B D|---
 +-----+
 |fast1|
 +-----+

END_PROGRAM

Figure 21a - Synchronization of function blocks with explicit task associations

IEC DIS 1131-3 - 133 -

LIST OF TABLES (continued)

Table Page

 RESOURCE R1
 fast1
 +----------+
 | TASK |
t#10ms---|INTERVAL |
 1---|PRIORITY |
 +----------+

 slow1
 +----------+
 | TASK |
t#20ms---|INTERVAL |
 2---|PRIORITY |
 +----------+

 P1

 PROGRAM X
 Y1 Y2
 +-----+ +-----+
 | Y | | Y |
 ---|A C|----+--------|A C|---
 ---|B D|----|--+-----|B D|---
 +-----+ | | +-----+
 |fast1| | |
 +-----+ | |
 | |
 | | Y3
 | | +-----+
 | | | Y |
 +--|--|A C|---
 +--|B D|---
 +-----+
 END_PROGRAM

 slow1

Figure 21b - Synchronization of function blocks with implicit task associations

 - 134 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

 RESOURCE R1
 fast1
 +----------+
 | TASK |
t#10ms---|INTERVAL |
 1---|PRIORITY |
 +----------+

 slow1
 +----------+
 | TASK |
t#20ms---|INTERVAL |
 2---|PRIORITY |
 +----------+

 P1

 PROGRAM X
 Y1 Y2
 +-----+ +-----+
 | Y | | Y |
 ---|A C|----+--------|A C|---
 ---|B D|----|--+-----|B D|---
 +-----+ | | +-----+
 |fast1| | | |slow1|
 +-----+ | | +-----+
 | |
 | | Y3
 | | +-----+
 | | | Y |
 +--|--|A C|---
 +--|B D|---
 +-----+
 |slow1|
 +-----+

END_PROGRAM

Figure 21c - Explicit task associations equivalent to figure 21b

IEC DIS 1131-3 - 135 -

LIST OF TABLES (continued)

Table Page

3. Textual languages

The textual languages defined in this standard are IL (Instruction List) and ST (Structured Text). The
sequential function chart (SFC) elements defined in 2.6 can be used in conjunction with either of these
languages.

3.1 Common elements

The textual elements specified in clause 2 shall be common to the textual languages (IL and ST)
defined in this clause. In particular, the following program structuring elements shall be common to
textual languages:

TYPE...END_TYPE (2.3.3)

VAR...END_VAR (2.4.3)

VAR_INPUT...END_VAR (2.4.3)

VAR_OUTPUT...END_VAR (2.4.3)

VAR_IN_OUT...END_VAR (2.4.3)

VAR_EXTERNAL...END_VAR (2.4.3)

FUNCTION ... END_FUNCTION (2.5.1.3)

FUNCTION_BLOCK...END_FUNCTION_BLOCK (2.5.2.2)

PROGRAM...END_PROGRAM (2.5.3)

STEP...END_STEP (2.6.2)

TRANSITION...END_TRANSITION (2.6.3)

ACTION...END_ACTION (2.6.4)

 - 136 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

3.2 Language IL (Instruction List)

This subclause defines the semantics of the IL (Instruction List) language whose formal syntax is
given in B.2.

3.2.1 Instructions

As illustrated in table 51, an instruction list is composed of a sequence of instructions. Each
instruction shall begin on a new line and shall contain an operator with optional modifiers, and, if
necessary for the particular operation, one or more operands separated by commas. Operands can
be any of the data representations defined in 2.2 for literals and 2.4 for variables.

The instruction can be preceded by an identifying label followed by a colon (:). A comment, as defined
in 2.1.5, if present, shall be the last element on a line. Empty lines can be inserted between
instructions.

Table 51 - Examples of instruction fields

Label Operator Operand Comment

START: LD %IX1 (* PUSH BUTTON *)

 ANDN %MX5 (* NOT INHIBITED *)

 ST %QX2 (* FAN ON *)

3.2.2 Operators, modifiers and operands

Standard operators with their allowed modifiers and operands shall be as listed in table 52. The
typing of operators shall conform to the conventions of 2.5.1.4.

Unless otherwise defined in table 52, the semantics of the operators shall be
result := result OP operand

That is, the value of the expression being evaluated is replaced by its current value operated upon by
the operator with respect to the operand. For instance, the instruction AND %IX1 is interpreted as

result := result AND %IX1

The comparison operators shall be interpreted with the current result to the left of the comparison and
the operand to the right, with a Boolean result. For instance, the instruction "GT %IW10" will have the
Boolean result 1 if the current result is greater than the value of Input Word 10, and the Boolean result
0 otherwise.

The modifier "N" indicates Boolean negation of the operand. For instance, the instruction ANDN %IX2
is interpreted as

result := result AND NOT %IX2

IEC DIS 1131-3 - 137 -

LIST OF TABLES (continued)

Table Page

The left parenthesis modifier "(" indicates that evaluation of the operator shall be deferred until a right
parenthesis operator ")" is encountered, e.g., the sequence of instructions

AND(%IX1
OR %IX2
)

shall be interpreted as
result := result AND (%IX1 OR %IX2)

The modifier "C" indicates that the associated instruction shall be performed only if the value of the
currently evaluated result is Boolean 1 (or Boolean 0 if the operator is combined with the "N" modifier).

Table 52 - Instruction List (IL) operators

No. Operator Modifiers Operand Semantics

1 LD N Note 2 Set current result equal to operand
2 ST N Note 2 Store current result to operand location
3 S Note 3 BOOL Set Boolean operand to 1
 R Note 3 BOOL Reset Boolean operand to 0

4 AND N, (BOOL Boolean AND
5 & N, (BOOL Boolean AND
6 OR N, (BOOL Boolean OR
7 XOR N, (BOOL Boolean Exclusive OR
8 ADD (Note 2 Addition
9 SUB (Note 2 Subtraction
10 MUL (Note 2 Multiplication
11 DIV (Note 2 Division
12 GT (Note 2 Comparison: >
13 GE (Note 2 Comparison: >=
14 EQ (Note 2 Comparison: =
15 NE (Note 2 Comparison: <>
16 LE (Note 2 Comparison: <=
17 LT (Note 2 Comparison: <
18 JMP C, N LABEL Jump to label
19 CAL C, N NAME Call function block (note 4)
20 RET C, N Return from called function or function block
21) Evaluate deferred operation

NOTES

1 - See 3.2.2 for explanation of modifiers and evaluation of expressions.
2 - These operators shall be either overloaded or typed as defined in 2.5.1.4. The current result

and the operand shall be of the same type.
3 - These operations are performed if and only if the value of the current result is Boolean 1.
4 - The function block name is followed by a parenthesized argument list as defined in 3.2.3.
5 - When a JMP instruction is contained in an ACTION... END_ACTION construct, the operand

shall be a label within the same construct.

 - 138 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

3.2.3 Functions and function blocks

Functions as defined in 2.5.1 shall be invoked by placing the function name in the operator field. The
current result shall be used as the first argument of the function. Additional arguments, if required,
shall be given in the operand field. The value returned by a function upon the successful execution of
a RET instruction or upon reaching the physical end of the function shall become the "current result"
described in 3.2.2.

Function blocks as defined in 2.5.2 can be invoked conditionally and unconditionally via the CAL (Call)
operator listed in table 52. As shown in table 53, this invocation can take one of three forms. The
input operators shown in table 54 can be used in conjunction with feature 3 of table 53.

Table 53 - Function block invocation features for IL language

No. Description/Example

1 CAL with input list:
 CAL C10(CU:=%IX10, PV:=15)

2 CAL with load/store of inputs:
 LD 15

 ST C10.PV
 LD %IX10
 ST C10.CU
 CAL C10

3 Use of input operators:
 LD 15

 PV C10
 LD %IX10
 CU C10

NOTE - A declaration such as VAR C10: CTU ; END_VAR is
assumed in the above examples.

Table 54 - Standard function block input operators for IL language

No. Operators FB Type Reference

4 S1,R SR 2.5.2.3.1
5 S,R1 RS 2.5.2.3.1
6 CLK R_TRIG 2.5.2.3.2
7 CLK F_TRIG 2.5.2.3.2
8 CU,R,PV CTU 2.5.2.3.3
9 CD,LD,PV CTD 2.5.2.3.3
10 CU,CD,R,LD,PV CTUD 2.5.2.3.3
11 IN,PT TP 2.5.2.3.4
12 IN,PT TON 2.5.2.3.4
13 IN,PT TOF 2.5.2.3.4

IEC DIS 1131-3 - 139 -

LIST OF TABLES (continued)

Table Page

3.3 Language ST (Structured Text)

This subclause defines the semantics of the ST (Structured Text) language whose syntax is defined in
B.3. In this language, the end of a textual line shall be treated the same as a space (SP) character, as
defined in 2.1.4.

3.3.1 Expressions

An expression is a construct which, when evaluated, yields a value corresponding to one of the data
types defined in 2.3.1 and 2.3.3.

Expressions are composed of operators and operands. An operand shall be a literal as defined in 2.2,
a variable as defined in 2.4, a function invocation as defined in 2.5.1, or another expression.

The operators of the ST language are summarized in table 55. The evaluation of an expression
consists of applying the operators to the operands in a sequence defined by the operator precedence
shown in table 55. The operator with highest precedence in an expression shall be applied first,
followed by the operator of next lower precedence, etc., until evaluation is complete. Operators of
equal precedence shall be applied as written in the expression from left to right. For example, if A, B,
C, and D are of type INT with values 1, 2, 3, and 4, respectively, then

A+B-C*ABS(D)
shall evaluate to -9, and

(A+B-C)*ABS(D)
shall evaluate to 0 .

When an operator has two operands, the leftmost operand shall be evaluated first. For example, in
the expression

SIN(A)*COS(B)
the expression SIN(A) shall be evaluated first, followed by COS(B), followed by evaluation of the
product.

Boolean expressions may be evaluated only to the extent necessary to determine the resultant value.
For instance, if A<=B, then only the expression (A>B) would be evaluated to determine that the value
of the expression

(A>B) & (C<D)
is Boolean zero.

Functions shall be invoked as elements of expressions consisting of the function name followed by a
parenthesized list of arguments, as defined in 2.5.1.1.

When an operator in an expression can be represented as one of the overloaded functions defined in
2.5.1.5, conversion of operands and results shall follow the rule and examples given in 2.5.1.4.

 - 140 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

TABLE 55 - Operators of the ST language

No. Operation Symbol Precedence

1 Parenthesization (expression) HIGHEST

2 Function evaluation identifier(argument list)

 Examples: LN(A), MAX(X,Y), etc.

3 Exponentiation (Note 2) **

4 Negation -

5 Complement NOT

6 Multiply *

7 Divide /

8 Modulo MOD

9 Add +

10 Subtract -

11 Comparison < , > , <= , >=

12 Equality =

13 Inequality <>

14 Boolean AND &

15 Boolean AND AND

16 Boolean Exclusive OR XOR

17 Boolean OR OR LOWEST

NOTES

1 - The same restrictions apply to the operands of these operators as to the inputs of the
corresponding functions defined in 2.5.1.5.

2 - The result of evaluating the expression A**B shall be the same as the result of evaluating
the function EXPT(A,B) as defined in table 24.

IEC DIS 1131-3 - 141 -

LIST OF TABLES (continued)

Table Page

3.3.2 Statements

The statements of the ST language are summarized in table 56. Statements shall be terminated by
semicolons as specified in the syntax of B.3.

Table 56 - ST language statements

No. Statement type/Reference Examples

1 Assignment (3.3.2.1) A := B; CV := CV+1; C := SIN(X);

2

Function block Invocation and FB output usage
(3.3.2.2)

CMD_TMR(IN:=%IX5, PT:=T#300ms) ;
A := CMD_TMR.Q ;

3 RETURN (3.3.2.2) RETURN ;

4

IF (3.3.2.3)

D := B*B - 4*A*C ;
IF D < 0.0 THEN NROOTS := 0 ;
ELSIF D = 0.0 THEN
 NROOTS := 1 ;
 X1 := - B/(2.0*A) ;
ELSE
 NROOTS := 2 ;
 X1 := (- B + SQRT(D))/(2.0*A) ;
 X2 := (- B - SQRT(D))/(2.0*A) ;
END_IF ;

5 CASE (3.3.2.3) TW := BCD_TO_INT(THUMBWHEEL);
TW_ERROR := 0;
CASE TW OF
 1,5: DISPLAY := OVEN_TEMP;
 2: DISPLAY := MOTOR_SPEED;
 3: DISPLAY := GROSS - TARE;
 4,6..10: DISPLAY := STATUS(TW - 4);
ELSE DISPLAY := 0 ;
 TW_ERROR := 1;
END_CASE;
QW100 := INT_TO_BCD(DISPLAY);

6 FOR (3.3.2.4) J := 101 ;
FOR I := 1 TO 100 BY 2 DO
 IF WORDS[I] = 'KEY' THEN
 J := I ;
 EXIT ;
 END_IF ;
END_FOR ;

7 WHILE (3.3.2.4) J := 1;
WHILE J <= 100 & WORDS[J] <> 'KEY' DO
 J := J+2 ;
END_WHILE ;

(continued on following page)

 - 142 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 56 - ST language statements (continued)

No. Statement type/Reference Examples

8 REPEAT (3.3.2.4) J := -1 ;
REPEAT
 J := J+2 ;
UNTIL J = 101 OR WORDS[J] = 'KEY'
END_REPEAT ;

9 EXIT (3.3.2.4) EXIT ;

10 Empty Statement ;

NOTE - If the EXIT statement (9) is supported, then it shall be supported for all of the iteration
statements (FOR, WHILE, REPEAT) which are supported in the implementation.

3.3.2.1 Assignment statements

The assignment statement replaces the current value of a single or multi-element variable by the
result of evaluating an expression. An assignment statement shall consist of a variable reference on
the left-hand side, followed by the assignment operator ":=", followed by the expression to be
evaluated. For instance, the statement

A := B ;
would be used to replace the single data value of variable A by the current value of variable B if both
were of type INT. However, if both A and B were of type ANALOG_CHANNEL_CONFIGURATION as
described in table 12, then the values of all the elements of the structured variable A would be
replaced by the current values of the corresponding elements of variable B.

As illustrated in figure 6, the assignment statement shall also be used to assign the value to be
returned by a function, by placing the function name to the left of an assignment operator in the body
of the function declaration. The value returned by the function shall be the result of the most recent
evaluation of such an assignment. It is an error to return from the evaluation of a function with the "
ENO" output non-zero unless at least one such assignment has been made.

3.3.2.2 Function and function block control statements

Function and function block control statements consist of the mechanisms for invoking function blocks
and for returning control to the invoking entity before the physical end of a function or function block.

Function evaluation shall be invoked as part of expression evaluation, as specified in 3.3.1.

Function blocks shall be invoked by a statement consisting of the name of the function block followed
by a parenthesized list of named input parameter value assignments, as illustrated in table56. The
order in which input parameters are listed in a function block invocation shall not be significant. It is
not required that all input parameters be assigned values in every invocation of a function block. If a
particular parameter is not assigned a value in a function block invocation, the previously assigned
value (or the initial value, if no previous assignment has been made) shall apply.

The RETURN statement shall provide early exit from a function , function block or program (e.g., as
the result of the evaluation of an IF statement).

IEC DIS 1131-3 - 143 -

LIST OF TABLES (continued)

Table Page

3.3.2.3 Selection statements

Selection statements include the IF and CASE statements. A selection statement selects one (or a
group) of its component statements for execution, based on a specified condition. Examples of
selection statements are given in table 56.

The IF statement specifies that a group of statements is to be executed only if the associated Boolean
expression evaluates to the value 1 (true). If the condition is false, then either no statement is to be
executed, or the statement group following the ELSE keyword (or the ELSIF keyword if its associated
Boolean condition is true) is to be executed.

The CASE statement consists of an expression which shall evaluate to a variable of type INT (the
"selector"), and a list of statement groups, each group being labeled by one or more integers or
ranges of integer values. It specifies that the first group of statements, one of whose ranges contains
the computed value of the selector, shall be executed . If the value of the selector does not occur in a
range of any case, the statement sequence following the keyword ELSE (if it occurs in the CASE
statement) shall be executed. Otherwise, none of the statement sequences shall be executed.

3.3.2.4 Iteration statements

Iteration statements specify that the group of associated statements shall be executed repeatedly.
The FOR statement is used if the number of iterations can be determined in advance; otherwise, the
WHILE or REPEAT constructs are used.

The EXIT statement shall be used to terminate iterations before the termination condition is satisfied.

When the EXIT statement is located within nested iterative constructs, exit shall be from the innermost
loop in which the EXIT is located, that is, control shall pass to the next statement after the first loop
terminator (END_FOR, END_WHILE, or END_REPEAT) following the EXIT statement. For instance,
after executing the statements shown in figure 22, the value of the variable SUM shall be 15 if the
value of the Boolean variable FLAG is 0, and 6 if FLAG=1.

SUM := 0 ;
FOR I := 1 TO 3 DO
 FOR J := 1 TO 2 DO
 IF FLAG THEN EXIT ; END_IF
 SUM := SUM + J ;
 END_FOR ;
 SUM := SUM + I ;
END_FOR ;

Figure 22 - EXIT statement example

 - 144 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

The FOR statement indicates that a statement sequence shall be repeatedly executed, up to the
END_FOR keyword, while a progression of values is assigned to the FOR loop control variable. The
control variable, initial value, and final value shall be expressions of the same integer type (SINT, INT,
or DINT) and shall not be altered by any of the repeated statements. The FOR statement increments
the control variable up or down from an initial value to a final value in increments determined by the
value of an expression; this value defaults to 1. The test for the termination condition is made at the
beginning of each iteration, so that the statement sequence is not executed if the initial value exceeds
the final value. The value of the control variable after completion of the FOR loop is implementation-
dependent.

An example of the usage of the FOR statement is given in feature 6 of table 56. In this example, the
FOR loop is used to determine the index J of the first occurrence (if any) of the string 'KEY' in the odd-
numbered elements of an array of strings WORDS with a subscript range of (1..100). If no occurrence
is found, J will have the value 101.

The WHILE statement causes the sequence of statements up to the END_WHILE keyword to be
executed repeatedly until the associated Boolean expression is false. If the expression is initially
false, then the group of statements is not executed at all. For instance, the FOR...END_FOR example
given in table 56 can be rewritten using the WHILE...END_WHILE construction shown in table 56.

The REPEAT statement causes the sequence of statements up to the UNTIL keyword to be executed
repeatedly (and at least once) until the associated Boolean condition is true. For instance, the
WHILE...END_WHILE example given in table 56 can be rewritten using the REPEAT...END_REPEAT
construction shown in table 56.

The WHILE and REPEAT statements shall not be used to achieve interprocess synchronization, for
example as a "wait loop" with an externally determined termination condition. The SFC elements
defined in 2.6 shall be used for this purpose.

It shall be an error in the sense of 1.5.1 if a WHILE or REPEAT statement is used in an algorithm for
which satisfaction of the loop termination condition or execution of an EXIT statement cannot be
guaranteed.

IEC DIS 1131-3 - 145 -

LIST OF TABLES (continued)

Table Page

4. Graphic languages

The graphic languages defined in this standard are LD (Ladder Diagram) and FBD (Function Block
Diagram). The sequential function chart (SFC) elements defined in 2.6 can be used in conjunction
with either of these languages.

4.1 Common elements

The elements defined in this clause apply to both the graphic languages in this Standard, that is, LD
(Ladder Diagram) and FBD (Function Block Diagram), and to the graphic representation of sequential
function chart (SFC) elements.

4.1.1 Representation of lines and blocks

The graphic language elements defined in this clause are drawn with line elements using characters
from the ISO/IEC 646 character set, or using graphic or semigraphic elements, as shown in table 57.

Lines can be extended by the use of connectors as shown in table 57. No storage of data or
association with data elements shall be associated with the use of connectors; hence, to avoid
ambiguity, it shall be an error if the identifier used as a connector label is the same as the name of
another named element within the same program organization unit.

4.1.2 Direction of flow in networks

A network is defined as a maximal set of interconnected graphic elements, excluding the left and right
rails in the case of networks in the LD language defined in 4.2. Provision shall be made to associate
with each network or group of networks in a graphic language a network label delimited on the right by
a colon (:). This label shall have the form of an identifier or an unsigned decimal integer as defined in
clause 2 of this Part. The scope of a network and its label shall be local to the program organization
unit in which the network is located. Examples of networks and network labels are shown in annex F.

Graphic languages are used to represent the flow of a conceptual quantity through one or more
networks representing a control plan, that is:

- "Power flow", analogous to the flow of electric power in an electromechanical relay system,
typically used in relay ladder diagrams;

- "Signal flow", analogous to the flow of signals between elements of a signal processing system,
typically used in function block diagrams;

- "Activity flow", analogous to the flow of control between elements of an organization, or between
the steps of an electromechanical sequencer, typically used in sequential function charts.

The appropriate conceptual quantity shall flow along lines between elements of a network according to
the following rules:

1) Power flow in the LD language shall be from left to right.

2) Signal flow in the FBD language shall be from the output (right-hand) side of a function or
function block to the input (left-hand) side of the function or function block(s) so connected.

3) Activity flow between the SFC elements defined in 2.6 shall be from the bottom of a step through
the appropriate transition to the top of the corresponding successor step(s).

 - 146 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 57 - Representation of lines and blocks

No. Feature Example

1

2

Horizontal lines:
ISO / IEC 646 "minus" character

Graphic or semigraphic

3

4

Vertical lines:
ISO / IEC 646 "vertical line" character

Graphic or semigraphic

|

5

6

Horizontal/vertical connection:
ISO / IEC 646 "plus" character

Graphic or semigraphic

|
--+--
|

7

8

Line crossings without connection:
ISO / IEC 646 characters

Graphic or semigraphic

| |
--------|----

| |

9

10

Connected and non-connected corners:

ISO / IEC 646 characters

Graphic or semigraphic

 | |
 ----+ +----
 |
 ----+-+ +----
 | | |

11

12

Blocks with connecting lines:

ISO / IEC 646 characters

Graphic or semigraphic

 |
 +--------+
 ---| |
 | |---
 ---| |
 +--------+
 |

13

14

Connectors using ISO / IEC 646 characters:
Connector

Continuation of a connected line

Graphic or semigraphic connectors

---------->OTTO>
>OTTO>----------

IEC DIS 1131-3 - 147 -

LIST OF TABLES (continued)

Table Page

4.1.3 Evaluation of networks

The order in which networks and their elements are evaluated is not necessarily the same as the
order in which they are labeled or displayed. Similarly, it is not necessary that all networks be
evaluated before the evaluation of a given network can be repeated. However, when the body of a
program organization unit consists of one or more networks, the results of network evaluation within
said body shall be functionally equivalent to the observance of the following rules:

1) No element of a network shall be evaluated until the states of all of its inputs have been
evaluated.

2) The evaluation of a network element shall not be complete until the states of all of its outputs
have been evaluated.

3) The evaluation of a network is not complete until the outputs of all of its elements have been
evaluated, even if the network contains one of the execution control elements defined in
4.1.4.

(4) The order in which networks are evaluated shall conform to the provisions of 4.2.6 for the LD
language and 4.3.3 for the FBD language.

A feedback path is said to exist in a network when the output of a function or function block is used as
the input to a function or function block which precedes it in the network; the associated variable is
called a feedback variable. For instance, the Boolean variable RUN is the feedback variable in the
example shown in figure 23. A feedback variable can also be an output element of a function block
data structure as defined in 2.5.2.

Feedback paths can be utilized in the graphic languages defined in 4.2 and 4.3, subject to the
following rules:

1) Explicit loops such as the one shown in 23a shall only appear in the FBD language defined in
4.3.

2) It shall be possible for the user to define the order of execution of the elements in an explicit
loop, for instance by selection of feedback variables to form an implicit loop as shown in
figure 23b.

3) Feedback variables shall be initialized by one of the mechanisms defined in clause 2. The initial
value shall be used during the first evaluation of the network.

4) Once the element with a feedback variable as output has been evaluated, the new value of the
feedback variable shall be used until the next evaluation of the element.

 - 148 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

a) +---+
 ENABLE---| & |-----RUN---+
 +---| | |
 +---+ | +---+ |
 START1---|>=1|---+ |
 START2---| | |
 +--| | |
 | +---+ |
 +------------------------------+

b) +---+
 ENABLE---| & |-----RUN
 +---| |
 +---+ | +---+
 START1---|>=1|---+
 START2---| |
 RUN---| |
 +---+

c) | START1 ENABLE RUN |
 +---| |----+---| |------()---+
 | START2 | |
 +---| |----+ |
 | RUN | |
 +---| |----+ |
 | |

Figure 23 - Feedback path example
a) Explicit loop
b) Implicit loop

c) LD language equivalent

IEC DIS 1131-3 - 149 -

LIST OF TABLES (continued)

Table Page

4.1.4 Execution control elements

Transfer of program control in the LD and FBD languages shall be represented by the graphical
elements shown in table 58.

Jumps shall be shown by a Boolean signal line terminated in a double arrowhead. The signal line for
a jump condition shall originate at a Boolean variable, at a Boolean output of a function or function
block, or on the power flow line of a ladder diagram. A transfer of program control to the designated
network label shall occur when the Boolean value of the signal line is 1 (TRUE); thus, the
unconditional jump is a special case of the conditional jump.

The target of a jump shall be a network label within the program organization unit within which the
jump occurs. If the jump occurs within an ACTION...END_ACTION construct, the target of the jump
shall be within the same construct.

Conditional returns from functions and function blocks shall be implemented using a RETURN
construction as shown in table 58. Program execution shall be transferred back to the invoking entity
when the Boolean input is 1 (TRUE), and shall continue in the normal fashion when the Boolean input
is 0 (FALSE). Unconditional returns shall be provided by the physical end of the function or function
block, or by a RETURN element connected to the left rail in the LD language, as shown in table 58.

 - 150 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 58 - Graphic execution control elements

No. Symbol/Example Explanation

1

2

 1---->>LABELA

 |
 +---->>LABELA
 |

Unconditional Jump:
FBD Language

LD Language

3

 X---->>LABELB

 +---+
 %IX20---| & |--->>NEXT
 %MX50---| |
 +---+
 NEXT:
 +---+
 %IX25---|>=1|---%QX100
 %MX60---| |
 +---+

Conditional Jump
(FBD Language)

Example:
Jump Condition

Jump Target

4

 | X
 +-| |---->>LABELB
 |
 |
 | %IX20 %MX50
 +---| |-----| |--->>NEXT
 |
 |
 NEXT:
 | %IX25 %QX100 |
 +----| |----+----()---+
 | %MX60 | |
 +----| |----+ |
 | |

Conditional Jump
(LD Language)

Example:
Jump Condition

Jump Target

5

6

 | X
 +--| |---<RETURN>
 |

 X---<RETURN>

Conditional Return:
LD Language

FBD Language

7

8

END_FUNCTION

END_FUNCTION_BLOCK

 |
 +---<RETURN>
 |

Unconditional Return:

from FUNCTION

from FUNCTION_BLOCK

Alternative representation
in LD language

IEC DIS 1131-3 - 151 -

LIST OF TABLES (continued)

Table Page

4.2 Language LD (Ladder Diagram)

This subclause defines the LD language for ladder diagram programming of programmable
controllers.

A LD program enables the programmable controller to test and modify data by means of standardized
graphic symbols. These symbols are laid out in networks in a manner similar to a "rung" of a relay
ladder logic diagram. LD networks are bounded on the left and right by power rails.

4.2.1 Power rails

As shown in table 59, LD network shall be delimited on the left by a vertical line known as the left
power rail, and on the right by a vertical line known as the right power rail. The right power rail may be
explicit or implied.

Table 59 - Power rails

No. Symbol Description

1

 |
 +---
 |

Left power rail
(with attached horizontal link)

2

 |
 ---+
 |

Right power rail
(with attached horizontal link)

4.2.2 Link elements and states

As shown in table 60, link elements may be horizontal or vertical. The state of the link element shall
be denoted "ON" or "OFF", corresponding to the literal Boolean values 1 or 0, respectively. The term
link state shall be synonymous with the term power flow.

The state of the left rail shall be considered ON at all times.. No state is defined for the right rail.

A horizontal link element shall be indicated by a horizontal line. A horizontal link element transmits the
state of the element on its immediate left to the element on its immediate right.

The vertical link element shall consist of a vertical line intersecting with one or more horizontal link
elements on each side. The state of the vertical link shall represent the inclusive OR of the ON states
of the horizontal links on its left side, that is, the state of the vertical link shall be:

- OFF if the states of all the attached horizontal links to its left are OFF;

- ON if the state of one or more of the attached horizontal links to its left is ON.

The state of the vertical link shall be copied to all of the attached horizontal links on its right. The state
of the vertical link shall not be copied to any of the attached horizontal links on its left.

 - 152 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 60 - Link elements

No. Symbol Description

1 ----------- Horizontal link

2

 |
 ----+----
 ----+
 |
 +----

Vertical link
(with attached horizontal links)

4.2.3 Contacts

A contact is an element which imparts a state to the horizontal link on its right side which is equal to
the Boolean AND of the state of the horizontal link at its left side with an appropriate function of an
associated Boolean input, output, or memory variable. A contact does not modify the value of the
associated Boolean variable. Standard contact symbols are given in table 61.

4.2.4 Coils

A coil copies the state of the link on its left to the link on its right without modification, and stores an
appropriate function of the state or transition of the left link into the associated Boolean variable.
Standard coil symbols are given in table 62.

4.2.5 Functions and function blocks

The representation of functions and function blocks in the LD language shall be as defined in clause 2
of this Part, with the following exceptions:

1) Actual parameter connections may optionally be shown by writing the appropriate data or
variable outside the block adjacent to the formal parameter name on the inside.

2) At least one Boolean input and one Boolean output shall be shown on each block to allow for
power flow through the block.

4.2.6 Order of network evaluation

Within a program organization unit written in LD, networks shall be evaluated in top to bottom order as
they appear in the ladder diagram, except as this order is modified by the execution control elements
defined in 4.1.4.

IEC DIS 1131-3 - 153 -

LIST OF TABLES (continued)

Table Page

Table 61 - Contacts

Static contacts

No. Symbol Description

1

2

--| |--

or

--! !--

Normally open contact

The state of the left link is copied to the right link if
the state of the associated Boolean variable
(indicated by "***") is ON. Otherwise, the state of the
right link is OFF.

3

4

--|/|--

or

--!/!--

Normally closed contact
The state of the left link is copied to the right link if

the state of the associated Boolean variable is OFF.
Otherwise, the state of the right link is OFF.

Transition-sensing contacts

5

6

--|P|--

or

--!P!--

Positive transition-sensing contact
The state of the right link is ON from one evaluation
of this element to the next when a transition of the
associated variable from OFF to ON is sensed at the
same time that the state of the left link is ON. The
state of the right link shall be OFF at all other times.

7

8

--|N|--

or

--!N!--

Negative transition-sensing contact
The state of the right link is ON from one evaluation
of this element to the next when a transition of the
associated variable from ON to OFF is sensed at the
same time that the state of the left link is ON. The
state of the right link shall be OFF at all other times.

NOTE: As specified in 2.1.1, the exclamation mark "!" shall be used when
a national character set does not support the vertical bar "|".

 - 154 - IEC DIS 1131-3

LIST OF TABLES (continued)

Table Page

Table 62 - Coils

Momentary coils

No. Symbol Description

1

--()--

Coil
The state of the left link is copied to the associated
Boolean variable and to the right link.

2

--(/)--

Negated coil
The state of the left link is copied to the right link. The
inverse of the state of the left link is copied to the
associated Boolean variable, that is, if the state of the
left link is OFF, then the state of the associated variable
is ON, and vice versa.

Latched Coils

3

--(S)--

SET (latch) coil
The associated Boolean variable is set to the ON state
when the left link is in the ON state, and remains set
until reset by a RESET coil.

4

--(R)--

RESET (unlatch) coil
The associated Boolean variable is reset to the OFF
state when the left link is in the ON state, and remains
reset until set by a SET coil.

Retentive coils (see Note)

5 ***
----(M)----

Retentive (Memory) coil

6

----(SM)----

SET retentive (Memory) coil

7 ***
----(RM)----

RESET retentive (Memory) coil

Transition-sensing coils

8

--(P)--

Positive transition-sensing coil
The state of the associated Boolean variable is ON from
one evaluation of this element to the next when a
transition of the left link from OFF to ON is sensed. The
state of the left link is always copied to the right link.

9

--(N)--

Negative transition-sensing coil
The state of the associated Boolean variable is ON from
one evaluation of this element to the next when a
transition of the left link from ON to OFF is sensed. The
state of the left link is always copied to the right link.

NOTE - The action of coils 5, 6, and 7 is identical to that of coils 1, 3, and 4,
respectively, except that the associated Boolean variable is
automatically declared to be in retentive memory without the explicit
use of the VAR RETAIN declaration defined in 2.4.2.

IEC DIS 1131-3 - 155 -

LIST OF TABLES (continued)

Table Page

4.3 Language FBD (Function Block Diagram)

4.3.1 General

This subclause defines FBD, a graphic language for the programming of programmable controllers
which is consistent, as far as possible, with IEC 617-12. Where conflicts exist between this standard
and IEC 617, the provisions of this standard shall apply for the programming of programmable
controllers in the FBD language.

The provisions of clauses 2 and 4.1 shall apply to the construction and interpretation of programmable
controller programs in the FBD language.

Examples of the use of the FBD language are given in annex F.

4.3.2 Combination of elements

Elements of the FBD language shall be interconnected by signal flow lines following the conventions
of 4.1.2.

Outputs of function blocks shall not be connected together. In particular, the "wired-OR" construct of
the LD language is not allowed in the FBD language; an explicit Boolean "OR" block is required
instead, as shown in figure 24.

a) b)

| a c |
+---||--+--()--+
| b | |
+--||---+ |
| |

 +-----+
 a---| >=1 |---c
 b---| |
 +-----+

Figure 24 - Boolean OR Examples
a) "Wired-OR" in LD language
b) Function in FBD language

4.3.3 Order of network evaluation

Within a program organization unit written in the FBD language, the order of network evaluation shall
follow the rule that the evaluation of a network shall be complete before starting the evaluation of
another network which uses one or more of the outputs of the preceding evaluated network.

IEC DIS 1131-3 - 207 -

ANNEX A - Specification method for textual languages (normative)

Programming languages are specified in terms of a syntax, which specifies the allowable
combinations of symbols which can be used to define a program; and a set of semantics, which
specify the relationship between programmed operations and the symbol combinations defined by
the syntax.

A.1 Syntax

A syntax is defined by a set of terminal symbols to be utilized for program specification; a set of
non-terminal symbols defined in terms of the terminal symbols; and a set of production rules
specifying those definitions.

A.1.1 Terminal symbols

The terminal symbols for textual programmable controller programs shall consist of combinations
of the characters in the ISO/IEC 646 character set. For interchange of programs between
systems, these characters shall be represented by the seven-bit character codes defined in ISO
646.

For the purposes of this part, terminal textual symbols consist of the appropriate character string
enclosed in paired single or double quotes. For example, a terminal symbol represented by the
character string ABC can be represented by either

"ABC"
or

'ABC'

This allows the representation of strings containing either single or double quotes; for instance, a
terminal symbol consisting of the double quote itself would be represented by '"'.

A special terminal symbol utilized in this syntax is the end-of-line delimiter, which is represented
by the unquoted character string EOL. This symbol shall normally consist of the FE5 (CR =
carriage return) character defined by ISO/IEC 646. Language implementors shall specify any
deviation from this usage; in any case, no characters other than those in ISO/IEC 646 are allowed.

A second special terminal symbol utilized in this syntax is the "null string", that is, a string
containing no characters. This is represented by the terminal symbol NIL.

A.1.2 Non-terminal symbols

Non-terminal textual symbols shall be represented by strings of lower-case letters, numbers, and
the underline character (_), beginning with a lower-case letter. For instance, the strings

nonterm1
and

non_term_2

are valid non-terminal symbols, while the strings

3nonterm
and

_nonterm4
are not.

 - 208 - IEC DIS 1131-3

ANNEX G - Index (continued)

A.1.3 Production rules

The production rules for textual programmable controller programming languages shall form an
extended grammar in which each rule has the form

non_terminal_symbol ::= extended_structure

This rule can be read as:

"A non_terminal_symbol can consist of an extended_structure."

Extended structures can be constructed according to the following rules:

1) The null string, NIL, is an extended structure.

2) A terminal symbol is an extended structure.

3) A non-terminal symbol is an extended structure.

4) If S is an extended structure, then the following expressions are also extended structures:

(S), meaning S itself.

{S}, closure, meaning zero or more concatenations of S.

[S], option, meaning zero or one occurrence of S.

5) If S1 and S2 are extended structures, then the following expressions are extended
structures:

S1|S2, alternation, meaning a choice of S1 or S2.

S1 S2, concatenation, meaning S1 followed by S2.

6) Concatenation precedes alternation, that is, S1 | S2 S3 is equivalent to S1 | (S2 S3),
 and S1 S2 | S3 is equivalent to (S1 S2) | S3.

A.2 Semantics

Programmable controller textual programming language semantics are defined in this Part by
appropriate natural language text, accompanying the production rules, which references the
descriptions provided in the appropriate clauses. Standard options available to the user and
manufacturer are specified in these semantics.

In some cases it is more convenient to embed semantic information in an extended structure. In
such cases, this information is delimited by paired angle brackets, for example, <semantic
information>.

IEC DIS 1131-3 - 209 -

ANNEX G - Index (continued)

ANNEX B - Formal specifications of language elements (normative)

B.0 Programming model

The contents of this annex are normative in the sense that a compiler which is capable of
recognizing all the syntax in this annex shall be capable of recognizing the syntax of any textual
language implementation complying with this standard.

PRODUCTION RULES:

library_element_name ::= data_type_name | function_name
| function_block_type_name | program_type_name
| resource_type_name | configuration_name

library_element_declaration ::= data_type_declaration
| function_declaration | function_block_declaration
| program_declaration | configuration_declaration

SEMANTICS: These productions reflect the basic programming model defined in 1.4.3, where
declarations are the basic mechanism for the production of named library elements. The syntax
and semantics of the non-terminal symbols given above are defined in the subclauses listed
below.

Non-terminal symbol Syntax Semantics

data_type_name
data_type_declaration

B.1.3 2.3

function_name
function_declaration

B.1.5.1 2.5.1

function_block_type_name
function_block_declaration

B.1.5.2 2.5.2

program_type_name
program_declaration

B.1.5.3 2.5.3

resource_type_name
configuration_name B.1.7 2.7
configuration_declaration

 - 210 - IEC DIS 1131-3

ANNEX G - Index (continued)

B.1 Common elements

B.1.1 Letters, digits and identifiers

PRODUCTION RULES:

letter ::= 'A' | 'B' | <...> | 'Z' | 'a' | 'b' | <...> | 'z'

digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

octal_digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7'

hex_digit ::= digit | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f'

identifier ::= (letter | ('_' (letter | digit))) {['_'] (letter | digit)}

SEMANTICS:

The ellipsis <...> here indicates the ISO/IEC 646 sequence of 26 letters.

Characters from national character sets can be used; however, international portability of the
printed representation of programs cannot be guaranteed in this case.

The case of letters shall be significant in terminal symbols, but not in other syntactic elements.

B.1.2 Constants

PRODUCTION RULE:

constant ::= numeric_literal | character_string | time_literal

SEMANTICS:

The external representations of data described in 2.2 are designated as "constants" in this annex.

B.1.2.1 Numeric literals

PRODUCTION RULES:

numeric_literal ::= integer_literal | real_literal | ‘TRUE’ | ‘FALSE’

integer_literal ::= signed_integer | binary_integer | octal_integer | hex_integer

signed_integer ::= ['+' |'-'] integer

integer ::= digit {['_'] digit}

binary_integer ::= '2#' bit {['_'] bit}

bit ::= '1' | '0'

octal_integer ::= '8#' octal_digit {['_'] octal_digit}

hex_integer ::= '16#' hex_digit {['_'] hex_digit}

real_literal ::= signed_integer '.' integer [exponent]

exponent ::= ('E' | 'e') ['+'|'-'] integer

SEMANTICS: See 2.2.1.

IEC DIS 1131-3 - 211 -

ANNEX G - Index (continued)

B.1.2.2 Character strings

PRODUCTION RULES:

character_string ::= " ' " {character_representation} " ' "

character_representation ::= <any printable character except '$'> | '$' hex_digit hex_digit | '$$'
| " $' " | '$L' | '$N' | '$P' | '$R' | '$T' | '$l' | '$n' | '$p' | '$r' | '$t'

SEMANTICS: See 2.2.2.

B.1.2.3 Time literals

PRODUCTION RULE:

time_literal ::= duration | time_of_day | date | date_and_time

SEMANTICS: See 2.2.3.

B.1.2.3.1 Duration

PRODUCTION RULES:

duration ::= ('T' | 't' | 'TIME' | 'time') '#' ['-'] interval

interval ::= days | hours | minutes | seconds | milliseconds

days ::= fixed_point ('d' | 'D') | integer ('d' | 'D') ['_'] hours

fixed_point ::= integer ['.' integer]

hours ::= fixed_point ('h' | 'H') | integer ('h' | 'H') ['_'] minutes

minutes ::= fixed_point ('m' | 'M') | integer ('m' | 'M') ['_'] seconds

seconds ::= fixed_point ('s' | 'S') | integer ('s' | 'S') ['_'] milliseconds

milliseconds ::= fixed_point ('ms' | 'MS')

SEMANTICS: See 2.2.3.1.

NOTE - The semantics of 2.2.3.1 impose additional constraints on the allowable values of
hours, minutes, seconds, and milliseconds.

B.1.2.3.2 Time of day and date

PRODUCTION RULES:

time_of_day ::= ('TIME_OF_DAY' | 'time_of_day' | 'TOD' | 'tod') '#' daytime

daytime ::= day_hour ':' day_minute ':' day_second

day_hour ::= integer

day_minute ::= integer

day_second ::= fixed_point

date ::= ('DATE' | 'date' | 'D' | 'd') '#' date_literal

 - 212 - IEC DIS 1131-3

ANNEX G - Index (continued)

date_literal ::= year '-' month '-' day

year ::= integer

month ::= integer

day ::= integer

date_and_time ::= ('DATE_AND_TIME' | 'date_and_time' | 'DT' | 'dt') '#' date_literal '-' daytime

SEMANTICS: See 2.2.3.2.

NOTE - The semantics of 2.2.3.2 impose additional constraints on the allowable
values of day_hour, day_minute, day_second, year, month, and day.

B.1.3 Data types

PRODUCTION RULES:

data_type_name ::= non_generic_type_name | generic_type_name

non_generic_type_name ::= elementary_type_name | derived_type_name

SEMANTICS: See 2.3.

B.1.3.1 Elementary data types

PRODUCTION RULES:

elementary_type_name ::= numeric_type_name | date_type_name | bit_string_type_name
 | 'STRING' | 'TIME'

numeric_type_name ::= integer_type_name | real_type_name

integer_type_name ::= signed_integer_type_name | unsigned_integer_type_name

signed_integer_type_name ::= 'SINT' | 'INT' | 'DINT' | 'LINT'

unsigned_integer_type_name ::= 'USINT' | 'UINT' | 'UDINT' | 'ULINT'

real_type_name ::= 'REAL' | 'LREAL'

date_type_name ::= 'DATE' | 'TIME_OF_DAY' | 'TOD' | 'DATE_AND_TIME' | 'DT'

bit_string_type_name ::= 'BOOL' | 'BYTE' | 'WORD' | 'DWORD' | 'LWORD'

SEMANTICS: See 2.3.1.

B.1.3.2 Generic data types

PRODUCTION RULE:

generic_type_name ::= 'ANY' | 'ANY_NUM' | 'ANY_REAL' | 'ANY_INT' | 'ANY_BIT' |
'ANY_DATE'

SEMANTICS: See 2.3.2.

B.1.3.3 Derived data types

PRODUCTION RULES:

IEC DIS 1131-3 - 213 -

ANNEX G - Index (continued)

derived_type_name ::= single_element_type_name | array_type_name | structure_type_name
 | string_type_name

single_element_type_name ::= simple_type_name | subrange_type_name
| enumerated_type_name

simple_type_name ::= identifier
subrange_type_name ::= identifier
enumerated_type_name ::= identifier
array_type_name ::= identifier
structure_type_name ::= identifier
data_type_declaration ::= 'TYPE' type_declaration ';' {type_declaration ';'} 'END_TYPE'
type_declaration ::= single_element_type_declaration | array_type_declaration

| structure_type_declaration | string_type_declaration
single_element_type_declaration ::= simple_type_declaration | subrange_type_declaration

| enumerated_type_declaration
simple_type_declaration ::= simple_type_name ':' simple_spec_init
simple_spec_init := simple_specification [':=' constant]
simple_specification ::= elementary_type_name | simple_type_name
subrange_type_declaration ::= subrange_type_name ':' subrange_spec_init
subrange_spec_init ::= subrange_specification [':=' signed_integer]
subrange_specification ::= integer_type_name '(' subrange')' | subrange_type_name
subrange ::= signed_integer '..' signed_integer
enumerated_type_declaration ::= enumerated_type_name ':' enumerated_spec_init
enumerated_spec_init ::= enumerated_specification [':=' enumerated_value]
enumerated_specification ::= ('(' enumerated_value {',' enumerated_value} ')')

| enumerated_type_name

enumerated_value ::= identifier
array_type_declaration ::= array_type_name ':' array_spec_init
array_spec_init ::= array_specification [':=' array_initialization]
array_specification ::= array_type_name

| 'ARRAY' '[' subrange {',' subrange} ']' 'OF' non_generic_type_name
array_initialization ::= [array_initial_elements {',' array_initial_elements}]
array_initial_elements ::= array_initial_element | integer '(' array_initial_element ')'
array_initial_element ::= constant | enumerated_value | structure_initialization |

array_initialization
structure_type_declaration ::= structure_type_name ':' structure_specification
structure_specification ::= structure_declaration | initialized_structure
initialized_structure ::= structure_type_name [structure_initialization]
structure_declaration ::= 'STRUCT' structure_element_declaration ';'

{structure_element_declaration ';'} 'END_STRUCT'
structure_element_declaration ::= structure_element_name ':'

(simple_spec_init | subrange_spec_init | enumerated_spec_init | array_spec_init
 | initialized_structure)

structure_element_name ::= identifier

 - 214 - IEC DIS 1131-3

ANNEX G - Index (continued)

structure_initialization ::= '(' structure_element_initialization {','
structure_element_initialization} ')'

structure_element_initialization ::= structure_element_name ':='
(constant | enumerated_value | array_initialization | structure_initialization)

string_type_name ::= identifier
string_type_declaration ::= string_type_name ‘:’ ‘STRING’ ‘[‘ integer ‘]’ [‘:=’ character_string]

SEMANTICS: See 2.3.3.

B.1.4 Variables

PRODUCTION RULES:

variable ::= direct_variable | symbolic_variable

symbolic_variable ::= variable_name | multi_element_variable

variable_name ::= identifier

SEMANTICS: See 2.4.1.

B.1.4.1 Directly represented variables

PRODUCTION RULES:

direct_variable ::= '%' location_prefix size_prefix integer {'.' integer}

location_prefix ::= 'I' | 'Q' | 'M'

size_prefix ::= NIL | 'X' | 'B' | 'W' | 'D' | 'L'

SEMANTICS: See 2.4.1.1.

B.1.4.2 Multi-element variables

PRODUCTION RULES:

multi_element_variable ::= array_variable | structured_variable

array_variable ::= subscripted_variable subscript_list

subscripted_variable ::= symbolic_variable

subscript_list ::= '[' subscript {',' subscript} ']'

subscript ::= expression

structured_variable ::= record_variable '.' field_selector

record_variable ::= symbolic_variable

field_selector ::= identifier

SEMANTICS: See 2.4.1.2.

IEC DIS 1131-3 - 215 -

ANNEX G - Index (continued)

B.1.4.3 Declaration and initialization

PRODUCTION RULES:

input_declarations ::= 'VAR_INPUT' input_declaration ';' {input_declaration ';'} 'END_VAR'

input_declaration ::= var_init_decl | edge_declaration

edge_declaration ::= var1_list ':' 'BOOL' ['R_EDGE' | 'F_EDGE']

var_init_decl ::= var1_init_decl | array_var_init_decl | structured_var_init_decl | fb_name_decl
 | string_var_declaration

var1_init_decl ::= var1_list ':' (simple_spec_init | subrange_spec_init | enumerated_spec_init)

var1_list ::= variable_name {',' variable_name}

array_var_init_decl ::= var1_list ':' array_spec_init

structured_var_init_decl ::= var1_list ':' initialized_structure

fb_name_decl ::= fb_name_list ':' function_block_type_name

fb_name_list ::= fb_name {',' fb_name}

fb_name ::= identifier

output_declarations ::= 'VAR_OUTPUT' ['RETAIN'] var_init_decl ';' {var_init_decl ';'}
'END_VAR'

input_output_declarations ::= 'VAR_IN_OUT' var_declaration ';' {var_declaration ';'} 'END_VAR'

var_declaration ::= var1_declaration | array_var_declaration | structured_var_declaration
 | fb_name_decl

var1_declaration ::= var1_list ':'
(simple_specification | subrange_specification | enumerated_specification)

array_var_declaration ::= var1_list ':' array_specification

structured_var_declaration ::= var1_list ':' structure_type_name

var_declarations ::= 'VAR' ['CONSTANT] var_init_decl ';' {(var_init_decl ';')} 'END_VAR'

retentive_var_declarations ::= 'VAR' 'RETAIN' var_init_decl ';' {var_init_decl ';'} 'END_VAR'

located_var_declarations ::= 'VAR' ['CONSTANT' | 'RETAIN']
located_var_decl ';' {located_var_decl ';'} 'END_VAR'

located_var_decl ::= [variable_name] location ':' located_var_spec_init

external_var_declarations := 'VAR_EXTERNAL' external_declaration ';' {external_declaration
';'}
'END_VAR'

external_declaration ::= global_var_name ':' (simple_specification | subrange_specification
| enumerated_specification | array_specification | structure_type_name
| function_block_type_name)

global_var_name ::= identifier

global_var_declarations := 'VAR_GLOBAL' ['CONSTANT' | 'RETAIN']
global_var_decl ';' {global_var_decl ';'} 'END_VAR'

 - 216 - IEC DIS 1131-3

ANNEX G - Index (continued)

global_var_decl ::= global_var_spec ':' [located_var_spec_init
 | function_block_type_name]

global_var_spec ::= global_var_list | [global_var_name] location

located_var_spec_init ::= simple_spec_init | subrange_spec_init | enumerated_spec_init
| array_spec_init | initialized_structure

location ::= 'AT' direct_variable

global_var_list ::= global_var_name {',' global_var_name}
string_var_declaration ::= variable_name ‘:’ ‘STRING’ ‘[‘ integer ‘]’ [‘:=’ character_string]

SEMANTICS: See 2.4.2. The non-terminal "function_block_type_name" is defined in B.1.5.2.

B.1.5 Program organization units

B.1.5.1 Functions

PRODUCTION RULES:

function_name ::= standard_function_name | derived_function_name

standard_function_name ::= <as defined in 2.5.1.5>

derived_function_name ::= identifier

function_declaration ::=
'FUNCTION' derived_function_name ':' (elementary_type_name | derived_type_name)
 input_declarations
 ['VAR' ['CONSTANT']function_var_decls 'END_VAR']
 function_body
'END_FUNCTION'

function_var_decls ::= function_var_decl ';' {function_var_decl ';'}

function_var_decl ::= var1_declaration | array_var_declaration | structured_var_declaration

function_body ::= ladder_diagram | function_block_diagram | instruction_list | statement_list

SEMANTICS: See 2.5.1.

NOTES

1 This syntax does not reflect the fact that function block references and invocations are
not allowed in function bodies.

2 Ladder diagrams and function block diagrams are graphically represented as defined in
clause 4. The non-terminals instruction_list and statement_list are defined in B.2.1 and
B.3.2, respectively.

B.1.5.2 Function blocks

PRODUCTION RULES:

function_block_type_name ::= standard_function_block_name | derived_function_block_name

standard_function_block_name ::= <as defined in 2.5.2.3>

derived_function_block_name ::= identifier

IEC DIS 1131-3 - 217 -

ANNEX G - Index (continued)

function_block_declaration ::=
'FUNCTION_BLOCK' derived_function_block_name
 {fb_io_var_declarations}
 {other_var_declarations}
 function_block_body
'END_FUNCTION_BLOCK'

fb_io_var_declarations ::= input_declarations | output_declarations | input_output_declarations

other_var_declarations ::= external_var_declarations | var_declarations
| retentive_var_declarations

function_block_body ::= sequential_function_chart | ladder_diagram | function_block_diagram
| instruction_list | statement_list

SEMANTICS: See 2.5.2.

NOTES

1 Ladder diagrams and function block diagrams are graphically represented as defined in
clause 4.

2 The non-terminals sequential_function_chart, instruction_list, and statement_list are
defined in B.1.6, B.2, and B.3.2, respectively.

B.1.5.3 Programs

PRODUCTION RULES:

program_type_name :: = identifier

program_declaration ::=
'PROGRAM' program_type_name
 {fb_io_var_declarations}
 {other_var_declarations | located_var_declarations | global_var_declarations}
 [program_access_decls]
 function_block_body
'END_PROGRAM'

program_access_decls ::=
'VAR_ACCESS' program_access_decl ';'
 {program_access_decl ';' }
'END_VAR'

program_access_decl ::= access_name ':' symbolic_variable ':' non_generic_type_name
[direction]

SEMANTICS: See 2.5.3.

B.1.6 Sequential function chart elements

PRODUCTION RULES:

sequential_function_chart ::= sfc_network {sfc_network}

 - 218 - IEC DIS 1131-3

ANNEX G - Index (continued)

sfc_network ::= initial_step {step | transition | action}

initial_step ::= 'INITIAL_STEP' step_name ':' {action_association ';'} 'END_STEP'

step ::= 'STEP' step_name ':' {action_association ';'} 'END_STEP'

step_name ::= identifier

action_association ::= action_name '(' action_qualifier {',' indicator_name} ')'

action_name ::= identifier

action_qualifier ::= 'N' | 'R' | 'S' | 'P' | timed_qualifier ',' action_time

timed_qualifier ::= 'L' | 'D' | 'SD' | 'DS' | 'SL'

action_time ::= duration | variable_name

indicator_name ::= variable_name

transition ::= named_transition | unnamed_transition

transition_name ::= identifier

steps ::= step_name | '(' step_name ',' step_name {',' step_name} ')'

transition_condition ::= ':' instruction_list | ':=' expression ';' | ':' (fbd_network | rung)

unnamed_transition ::= ‘TRANSITION’ ‘FROM’ steps ‘TO’ steps transition_condition
‘END_TRANSITION’

named_transition ::= ‘TRANSITION’ transition_name transition_condition

action ::= 'ACTION' action_name ':'
 function_block_body
 'END_ACTION'

SEMANTICS: See 2.6. The use of function block diagram networks and ladder diagram rungs,
denoted by the non-terminals fbd_network and rung, respectively, for the expression of transition
conditions shall be as defined in 2.6.3.

NOTES

1 The non-terminals instruction_list and expression are defined in B.2.1 and B.3.1,
respectively.

2 The construction named_transition can only be used when feature No.7 of table 41 is
supported.

B.1.7 Configuration elements

PRODUCTION RULES:

configuration_name ::= identifier

resource_type_name ::= identifier

configuration_declaration ::= 'CONFIGURATION' configuration_name
 [global_var_declarations]
 (single_resource_declaration | (resource_declaration
{resource_declaration}))
 [access_declarations]
'END_CONFIGURATION'

IEC DIS 1131-3 - 219 -

ANNEX G - Index (continued)

resource_declaration ::= 'RESOURCE' resource_name 'ON' resource_type_name
 [global_var_declarations]
 single_resource_declaration
 'END_RESOURCE'

single_resource_declaration ::= {task_configuration ‘;’}
program_configuration ‘;’
{program_configuration ‘;’}

resource_name ::= identifier

access_declarations ::= 'VAR_ACCESS' access_declaration ';' {access_declaration ';'}
'END_VAR'

access_declaration ::= access_name ':' access_path ':' non_generic_type_name [direction]

access_path ::= [resource_name '.'] direct_variable | resource_name '.' program_io_reference
| global_var_reference

global_var_reference ::= [resource_name '.'] global_var_name ['.' structure_element_name]

access_name ::= identifier

program_io_reference ::= program_input_reference | program_output_reference

program_output_reference ::= program_name '.' symbolic_variable

program_input_reference ::= program_name '.' symbolic_variable

program_name ::= identifier

direction ::= 'READ_WRITE' | 'READ_ONLY'

task_configuration ::= 'TASK' task_name task_initialization

task_name := identifier

task_initialization ::= '(' ['SINGLE' ':=' data_source ','] ['INTERVAL' ':=' data_source ',']
'PRIORITY' ':=' integer ')'

data_source ::= constant | global_var_reference | program_output_reference | direct_variable

program_configuration ::= 'PROGRAM' program_name ['WITH' task_name] ':'
program_type_name
['(' prog_conf_elements ')']

prog_conf_elements ::= prog_conf_element {',' prog_conf_element}

prog_conf_element ::= fb_task | prog_cnxn

fb_task ::= fb_name 'WITH' task_name

prog_cnxn ::= symbolic_variable ':=' prog_data_source | symbolic_variable '=>' data_sink

prog_data_source ::= constant | global_var_reference | direct_variable

data_sink ::= global_var_reference | direct_variable

SEMANTICS: See 2.7.

B.2 Language IL (Instruction List)

B.2.1 Instructions and operands

PRODUCTION RULES:

 - 220 - IEC DIS 1131-3

ANNEX G - Index (continued)

instruction_list ::= instruction {instruction}

instruction ::= [[label ':'] (il_operation | il_fb_call)] EOL {EOL}

label ::= identifier

il_operation ::= il_operator [' ' il_operand_list]

il_operand_list ::= il_operand {',' il_operand}

il_operand ::= [identifier ':='] (constant | variable)

il_fb_call ::= 'CAL' ['C'['N']] fb_name ['(' il_operand_list ')']

SEMANTICS: See 3.2.

NOTE - The form of subscripts in the IL language is restricted to single-element variables or
integer literals.

B.2.2 Operators

PRODUCTION RULES:

il_operator ::= ('LD' | 'ST') ['N'] | 'S' | 'R'
| ('AND' | 'OR' | 'XOR') ['N'] ['(']
| ('ADD' | 'SUB' | 'MUL' | 'DIV') ['(']
| ('GT' | 'GE' | 'EQ' | 'NE' | 'LT' | 'LE') ['(']
| ('JMP' | 'RET') ['C' ['N']]
| 'S1' | 'R1' | 'CLK' | 'CU' | 'CD' | 'PV' | 'IN' | 'PT' | ')'
| function_name

SEMANTICS: See 3.2.

B.3 Language ST (Structured Text)

B.3.1 Expressions

PRODUCTION RULES:

expression ::= xor_expression {'OR' xor_expression}

xor_expression ::= and_expression {'XOR' and_expression}

and_expression ::= comparison {('&' | 'AND') comparison}

comparison ::= equ_expression { (‘=’ | ‘<>’) equ_expression}

equ_expression ::= add_expression {comparison_operator add_expression}

comparison_operator ::= '<' | '>' | '<=' | '>=' '

add_expression ::= term {add_operator term}

add_operator ::= '+' | '-'

term ::= power_expression {multiply_operator power_expression}

multiply_operator ::= '*' | '/' | 'MOD'

power_expression ::= unary_expression {'**' unary_expression}

unary_expression ::= [unary_operator] primary_expression

unary_operator ::= '-' | 'NOT'

primary_expression ::= constant | variable | '(' expression ')'
| function_name '(' [st_function_inputs] ')'

IEC DIS 1131-3 - 221 -

ANNEX G - Index (continued)

st_function_inputs ::= st_function_input { ',' st_function_input}

st_function_input ::= [variable_name ':='] expression

SEMANTICS: These definitions have been arranged to show a top-down derivation of expression
structure. The precedence of operations is then implied by a "bottom-up" reading of the
definitions of the various kinds of expressions. Further discussion of the semantics of these
definitions is given in 3.3.1.

B.3.2 Statements

PRODUCTION RULE:

statement_list ::= statement ';' {statement ';'}

statement ::= NIL | assignment_statement | subprogram_control_statement |
selection_statement
| iteration_statement

SEMANTICS: See 3.3.2.

B.3.2.1 Assignment statements

PRODUCTION RULE:

assignment_statement ::= variable ':=' expression

SEMANTICS: See 3.3.2.1.

B.3.2.2 Subprogram control statements

PRODUCTION RULES:

subprogram_control_statement ::= fb_invocation | 'RETURN'

fb_invocation ::= fb_name '(' [fb_input_assignment {',' fb_input_assignment}] ')'

fb_input_assignment ::= variable_name ':=' expression

SEMANTICS: See 3.3.2.2.

B.3.2.3 Selection statements

PRODUCTION RULES:

selection_statement ::= if_statement | case_statement

if_statement ::= 'IF' expression 'THEN' statement_list
 {'ELSIF' expression 'THEN' statement_list}
 ['ELSE' statement_list]
 'END_IF'

case_statement ::= 'CASE' expression 'OF'
case_element {case_element}
['ELSE' statement_list]
 'END_CASE'

case_element ::= case_list ':' statement_list

case_list ::= case_list_element {',' case_list_element}

 - 222 - IEC DIS 1131-3

ANNEX G - Index (continued)

case_list_element ::= subrange | signed_integer

SEMANTICS: See 3.3.2.3.

B.3.2.4 Iteration statements

PRODUCTION RULES:

iteration_statement ::= for_statement | while_statement | repeat_statement | exit_statement

for_statement ::= 'FOR' control_variable ':=' for_list 'DO' statement_list 'END_FOR'

control_variable ::= identifier

for_list ::= expression 'TO' expression ['BY' expression]

while_statement ::= 'WHILE' expression 'DO' statement_list 'END_WHILE'

repeat_statement ::= 'REPEAT' statement_list 'UNTIL' expression 'END_REPEAT'

exit_statement ::= 'EXIT'

SEMANTICS: See 3.3.2.4.

IEC DIS 1131-3 - 223 -

ANNEX G - Index (continued)

 - 224 - IEC DIS 1131-3

ANNEX G - Index (continued)

ANNEX C - Delimiters and Keywords (normative)

The usages of delimiters and keywords in IEC 1131-3 is summarized in tables C.1 and C.2.
National standards organizations can publish tables of translations for the textual portions of the
delimiters listed in table C.1 and the keywords listed in table C.2.

Table C.1 - Delimiters

Delimiters Clause Usage

Space 2.1.4 As specified in 2.1.4.

(* 2.1.5 Begin comment
*) End comment

+ 2.2.1 Leading sign of decimal literal
 3.3.1 Addition operator

 2.2.1 Leading sign of decimal literal
- 2.2.3.2 Year-month-day separator
 3.3.1 Subtraction, negation operator
 4.1.1 Horizontal line

2.2.1 Based number separator
 2.2.3 Time literal separator

. 2.2.1 Integer/fraction separator
 2.4.1.1 Hierarchical address separator
 2.4.1.2 Structure element separator
 2.5.2.1 Function block structure separator

e or E 2.2.1 Real exponent delimiter

' 2.2.2 Start and end of character string

$ 2.2.2 Start of special character in strings

2.2.3 - Time literal delimiters, including:
t#, T#, d, D, h, H, m, M, s, S, ms, MS

DATE#, date#, D#, d#, TIME_OF_DAY#, time_of_day#

TOD#, tod#, DATE_AND_TIME#, date_and_time#, DT#, dt#

 2.2.3.2 Time of day separator
 2.3.3.1 Type name/specification separator
 2.4.2 Variable/type separator
 2.6.2 Step name terminator
: 2.7 RESOURCE name/type separator
 2.7 PROGRAM name/type separator
 2.7

3.2.1
4.1.2

Access name/path/type separator
Instruction label terminator
Network label terminator

(continued on following page)

IEC DIS 1131-3 - 225 -

ANNEX G - Index (continued)

Table C.1 - Delimiters (continued)

Delimiters Clause Usage

:=

2.3.3.1
2.7.1
3.3.2.1

Initialization operator
Input connection operator
Assignment operator

() 2.3.3.1 Enumeration list delimiters
() 2.3.3.1 Subrange delimiters
[] 2.4.1.2 Array subscript delimiters
[] 2.4.2 String length delimiters
() 2.4.2 Multiple initialization
() 3.2.2 Instruction List modifier/operator
() 3.3.1 Function arguments
() 3.3.1 Subexpression hierarchy
() 3.3.2.2 Function block input list delimiters

 2.3.3.1 Enumeration list separator
 2.3.3.2 Initial value separator
 2.4.1 Array subscript separator
 2.4.2 Declared variable separator
, 2.5.2.1 Function block initial value separator
 2.5.2.1 Function block input list separator
 3.2.1 Operand list separator
 3.3.1 Function argument list separator
 3.3.2.3 CASE value list separator

; 2.3.3.1 Type declaration separator
 3.3 Statement separator

.. 2.3.3.1 Subrange separator
 3.3.2.3 CASE range separator

% 2.4.1.1 Direct representation prefix

=> 2.7.1 Output connection operator

3.3.1 - Infix operators, including:
**, NOT, *, /, MOD, +, -, <, >, <= >=, =, <>, &, AND, XOR, OR

| or ! 4.1.1 Vertical lines (note)

NOTE - “!“ is only allowed when “|“ does not exist in a national character set.

 - 226 - IEC DIS 1131-3

ANNEX G - Index (continued)

Table C.2 - Keywords

Keywords Clause

ACTION...END_ACTION 2.6.4.1

ARRAY...OF 2.3.3.1

AT 2.4.3

CASE...OF...ELSE...END_CASE 3.3.2.3

CONFIGURATION...END_CONFIGURATION 2.7.1

CONSTANT 2.4.3

Data type names 2.3

EN, ENO 2.5.1.2

EXIT 3.3.2.4

FALSE 2.2.1

F_EDGE 2.5.2.2

FOR...TO...BY...DO...END_FOR 3.3.2.4

FUNCTION...END_FUNCTION 2.5.1.3

Function names 2.5.1

FUNCTION_BLOCK...END_FUNCTION_BLOCK 2.5.2.2

Function Block names 2.5.2

IF...THEN...ELSIF...ELSE...END_IF 3.3.2.3

INITIAL_STEP...END_STEP 2.6.2

PROGRAM...WITH... 2.7.1

PROGRAM...END_PROGRAM 2.5.3

(continued on following page)

IEC DIS 1131-3 - 227 -

ANNEX G - Index (continued)

Table C.2 - Keywords (continued)

Keywords Clause

R_EDGE 2.5.2.2

READ_ONLY, READ_WRITE 2.7.1

REPEAT...UNTIL...END_REPEAT 3.3.2.4

RESOURCE...ON...END_RESOURCE 2.7.1

RETAIN 2.4.3

RETURN 3.3.2.2

STEP...END_STEP 2.6.2

STRUCT...END_STRUCT 2.3.3.1

TASK 2.7.2

Textual operators (IL language) 3.2.2 note

(ST language) 3.3.1 note

TRANSITION...FROM...TO...END_TRANSITION 2.6.3

TRUE 2.2.1

TYPE...END_TYPE 2.3.3.1

VAR...END_VAR 2.4.2

VAR_INPUT...END_VAR

VAR_OUTPUT...END_VAR

VAR_IN_OUT...END_VAR

VAR_EXTERNAL...END_VAR

VAR_ACCESS...END_VAR 2.7.1

VAR_GLOBAL...END_VAR 2.7.1

WHILE...DO...END_WHILE 3.3.2.4

WITH 2.7.1

NOTE - The use of these keywords is restricted as defined in subclause 2.1.3 only within
program organization units programmed in the respective languages.

 - 228 - IEC DIS 1131-3

ANNEX G - Index (continued)

ANNEX D - Implementation-dependent parameters (normative)

The implementation-dependent parameters defined in IEC 1131-3, and the primary reference
clause for each, are listed in table D.1.

Table D.1 - Implementation-dependent parameters

Clause Parameters

1.5.1 Error handling procedures

2.1.1

National characters used
or „pounds Sterling“ sign
$ or „currency“ sign
| or !

2.1.2 Maximum length of identifiers

2.1.5 Maximum comment length

2.2.3.1 Range of values of duration

2.3.1 Range of values for variables of type TIME

 Precision of representation of seconds in types TIME_OF_DAY and
DATE_AND_TIME

2.3.3

Maximum number of array subscripts
Maximum array size
Maximum number of structure elements
Maximum structure size
Maximum number of variables per declaration

2.3.3.1 Maximum number of enumerated values

2.3.3.2 Default maximum length of STRING variables
Maximum allowed length of STRING variables

2.4.1.1 Maximum number of hierarchical levels
Logical or physical mapping

2.4.1.2 Maximum number of subscripts
Maximum range of subscript values
Maximum number of levels of structures

2.4.2 Initialization of system inputs

2.4.3 Maximum number of variables per declaration

2.5 Information to determine execution times of program organization units

2.5.1.1 Method of function representation (names or symbols)

2.5.1.3 Maximum number of function specifications

2.5.1.5 Maximum number of inputs of extensible functions

2.5.1.5.1 Effects of type conversions on accuracy

(continued on following page)

IEC DIS 1131-3 - 229 -

ANNEX G - Index (continued)

Table D.1 - Implementation-dependent parameters (continued)

Clause Parameters

2.5.1.5.2 Accuracy of functions of one variable
Implementation of arithmetic functions

2.5.2 Maximum number of function block specifications and instantiations

2.5.2.3.3 Pvmin, Pvmax of counters

2.5.2.3.4 Effect of a change in the value of a PT input during a timing operation

2.5.3 Program size limitations

2.6 Timing and portability effects of execution control elements

2.6.2 Precision of step elapsed time
Maximum number of steps per SFC

2.6.3 Maximum number of transitions per SFC and per step

2.6.4 Action control mechanism

2.6.4.2 Maximum number of action blocks per step

2.6.5 Graphic indication of step state
Transition clearing time
Maximum width of diverge/converge constructs

2.7.1 Contents of RESOURCE libraries

2.7.2 Maximum number of tasks
Task interval resolution
Pre-emptive or non-pre-emptive scheduling

3.3.1 Maximum length of expressions
Partial evaluation of Boolean expressions

3.3.2 Maximum length of statements

3.3.2.3 Maximum number of CASE selections

3.3.2.4 Value of control variable upon termination of FOR loop

4.1.1 Graphic/semigraphic representation
Restrictions on network topology

4.1.3 Evaluation order of feedback loops

4.3.3 Means for specifying order of network execution

 - 230 - IEC DIS 1131-3

ANNEX G - Index (continued)

ANNEX E - Error Conditions (normative)

The error conditions defined in IEC 1131-3, and the primary reference clause for each, are listed
in table E.1. These errors may be detected during preparation of the program for execution or
during execution of the program. The manufacturer shall specify the disposition of these errors
according to the provisions of subclause 1.5.1 of this part.

Table E.1 - Error conditions

Clause Error conditions

2.3.3.1 Value of a variable exceeds the specified subrange

2.4.2 Length of initialization list does not match number of array entries

2.5.1 Improper use of directly represented or external variables in functions

2.5.1.5.1 Type conversion errors

2.5.1.5.2 Numerical result exceeds range for data type
Division by zero

2.5.1.5.4 Mixed input data types to a selection function
Selector (K) out of range for MUX function

2.5.1.5.5 Invalid character position specified
Result exceeds maximum string length

2.5.1.5.5 CONCAT result too long

2.5.1.5.6 Result exceeds range for data type

2.5.2.2 No parameter value specified for a function block instance used as input
parameter

2.5.2.2 No parameter value specified for a VAR_IN_OUT parameter

2.6.2 Zero or more than one initial steps in SFC network
User program attempts to modify step state or time

2.6.2.5 Simultaneously true, non-prioritized transitions in a selection divergence

2.6.3 Side effects in evaluation of transition condition

2.6.4.5 Action control contention error

2.6.5 Unsafe or unreachable SFC

2.7.1 Data type conflict in VAR_ACCESS

2.7.2 Tasks require too many processor resources
Execution deadline not met
Other task scheduling conflicts

3.2.2 Numerical result exceeds range for data type

3.2.2 Current result and operand not of same data type

3.3.1 Division by zero
Invalid data type for operation

3.3.2.1 Return from function without value assigned

3.3.2.4 Iteration fails to terminate

IEC DIS 1131-3 - 231 -

ANNEX G - Index (continued)

4.1.1 Same identifier used as connector label and element name

4.1.3 Uninitialized feedback variable

 - 232 - IEC DIS 1131-3

ANNEX G - Index (continued)

IEC DIS 1131-3 - 233 -

ANNEX G - Index (continued)

ANNEX F - Examples (informative)

F.1 Function WEIGH

Example function WEIGH provides the functions of BCD-to-binary conversion of a gross-weight
input from a scale, the binary integer subtraction of a tare weight which has been previously
converted and stored in the memory of the programmable controller, and the conversion of the
resulting net weight back to BCD form, e.g., for an output display. The "EN" input is used to
indicate that the scale is ready to perform the weighing operation.

The "ENO" output indicates that an appropriate command exists (e.g., from an operator
pushbutton), the scale is in proper condition for the weight to be read, and each function has a
correct result.

A textual form of the declaration of this function is:

FUNCTION WEIGH : WORD (* BCD encoded *)

 VAR_INPUT (* "EN" input is used to indicate "scale ready" *)
 weigh_command : BOOL;
 gross_weight : WORD ; (* BCD encoded *)
 tare_weight : INT ;
 END_VAR

(* Function Body *)

END_FUNCTION (* Implicit "ENO" *)

The body of function WEIGH in the IL language is:

 LD weigh_command
 JMPC WEIGH_NOW
 ST ENO (* No weighing, 0 to "ENO" *)
 RET
WEIGH_NOW: LD gross_weight
 BCD_TO_INT
 SUB tare_weight
 INT_TO_BCD (* Return evaluated weight *)

The body of function WEIGH in the ST language is:

IF weigh_command THEN
 WEIGH := INT_TO_BCD (BCD_TO_INT(gross_weight) - tare_weight);
END_IF ;

 - 234 - IEC DIS 1131-3

ANNEX G - Index (continued)

An equivalent graphical declaration of function WEIGH is:

 +-------------------------+
 | WEIGH |
 BOOL---|EN ENO|---BOOL
 BOOL---|weigh_command net_weight|---WORD
 WORD---|gross_weight |
 INT----|tare_weight |
 +-------------------------+

The function body in the LD language is:

| +--------+ +--------+ |
| | BCD_ | +-------+ | INT_ | |
| weigh_command | TO_INT | | SUB | | TO_BCD | ENO |
+-------| |-----|EN ENO|--|EN ENO|---|EN ENO|----()------+
gross_weight--		--		---		--net_weight
+--------+		+--------+				
tare_weight---------------						
+-------+						

The function body in the FBD language is:

 +--------+ +--------+
 | BCD_ | +-------+ | INT_ |
 | TO_INT | | SUB | | TO_BCD |
weigh_command---|EN ENO|---|EN ENO|---|EN ENO|---ENO
gross_weight----| |---| |---| |--net_weight
 +--------+ | | +--------+
tare_weight------------------| |
 +-------+

F.2 Function block CMD_MONITOR

Example function block CMD_MONITOR illustrates the control of an operative unit which is
capable of responding to a Boolean command (the CMD output) and returning a Boolean
feedback signal (the FDBK input) indicating successful completion of the commanded action. The
function block provides for manual control via the MAN_CMD input, or automated control via the
AUTO_CMD input, depending on the state of the AUTO_MODE input (0 or 1 respectively).
Verification of the MAN_CMD input is provided via the MAN_CMD_CHK input, which must be 0 in
order to enable the MAN_CMD input.

If confirmation of command completion is not received on the FDBK input within a predetermined
time specified by the T_CMD_MAX input, the command is cancelled and an alarm condition is
signalled via the ALRM output. The alarm condition may be cancelled by the ACK (acknowledge)
input, enabling further operation of the command cycle.

IEC DIS 1131-3 - 235 -

ANNEX G - Index (continued)

A textual form of the declaration of function block CMD_MONITOR is:

FUNCTION_BLOCK CMD_MONITOR

 VAR_INPUT AUTO_CMD : BOOL ; (* Automated command *)
 AUTO_MODE : BOOL ; (* AUTO_CMD enable *)
 MAN_CMD : BOOL ; (* Manual Command *)
 MAN_CMD_CHK : BOOL ; (* Negated MAN_CMD to debounce *)
 T_CMD_MAX : TIME ; (* Max time from CMD to FDBK *)
 FDBK : BOOL ; (* Confirmation of CMD completion
 by operative unit *)
 ACK : BOOL ; (* Acknowledge/cancel ALRM *)
 END_VAR

 VAR_OUTPUT CMD : BOOL ; (* Command to operative unit *)
 ALRM : BOOL ; (* T_CMD_MAX expired without FDBK *)
 END_VAR

 VAR CMD_TMR : TON ; (* CMD-to-FDBK timer *)
 ALRM_FF : SR ; (* Note over-riding "S" input: *)
 END_VAR (* Command must be cancelled before
 "ACK" can cancel alarm *)

 (* Function Block Body *)

END_FUNCTION_BLOCK

An equivalent graphical declaration is:
 +---------------+
 | CMD_MONITOR |
 BOOL---|AUTO_CMD CMD|---BOOL
 BOOL---|AUTO_MODE ALRM|---BOOL
 BOOL---|MAN_CMD |
 BOOL---|MAN_CMD_CHK |
 TIME---|T_CMD_MAX |
 BOOL---|FDBK |
 BOOL---|ACK |
 +---------------+

The body of function block CMD_MONITOR in the ST language is:

 CMD := AUTO_CMD & AUTO_MODE
 OR MAN_CMD & NOT MAN_CMD_CHK & NOT AUTO_MODE ;
 CMD_TMR (IN := CMD, PT := T_CMD_MAX);
 ALRM_FF (S1 := CMD_TMR.Q & NOT FDBK, R := ACK);
 ALRM := ALRM_FF.Q1;

 - 236 - IEC DIS 1131-3

ANNEX G - Index (continued)

The body of function block CMD_MONITOR in the IL language is:

LD T_CMD_MAX
ST CMD_TMR.PT (* Store an input to the TON FB *)
LD AUTO_CMD
AND AUTO_MODE
OR(MAN_CMD
AND
N

AUTO_MODE

AND
N

MAN_CMD_CHK

)
ST CMD
IN CMD_TMR (* Invoke the TON FB *)
LD CMD_TMR.Q
AND
N

FDBK

ST ALRM_FF.S1 (* Store an input to the SR FB *)
LD ACK
R ALRM_FF (* Invoke the SR FB *)
LD ALRM_FF.Q1
ST ALRM

The body of function block CMD_MONITOR in the LD language is:

 | |
 | AUTO_MODE AUTO_CMD CMD |
 +--| |--------| |-------------------+---()--+
 | | |
 | AUTO_MODE MAN_CMD MAN_CMD_CHECK | |
 +--|/|-------| |------|/|-----------+ |
 | |
 | ACK ALRM |
 +--| |---------------------------------(R)---+
 | CMD_TMR |
 | +-----+ |
 | CMD | TON | FDBK ALRM |
 +--| |-------|IN Q|------|/|----------(S)---+
 | T_CMD_MAX--|PT ET| |
 | +-----+ |
 | |

IEC DIS 1131-3 - 237 -

ANNEX G - Index (continued)

The body of function block CMD_MONITOR in the FBD language is:

 +-+ +---+
AUTO_CMD------|&|----|>=1|--+-------------------------------CMD
AUTO_MODE--+--| | +--| | |
 | +-+ | +---+ |
 | | |
 | +-+ | | CMD_TMR ALRM_FF
 +-O|&| | | +-----+ +-----+
MAN_CMD-------| |-+ | | TON | +-+ | SR |
MAN_CMD_CHK--O| | +--|IN Q|------|&|----|S1 Q1|--ALRM
 +-+ | | +--O| | +--|R |
T_CMD_MAX----------------------|PT ET| | +-+ | +-----+
 +-----+ | |
FDBK------------------------------------+ |
ACK---+

F.3 Function block FWD_REV_MON

Example function block FWD_REV_MON illustrates the control of an operative unit capable of
two-way positioning action, e.g., a motor-operated valve. Both automated and manual control
modes are possible, with alarm capabilities provided for each direction of motion, as described for
function block CMD_MONITOR above. In addition, contention between forward and reverse
commands causes the cancellation of both commands and signalling of an alarm condition. The
Boolean OR of all alarm conditions is made available as a KLAXON output for operator signaling.

A graphical declaration of this function block is:

 +----------------------+
 | FWD_REV_MON |
 BOOL---|AUTO KLAXON|---BOOL
 BOOL---|ACK FWD_REV_ALRM|---BOOL
 BOOL---|AUTO_FWD FWD_CMD|---BOOL
 BOOL---|MAN_FWD FWD_ALRM|---BOOL
 BOOL---|MAN_FWD_CHK |
 TIME---|T_FWD_MAX |
 BOOL---|FWD_FDBK |
 BOOL---|AUTO_REV REV_CMD|---BOOL
 BOOL---|MAN_REV REV_ALRM|---BOOL
 BOOL---|MAN_REV_CHK |
 TIME---|T_REV_MAX |
 BOOL---|REV_FDBK |
 +----------------------+

 - 238 - IEC DIS 1131-3

ANNEX G - Index (continued)

A textual form of the declaration of function block FWD_REV_MON is:

FUNCTION_BLOCK FWD_REV_MON

VAR_INPUT AUTO : BOOL ;(* Enable automated commands *)
 ACK : BOOL ; (* Acknowledge/cancel all alarms *)
 AUTO_FWD : BOOL ; (* Automated forward command *)
 MAN_FWD : BOOL ; (* Manual forward command *)
 MAN_FWD_CHK : BOOL ; (* Negated MAN_FWD for debouncing *)
 T_FWD_MAX : TIME ; (* Maximum time from FWD_CMD to FWD_FDBK *)
 FWD_FDBK : BOOL ; (* Confirmation of FWD_CMD completion *)
 (* by operative unit *)
 AUTO_REV : BOOL ; (* Automated reverse command *)
 MAN_REV : BOOL ; (* Manual reverse command *)
 MAN_REV_CHK : BOOL ; (* Negated MAN_REV for debouncing *)
 T_REV_MAX : TIME ; (* Maximum time from REV_CMD to REV_FDBK *)
 REV_FDBK : BOOL ; (* Confirmation of REV_CMD completion *)
END_VAR (* by operative unit *)

VAR_OUTPUT KLAXON : BOOL ; (* Any alarm active *)
 FWD_REV_ALRM : BOOL; (* Forward/reverse command conflict *)
 FWD_CMD : BOOL ; (* "Forward" command to operative unit *)
 FWD_ALRM : BOOL ; (* T_FWD_MAX expired without FWD_FDBK *)
 REV_CMD : BOOL ; (* "Reverse" command to operative unit *)
 REV_ALRM : BOOL ; (* T_REV_MAX expired without REV_FDBK *)
END_VAR

VAR FWD_MON : CMD_MONITOR; (* "Forward" command monitor *)
 REV_MON : CMD_MONITOR; (* "Reverse" command monitor *)
 FWD_REV_FF : SR ; (* Forward/Reverse contention latch *)
END_VAR

(* Function Block body *)

END_FUNCTION_BLOCK

IEC DIS 1131-3 - 239 -

ANNEX G - Index (continued)

The body of function block FWD_REV_MON can be written in the ST language as:

(* Evaluate internal function blocks *)

 FWD_MON (AUTO_MODE := AUTO,
 ACK := ACK,
 AUTO_CMD := AUTO_FWD,
 MAN_CMD := MAN_FWD,
 MAN_CMD_CHK := MAN_FWD_CHK,
 T_CMD_MAX := T_FWD_MAX,
 FDBK := FWD_FDBK);
 REV_MON (AUTO_MODE := AUTO,
 ACK := ACK,
 AUTO_CMD := AUTO_REV,
 MAN_CMD := MAN_REV,
 MAN_CMD_CHK := MAN_REV_CHK,
 T_CMD_MAX := T_REV_MAX,
 FDBK := REV_FDBK);
 FWD_REV_FF (S1 := FWD_MON.CMD & REV_MON.CMD, R := ACK);

(* Transfer data to outputs *)

 FWD_REV_ALRM := FWD_REV_FF.Q1;
 FWD_CMD := FWD_MON.CMD & NOT FWD_REV_ALRM;
 FWD_ALRM := FWD_MON.ALRM;
 REV_CMD := REV_MON.CMD & NOT FWD_REV_ALRM;
 REV_ALRM := REV_MON.ALRM;
 KLAXON := FWD_ALRM OR REV_ALRM OR FWD_REV_ALRM;

 - 240 - IEC DIS 1131-3

ANNEX G - Index (continued)

The body of function block FWD_REV_MON in the IL language is:

LD AUTO (* Load common inputs *)
ST FWD_MON.AUTO_MODE
ST REV_MON.AUTO_MODE
LD ACK
ST FWD_MON.ACK
ST REV_MON.ACK
ST FWD_REV_FF.R
LD AUTO_FWD (* Load inputs to FWD_MON *)
ST FWD_MON.AUTO_CMD
LD MAN_FWD
ST FWD_MON.MAN_CMD
LD MAN_FWD_CHK
ST FWD_MON.MAN_CMD_CHK
LD T_FWD_MAX
ST FWD_MON.T_CMD_MAX
LD FWD_FDBK
ST FWD_MON.FDBK
CAL FWD_MON (* Activate FWD_MON *)
LD AUTO_REV (* Load inputs to REV_MON *)
ST REV_MON.AUTO_CMD
LD MAN_REV
ST REV_MON.MAN_CMD
LD MAN_REV_CHK
ST REV_MON.MAN_CMD_CHK
LD T_REV_MAX
ST REV_MON.T_CMD_MAX
LD REV_FDBK
ST REV_MON.FDBK
CAL REV_MON (* Activate REV_MON *)
LD FWD_MON.CMD (* Check for contention *)
AND REV_MON.CMD
S1 FWD_REV_FF (* Latch contention condition *)
LD FWD_REV_FF.Q
ST FWD_REV_ALRM (* Contention alarm *)
LD FWD_MON.CMD (* "Forward" command and alarm *)
ANDN FWD_REV_ALRM
ST FWD_CMD
LD FWD_MON.ALRM
ST FWD_ALRM
LD REV_MON.CMD (* "Reverse" command and alarm *)
ANDN FWD_REV_ALRM
ST REV_CMD
LD REV_MON.ALRM
ST REV_ALRM
OR FWD_ALRM (* OR all alarms *)
OR FWD_REV_ALRM
ST KLAXON

IEC DIS 1131-3 - 241 -

ANNEX G - Index (continued)

The body of function block FWD_REV_MON in the FBD language is:

 FWD_MON
 +---------------+
 | CMD_MONITOR |
 AUTO_FWD----------|AUTO_CMD CMD|--+
 AUTO---------+----|AUTO_MODE ALRM|--|-------FWD_ALRM
 MAN_FWD------|----|MAN_CMD | |
 MAN_FWD_CHK--|----|MAN_CMD_CHK | |
 FWD_FDBK-----|----|FDBK | |
 ACK----------|-+--|ACK | |
 T_FWD_MAX----|-|--|T_CMD_MAX | | +---+
 | | +---------------+ +--| & |-------------+
 | | +--| | | |
 | | REV_MON | +---+ |
 | | +---------------+ | |
 | | | CMD_MONITOR | | |
 AUTO_REV-----|-|--|AUTO_CMD CMD|--+ |
 +-|--|AUTO_MODE ALRM|---------REV_ALRM |
 MAN_REV--------|--|MAN_CMD | |
 MAN_REV_CHK----|--|MAN_CMD_CHK | |
 REV_FDBK-------|--|FDBK | |
 +--|ACK | |
 T_REV_MAX---------|T_CMD_MAX | |
 +---------------+ |
 +--+
 | FWD_REV_FF
 | +------+
 | | SR |
 +-----|S1 Q1|--+----------------FWD_REV_ALRM
 ACK---|R | |
 +------+ | +-----+
 +---| >=1 |------KLAXON
 FWD_MON.ALRM-------------|---| |
 REV_MON.ALRM-------------|---| |
 | +-----+
 |
 | +---+
 +--O| & |--------FWD_CMD
 FWD_MON.CMD--------------|---| |
 | +---+
 |
 | +---+
 +--O| & |--------REV_CMD
 REV_MON.CMD------------------| |
 +---+

 - 242 - IEC DIS 1131-3

ANNEX G - Index (continued)

The body of function block FWD_REV_MON in the LD language is:

 | FWD_MON |
 | +---------------+ |
 | AUTO_FWD | CMD_MONITOR | |
 +--| |---------|AUTO_CMD CMD| |
 | AUTO | | FWD_ALRM |
 +--| |---------|AUTO_MODE ALRM|-------()---+
 | MAN_FWD | | |
 +--| |---------|MAN_CMD | |
 | MAN_FWD_CHK | | |
 +--| |---------|MAN_CMD_CHK | |
 | FWD_FDBK | | |
 +--| |---------|FDBK | |
 | ACK | | |
 +--| |---------|ACK | |
 | | | |
 | T_FWD_MAX---|T_CMD_MAX | |
 | +---------------+ |
 | |
 | REV_MON |
 | +---------------+ |
 | AUTO_REV | CMD_MONITOR | |
 +--| |---------|AUTO_CMD CMD| |
 | AUTO | | REV_ALRM |
 +--| |---------|AUTO_MODE ALRM|-------()---+
 | MAN_REV | | |
 +--| |---------|MAN_CMD | |
 | MAN_REV_CHK | | |
 +--| |---------|MAN_CMD_CHK | |
 | REV_FDBK | | |
 +--| |---------|FDBK | |
 | ACK | | |
 +--| |---------|ACK | |
 | | | |
 | T_REV_MAX---|T_CMD_MAX | |
 | +---------------+ |
 | |
 | ACK FWD_REV_ALRM |
 +-----| |--------------------------(R)-------+
 | |
 | FWD_MON.CMD REV_MON.CMD FWD_REV_ALRM |
 +-----| |-----------| |------------(S)-------+
 | |

(continued on following page)

IEC DIS 1131-3 - 243 -

ANNEX G - Index (continued)

(FWD_REV_MON function block body - LD language - continued)

 | |
 | FWD_MON.CMD FWD_REV_ALRM FWD_CMD |
 +-----| |-----------|/|-------------()------+
 | |
 | REV_MON.CMD FWD_REV_ALRM REV_CMD |
 +-----| |-----------|/|-------------()------+
 | |
 | FWD_REV_ALRM KLAXON |
 +-----| |------+--------------------()------+
 | | |
 | FWD_ALRM | |
 +-----| |------+ |
 | | |
 | REV_ALRM | |
 +-----| |------+ |
 | |

F.4 Function block STACK_INT

This function block provides a stack of up to 128 integers. The usual stack operations of PUSH
and POP are provided by edge-triggered Boolean inputs. An overriding reset (R1) input is
provided; the maximum stack depth (N) is determined at the time of resetting. In addition to the
top-of-stack data (OUT), Boolean outputs are provided indicating stack empty and stack overflow
states.

A textual form of the declaration of this function block is:

FUNCTION_BLOCK STACK_INT
 VAR_INPUT PUSH, POP: BOOL R_EDGE; (* Basic stack operations *)
 R1 : BOOL ; (* Over-riding reset *)
 IN : INT ; (* Input to be pushed *)
 N : INT ; (* Maximum depth after reset *)
 END_VAR
 VAR_OUTPUT EMPTY : BOOL := 1 ; (* Stack empty *)
 OFLO : BOOL := 0 ; (* Stack overflow *)
 OUT : INT := 0 ; (* Top of stack data *)
 END_VAR
 VAR STK : ARRAY[0..127] OF INT; (* Internal stack *)
 NI : INT :=128 ; (* Storage for N upon reset *)
 PTR : INT := -1 ; (* Stack pointer *)
 END_VAR

 (* Function Block body *)

 END_FUNCTION_BLOCK

 - 244 - IEC DIS 1131-3

ANNEX G - Index (continued)

A graphical declaration of function block STACK_INT is:

 +-----------+
 | STACK_INT |
 BOOL--->PUSH EMPTY|---BOOL
 BOOL--->POP OFLO|---BOOL
 BOOL---|R1 OUT|---INT
 INT----|IN |
 INT----|N |
 +-----------+

(* Internal variable declarations *)

 VAR STK : ARRAY[0..127] OF INT ; (* Internal Stack *)
 NI : INT :=128 ; (* Storage for N upon Reset *)
 PTR : INT := -1 ; (* Stack Pointer *)
 END_VAR

The function block body in the ST language is:

 IF R1 THEN
 OFLO := 0; EMPTY := 1; PTR := -1;
 NI := LIMIT (MN:=1,IN:=N,MX:=128); OUT := 0;
 ELSIF POP & NOT EMPTY THEN
 OFLO := 0; PTR := PTR-1; EMPTY := PTR < 0;
 IF EMPTY THEN OUT := 0;
 ELSE OUT := STK[PTR];
 END_IF ;
 ELSIF PUSH & NOT OFLO THEN
 EMPTY := 0; PTR := PTR+1; OFLO := (PTR = NI);
 IF NOT OFLO THEN OUT := IN ; STK[PTR] := IN;
 ELSE OUT := 0;
 END_IF ;
 END_IF ;

The function block body in the LD language is:

 | |
 | R1 |
 +---| |--->>RESET |
 | |
 | POP EMPTY |
 +--| |---|/|--->>POP_STK |
 | |
 | PUSH OFLO |
 +--| |---|/|--->>PUSH_STK |
 | |
 | |
 +--------------<RETURN> |

(continued on following page)

IEC DIS 1131-3 - 245 -

ANNEX G - Index (continued)

(STACK_INT function block body - LD language - continued)

 RESET:
 | +--------+ +-------+ |
 | | MOVE | | LIMIT | OFLO |
 +------|EN ENO|------------|EN ENO|--+---(R)---+
 | 0---| |--OUT 128--|MX | | EMPTY |
 | -1 --| |--PTR N--|IN | +---(S)---+
 | +--------+ 1--|MN |--NI |
 | +-------+ |

 POP_STK:
 | +--------+ +--------+ |
 | | SUB | | LT | |
 +------------|EN ENO|-------|EN ENO| EMPTY |
 | PTR--| |--PTR--| |----(S)---+
 | 1--| | 0--| | |
 | +--------+ +--------+ |
 | |
 | +-------+ |
 | | SEL | OFLO |
 +------------------|EN ENO|---------------(R)----+
 | EMPTY | | |
 +---| |------------|G |---OUT |
 | STK[PTR]---|IN0 | |
 | 0 ---|IN1 | |
 | +-------+ |
 +--------------------------------<RETURN> |

 PUSH_STK:
 | |
 | +--------+ +--------+ |
 | | ADD | | EQ | |
 +------------|EN ENO|-------|EN ENO| OFLO |
 | PTR--| |--PTR--| |----(S)---+
 | 1--| | NI--| | |
 | +--------+ +--------+ |
 | |
 | +------+ |
 | OFLO | MOVE | |
 +---|/|-------|EN ENO|----------------------------+
 | IN---| |---STK[PTR] |
 | +------+ |
 | |
 | +-------+ |
 | | SEL | EMPTY |
 +-------------|EN ENO|--------------------(R)----+
 | OFLO | | |
 +---| |-------|G |---OUT |
 | IN---|IN0 | |
 | 0 ---|IN1 | |
 | +-------+ |

 - 246 - IEC DIS 1131-3

ANNEX G - Index (continued)

The body of function block STACK_INT in the IL language is:

 LD R1 (* Dispatch on operations *)
 JMPC RESET
 LD POP
 ANDN EMPTY (* Don't pop empty stack *)
 JMPC POP_STK
 LD PUSH
 ANDN OFLO (* Don't push overflowed stack *)
 JMPC PUSH_STK
 RET (* Return if no operations active *)
RESET: LD 0 (* Stack reset operations *)
 ST OFLO
 LD 1
 ST EMPTY
 LD -1
 ST PTR
 CAL LIMIT(MN:=1,IN:=N,MX:=128)
 ST NI
 JMP ZRO_OUT
POP_STK: LD 0
 ST OFLO (* Popped stack is not overflowing *)
 LD PTR
 SUB 1
 ST PTR
 LT 0 (* Empty when PTR < 0 *)
 ST EMPTY
 JMPC ZRO_OUT
 LD STK[PTR]
 JMP SET_OUT
PUSH_STK: LD 0
 ST EMPTY (* Pushed stack is not empty *)
 LD PTR
 ADD 1
 ST PTR
 EQ NI (* Overflow when PTR = NI *)
 ST OFLO
 JMPC ZRO_OUT
 LD IN
 ST STK[PTR] (* Push IN onto STK *)
 JMP SET_OUT
ZRO_OUT: LD 0 (* OUT=0 for EMPTY or OFLO *)
SET_OUT: ST OUT

IEC DIS 1131-3 - 247 -

ANNEX G - Index (continued)

The body of function block STACK_INT in the FBD language is:

 R1--+-->>RESET
 | +-+
 +-----------------------------O|&|--<RETURN>
 | +-+ +--------------------O| |
 +--O|&| | +--O| |
 POP-----| |--+-->>POP_STK | +-+
 EMPTY--O| | | +-+ |
 +-+ +-----------O|&|--+-->>PUSH_STK
 R1-----------------------O| |
 PUSH----------------------| |
 OFLO---------------------O| |
 +-+

 RESET: +------+ +-------+
 | := | | LIMIT |
 1 --|EN ENO|---------------|EN ENO|--<RETURN>
 0 --| |---OUT 128--|MX |
 -1 --| |---PTR N--|IN |--NI
 0 --| |---OFLO 1--|MN |
 1 --| |---EMPTY +-------+
 +------+

 POP_STK: +-----+
 +---+ +---+ | SEL | +----+
 PTR --| - |--PTR--| < |--EMPTY--|G |------| := |--OUT
 1 --| | 0 --| | | | 0 --| |--OFLO
 +---+ +---+ | | 1 --| |--<RETURN>
 STK[PTR]--|IN0 | +----+
 0 ---|IN1 |
 +-----+

 PUSH_STK: +------+
 +---+ +---+ | := |
 PTR --| + |--PTR--| = |--+--OFLO---O|EN ENO|
 1 --| | NI--| | | | |
 +---+ +---+ | 0 ---| |--EMPTY
 | IN---| |--+--STK[PTR]
 | +------+ |
 | +------+ +--OUT
 | | := |
 +--| |---EMPTY
 0 ---| |---OUT
 +------+

 - 248 - IEC DIS 1131-3

ANNEX G - Index (continued)

F.5 Function block MIX_2_BRIX

Function block MIX_2_BRIX is to control the mixing of two bricks of solid material, brought one at
a time on a belt, with weighed quantities of two liquid components, A and B, as shown in figure
F.1. A "Start" (ST) command, which may be manual or automatic, initiates a measurement and
mixing cycle beginning with simultaneous weighing and brick transport as follows:

- Liquid A is weighed up to mark "a" of the weighing unit, then liquid B is weighed up to mark
"b", followed by filling of the mixer from weighing unit C;

- Two bricks are transported by belt into the mixer.

The cycle ends with the mixer rotating and finally tipping after a predetermined time "t1". Rotation
of the mixer continues while it is emptying.

The scale reading "WC" is given as four BCD digits, and will be converted to type INT for internal
operations. It is assumed that the tare (empty weight) "z" has been previously determined.

MR

A

VA

B

VB

C

VC
||| a ||||| b |||WC

MP0

MP1

S0

S1

MT

d
transit detector

belt motor

bricks

feed belt

tipping mixer

mixing
motor

bidirectional
tipping motor

"Down" limit switch

"Up" limit switch

Weighing unit

Figure F.1 - Function block MIX_2_BRIX - Physical model

IEC DIS 1131-3 - 249 -

ANNEX G - Index (continued)

The textual form of the declaration of this function block is:

 FUNCTION_BLOCK MIX_2_BRIX
 VAR_INPUT
 ST : BOOL ; (* "Start" command *)
 d : BOOL ; (* Transit detector *)
 S0 : BOOL ; (* "Mixer up" limit switch *)
 S1 : BOOL ; (* "Mixer down" limit switch *)
 WC : WORD; (* Current scale reading in BCD *)
 z : INT ; (* Tare (empty) weight *)
 WA : INT ; (* Desired weight of A *)
 WB : INT ; (* Desired weight of B *)
 t1 : TIME ; (* Mixing time *)
 END_VAR

 VAR_OUTPUT
 DONE ,
 VA , (* Valve "A" : 0 - close, 1 - open *)
 VB , (* Valve "B" : 0 - close, 1 - open *)
 VC , (* Valve "C" : 0 - close, 1 - open *)
 MT , (* Feed belt motor *)
 MR , (* Mixer rotation motor *)
 MP0 , (* Tipping motor "up" command *)
 MP1 : BOOL; (* Tipping motor "down" command *)
 END_VAR

 (* Function block body *)

 END_FUNCTION_BLOCK

A graphical declaration is:

 +------------+
 | MIX_2_BRIX |
 BOOL---|ST DONE|---BOOL
 BOOL---|d VA|---BOOL
 BOOL---|S0 VB|---BOOL
 BOOL---|S1 VC|---BOOL
 WORD---|WC MT|---BOOL
 INT---|z MR|---BOOL
 INT---|WA MP0|---BOOL
 INT---|WB MP1|---BOOL
 TIME---|t1 |
 +------------+

 - 250 - IEC DIS 1131-3

ANNEX G - Index (continued)

The body of function block MIX_2_BRIX using graphical SFC elements with transition conditions
in the ST language is:

IEC DIS 1131-3 - 251 -

ANNEX G - Index (continued)

 +----------->------------+
 | |
 | +====+====+ +---+------+
 | || START ||---| N | DONE |
 | +====+====+ +---+------+
 | |
 | + ST & S0 & BCD_TO_INT(WC) <= z
 | |
 | ===+===============+================+=======
 | | |
 | +----+----+ +---+----+ +----+---+ +---+----+
 | | WEIGH_A |---| N | VA | | BRICK1 |---| S | MT |
 | +----+----+ +---+----+ +----+---+ +---+----+
 | | |
 | + BCD_TO_INT(WC) >= WA+z + d
 | | |
 | +----+----+ +---+----+ +----+---+
 | | WEIGH_B |---| N | VB | | DROP_1 |
 | +----+----+ +---+----+ +----+---+
 | | |
 | + BCD_TO_INT(WC) >= WA+WB+z + NOT d
 | | |
 | +----+----+ +---+----+ +----+---+
 | | FILL |---| N | VC | | BRICK2 |
 | +----+----+ +---+----+ +----+---+
 | | + d
 | | +----+---+ +---+----+
 | | | DROP_2 |---| R | MT |
 | | +----+---+ +---+----+
 | | |
 | ====+===============+================+=====
 | |
 | + BCD_TO_INT(WC) <= z & NOT d
 | |
 | +--+--+ +---+----+
 | | MIX |---| S | MR |
 | +--+--+ +---+----+
 | |
 | + MIX.T >= t1
 | |
 | +--+--+ +---+-----+----+
 | | TIP |---| N | MP1 | S1 |
 | +--+--+ +---+-----+----+
 | |
 | + S1
 | |
 | +---+---+ +---+-----+----+
 | | RAISE |---| R | MR | |
 | +---+---+ +---+-----+----+
 | +S0 | N | MP0 | S0 |
 | | +---+-----+----+
 +-----------<------------+

 - 252 - IEC DIS 1131-3

ANNEX G - Index (continued)

The body of function block MIX_2_BRIX in a textual SFC representation using ST language
elements is:

 INITIAL_STEP START: DONE(N); END_STEP

 TRANSITION FROM START TO (WEIGH_A, BRICK1)
 := ST & S0 & BCD_TO_INT(WC) <= z;
 END_TRANSITION

 STEP WEIGH_A: VA(N); END_STEP

 TRANSITION FROM WEIGH_A TO WEIGH_B := BCD_TO_INT(WC) >= WA+z ;
 END_TRANSITION

 STEP WEIGH_B: VB(N); END_STEP

 TRANSITION FROM WEIGH_B TO FILL := BCD_TO_INT(WC) >= WA+WB+z ;
 END_TRANSITION

 STEP FILL: VC(N); END_STEP

 STEP BRICK1: MT(S); END_STEP

 TRANSITION FROM BRICK1 TO DROP_1 := d ; END_TRANSITION

 STEP DROP_1: END_STEP

 TRANSITION FROM DROP_1 TO BRICK2 := NOT d ; END_TRANSITION

 STEP BRICK2: END_STEP

 TRANSITION FROM BRICK2 TO DROP_2 := d ; END_TRANSITION

 STEP DROP_1: MT(R); END_STEP

 TRANSITION FROM (FILL,DROP_2) TO MIX
 := BCD_TO_INT(WC) <= z & NOT d ;
 END_TRANSITION

 STEP MIX: MR(S); END_STEP

 TRANSITION FROM MIX TO TIP := MIX.T >= t1 ; END_TRANSITION

 STEP TIP: MP1(N); END_STEP

 TRANSITION FROM TIP TO RAISE := S1 ; END_TRANSITION

 STEP RAISE: MR(R); MP0(N); END_STEP

 TRANSITION FROM RAISE TO START := S0 ; END_TRANSITION

IEC DIS 1131-3 - 253 -

ANNEX G - Index (continued)

F.6 Analog signal processing

The purpose of this portion of of this annex is to illustrate the application of the programming
languages defined in this standard to accomplish the basic measurement and control functions of
process-computer aided automation. The blocks shown below are not restricted to analog
signals; they may be used to process any variables of the appropriate types. Similarly, other
functions and function blocks defined in this standard (e.g., mathematical functions) can be used
for the processing of variables which may appear as analog signals at the programmable
controller's I/O terminals.

These function blocks can be typed with respect to the input and output variables shown below as
REAL (e.g., XIN, XOUT) by appending the appropriate data type name, e.g., LAG1_LREAL. The
default data type for these variables is REAL.

These examples are given for illustrative purposes only. Manufacturers may have varying
implementations of analog signal processing elements. The inclusion of these examples is not
intended to preclude the standardization of such elements by the appropriate standards bodies.

F.6.1 Function block LAG1

This function block implements a first-order lag filter.

 +-----------+
 | LAG1 |
 BOOL---|RUN |
 REAL---|XIN XOUT|---REAL
 TIME---|TAU |
 TIME---|CYCLE |
 +-----------+

 FUNCTION_BLOCK LAG1

 VAR_INPUT
 RUN : BOOL ; (* 1 = run, 0 = reset *)
 XIN : REAL ; (* Input variable *)
 TAU : TIME ; (* Filter time constant *)
 CYCLE : TIME ; (* Sampling time interval *)
 END_VAR

 VAR_OUTPUT XOUT : REAL ; END_VAR (* Filtered output *)

 VAR K : REAL ; (* Smoothing constant, 0.0<=K<1.0 *)
 END_VAR

 IF RUN THEN XOUT := XOUT + K * (XIN - XOUT) ;
 ELSE XOUT := XIN ;
 K := TIME_TO_REAL(CYCLE) / TIME_TO_REAL(CYCLE + TAU) ;
 END_IF ;

 END_FUNCTION_BLOCK

 - 254 - IEC DIS 1131-3

ANNEX G - Index (continued)

F.6.2 Function block DELAY

This function block implements an N-sample delay.

 +-----------+
 | DELAY |
 BOOL---|RUN |
 REAL---|XIN XOUT|---REAL
 INT----|N |
 +-----------+

FUNCTION_BLOCK DELAY (* N-sample delay *)

 VAR_INPUT
 RUN : BOOL ; (* 1 = run, 0 = reset *)
 XIN : REAL ;
 N : INT (* 0 <= N < 128 or manufacturer- *)
 END_VAR (* specified maximum value *)

 VAR_OUTPUT XOUT : REAL; END_VAR (* Delayed output *)

 VAR X : ARRAY [0..127] (* N-Element queue *)
 OF REAL; (* with FIFO discipline *)
 I, IXIN, IXOUT : INT := 0;
 END_VAR

 IF RUN THEN IXIN := MOD(IXIN + 1, 128) ; X[IXIN] := XIN ;
 IXOUT := MOD(IXOUT + 1, 128) ; XOUT := X[IXOUT];
 ELSE XOUT := XIN ; IXIN := N ; IXOUT := 0;
 FOR I := 0 TO N DO X[I] := XIN; END_FOR;
 END_IF ;
END_FUNCTION_BLOCK

IEC DIS 1131-3 - 255 -

ANNEX G - Index (continued)

F.6.3 Function block AVERAGE

This function block implements a running average over N samples.

 +-----------+
 | AVERAGE |
 BOOL---|RUN |
 REAL---|XIN XOUT|---REAL
 INT----|N |
 +-----------+

 FUNCTION_BLOCK AVERAGE

 VAR_INPUT
 EN : BOOL ; (* 1 = run, 0 = reset *)
 XIN : REAL ; (* Input variable *)
 N : INT ; (* 0 <= N < 128 or manufacturer- *)
 END_VAR (* specified maximum value *)

 VAR_OUTPUT XOUT : REAL ; END_VAR (* Averaged output *)

 VAR SUM : REAL := 0.0; (* Running sum *)
 FIFO : DELAY ; (* N-Element FIFO *)
 END_VAR

 SUM := SUM - FIFO.XOUT ;
 FIFO (RUN := RUN , XIN := XIN, N := N) ;
 SUM := SUM + FIFO.XOUT ;
 IF RUN THEN XOUT := SUM/N ;
 ELSE SUM := N*XIN ; XOUT := XIN ;
 END_IF ;

 END_FUNCTION_BLOCK

 - 256 - IEC DIS 1131-3

ANNEX G - Index (continued)

F.6.4 Function block INTEGRAL

This function block implements integration over time.

 +-----------+
 | INTEGRAL |
 BOOL---|RUN Q|---BOOL
 BOOL---|R1 |
 REAL---|XIN XOUT|---REAL
 REAL---|X0 |
 TIME---|CYCLE |
 +-----------+

 FUNCTION_BLOCK INTEGRAL

 VAR_INPUT
 RUN : BOOL ; (* 1 = integrate, 0 = hold *)
 R1 : BOOL ; (* Overriding reset *)
 XIN : REAL ; (* Input variable *)
 X0 : REAL ; (* Initial value *)
 CYCLE : TIME ; (* Sampling period *)
 END_VAR

 VAR_OUTPUT
 Q : BOOL ; (* NOT R1 *)
 XOUT : REAL ; (* Integrated output *)
 END_VAR

 Q := NOT R1 ;
 IF R1 THEN XOUT := X0 ;
 ELSIF RUN THEN XOUT := XOUT + XIN * TIME_TO_REAL(CYCLE);
 END_IF ;

 END_FUNCTION_BLOCK

IEC DIS 1131-3 - 257 -

ANNEX G - Index (continued)

F.6.5 Function block DERIVATIVE

This function block implements differentiation with respect to time.

 +------------+
 | DERIVATIVE |
 BOOL---|RUN |
 REAL---|XIN XOUT|---REAL
 TIME---|CYCLE |
 +------------+

 FUNCTION_BLOCK DERIVATIVE

 VAR_INPUT
 RUN : BOOL ; (* 0 = reset *)
 XIN : REAL ; (* Input to be differentiated *)
 CYCLE : TIME ; (* Sampling period *)
 END_VAR

 VAR_OUTPUT
 XOUT : REAL ; (* Differentiated output *)
 END_VAR

 VAR X1, X2, X3 : REAL ; END_VAR

 IF RUN THEN
 XOUT := (3.0 * (XIN - X3) + X1 - X2)
 / (10.0 * TIME_TO_REAL(CYCLE)) ;
 X3 := X2 ; X2 := X1 ; X1 := XIN ;
 ELSE XOUT := 0.0; X1 := XIN ; X2 := XIN ; X3 := XIN ;
 END_IF ;

 END_FUNCTION_BLOCK

F.6.6 Function block HYSTERESIS

This function block implements Boolean hysteresis on the difference of REAL inputs.

 +------------+
 | HYSTERESIS |
 REAL---|XIN1 Q|---BOOL
 REAL---|XIN2 |
 REAL---|EPS |
 +------------+

FUNCTION_BLOCK HYSTERESIS
 (* Boolean hysteresis on difference *)
 (* of REAL inputs, XIN1 - XIN2 *)

 VAR_INPUT XIN1, XIN2, EPS : REAL; END_VAR

 VAR_OUTPUT Q : BOOL := 0; END_VAR

 IF Q THEN IF XIN1 < (XIN2 - EPS) THEN Q := 0; END_IF ;
 ELSIF XIN1 > (XIN2 + EPS) THEN Q := 1 ;
 END_IF ;

END_FUNCTION_BLOCK

 - 258 - IEC DIS 1131-3

ANNEX G - Index (continued)

F.6.7 Function block LIMITS_ALARM

This function block implements a high/low limit alarm with hysteresis on both outputs.

 +---------+
 | LIMITS_ |
 | ALARM |
 (* High limit *) REAL--|H QH|--BOOL (* High flag *)
 (* Variable value *) REAL--|X Q|--BOOL (* Alarm output *)
 (* Lower limit *) REAL--|L QL|--BOOL (* Low flag *)
 (* Hysteresis *) REAL--|EPS |
 +---------+

 (* Function block body in FBD language *)

 HIGH_ALARM
 +------------+
 | HYSTERESIS |
 X------------------------+--|XIN1 Q|--+------------QH
 +---+ | | | |
 H----------------| - |------|XIN2 | |
 +---| | | | | |
 | +---+ | | | |
 +--------------|EPS | | +-----+
 +---+ | | +------------+ +--| >=1 |
 EPS---| / |--+ | | |---Q
 2.0---| | | | LOW_ALARM +--| |
 +---+ | | +------------+ | +-----+
 | +---+ | | HYSTERESIS | |
 L----------------| + |------|XIN1 Q|--+------------QL
 | | | | | |
 +---| | +--|XIN2 |
 | +---+ | |
 +--------------|EPS |
 +------------+

IEC DIS 1131-3 - 259 -

ANNEX G - Index (continued)

F.6.8 Structure ANALOG_LIMITS

This data type implements the declarations of parameters for analog signal monitoring.

 TYPE ANALOG_LIMITS :
 STRUCT
 HS : REAL ; (* High end of signal range *)
 HM : REAL ; (* High end of measurement range *)
 HA : REAL ; (* High alarm threshold *)
 HW : REAL ; (* High warning threshold *)
 NV : REAL ; (* Nominal value *)
 EPS : REAL ; (* Hysteresis *)
 LW : REAL ; (* Low warning threshold *)
 LA : REAL ; (* Low alarm threshold *)
 LM : REAL ; (* Low end of measurement range *)
 LS : REAL ; (* Low end of signal range *)
 END_STRUCT
 END_TYPE

 - 260 - IEC DIS 1131-3

ANNEX G - Index (continued)

F.6.9 Function block ANALOG_MONITOR

This function block implements analog signal monitoring.

 +---------+
 | ANALOG_ |
 | MONITOR |
 REAL--|X SE|--BOOL (* Signal error *)
 ANALOG_LIMITS--|L ME|--BOOL (* Measurement error *)
 | ALRM|--BOOL (* Alarm *)
 | WARN|--BOOL (* Warning *)
 | QH|--BOOL (* 1 = Signal high *)
 +---------+

(* Function block body in FBD language *)

 SIGNAL_ALARM MEAS_ALARM
 +--------------+ +--------------+
 | LIMITS_ALARM | | LIMITS_ALARM |
 L.HS---|H Q|---SE L.HM---|H Q|---ME
 X------|X | X------|X |
 L.LS---|L | L.LM---|L |
 EPS----|EPS | EPS----|EPS |
 +--------------+ +--------------+

 ALARM WARNING
 +--------------+ +--------------+
 | LIMITS_ALARM | | LIMITS_ALARM |
 L.HA---|H Q|---ALRM L.HW---|H Q|---WARN
 X------|X | X---|X |
 L.LA---|L | L.LW---|L |
 EPS----|EPS | EPS---|EPS |
 +--------------+ +--------------+

 +------+
 SIGNAL_ALARM.QH---| >= 1 |---QH
 MEAS_ALARM.QH-----| |
 ALARM.QH----------| |
 WARNING.QH--------| |
 +------+

IEC DIS 1131-3 - 261 -

ANNEX G - Index (continued)

F.6.10 Function block PID

This function block implements Proportional + Integral + Derivative control action. The
functionality is derived by functional composition of previously declared function blocks.

 +-----------+
 | PID |
 BOOL---|AUTO |
 REAL---|PV XOUT|---REAL
 REAL---|SP |
 REAL---|X0 |
 REAL---|KP |
 REAL---|TR |
 REAL---|TD |
 TIME---|CYCLE |
 +-----------+

 FUNCTION_BLOCK PID

 VAR_INPUT
 AUTO : BOOL ; (* 0 - manual , 1 - automatic *)
 PV : REAL ; (* Process variable *)
 SP : REAL ; (* Set point *)
 X0 : REAL ; (* Manual output adjustment - *)
 (* Typically from transfer station *)
 KP : REAL ; (* Proportionality constant *)
 TR : REAL ; (* Reset time *)
 TD : REAL ; (* Derivative time constant *)
 CYCLE : TIME ; (* Sampling period *)
 END_VAR

 VAR_OUTPUT XOUT : REAL; END_VAR

 VAR ERROR : REAL ; (* PV - SP *)
 ITERM : INTEGRAL ; (* FB for integral term *)
 DTERM : DERIVATIVE ; (* FB for derivative term *)
 END_VAR

 ERROR := PV - SP ;
 (*** Adjust ITERM so that XOUT := X0 when AUTO = 0 ***)
 ITERM (RUN := AUTO, R1 := NOT AUTO, XIN := ERROR,
 X0 := TR * (X0 - ERROR), CYCLE := CYCLE) ;
 DTERM (RUN := AUTO, XIN := ERROR, CYCLE := CYCLE) ;
 XOUT := KP * (ERROR + ITERM.XOUT/TR + DTERM.XOUT*TD) ;
 END_FUNCTION_BLOCK

 - 262 - IEC DIS 1131-3

ANNEX G - Index (continued)

F.6.11 Function block DIFFEQ

This function block implements a general difference equation.

 +-----------+
 | DIFFEQ |
 BOOL---|RUN |
 REAL---|XIN XOUT|---REAL
 ARRAY[1..] OF REAL---|A |
 INT----|M |
 ARRAY[0..] OF REAL---|B |
 INT----|N |
 +-----------+

 FUNCTION_BLOCK DIFFEQ

 VAR_INPUT
 RUN : BOOL ; (* 1 = run, 0 = reset *)
 XIN : REAL ;
 A : ARRAY[1..] OF REAL ; (* Input coefficients *)
 M : INT ; (* Length of input history *)
 B : ARRAY[0..] OF REAL ; (* Output coefficients *)
 N : INT ; (* Length of output history *)
 END_VAR

 VAR_OUTPUT XOUT : REAL := 0.0 ; END_VAR

 VAR (* NOTE : Manufacturer may specify other array sizes *)
 XI : ARRAY [0..128] OF REAL ; (* Input history *)
 XO : ARRAY [0..128] OF REAL ; (* Output history *)
 I : INT ;
 END_VAR

 XO[0] := XOUT ; XI[0] := XIN ;
 XOUT := B[0] * XIN ;
 IF RUN THEN
 FOR I := M TO 1 BY -1 DO
 XOUT := XOUT + A[I] * XO[I] ; XO[I] := XO[I-1];
 END_FOR;
 FOR I := N TO 1 BY -1 DO
 XOUT := XOUT + B[I] * XI[I] ; XI[I] := XI[I-1];
 END_FOR;
 ELSE
 FOR I := 1 TO M DO XO[I] := 0.0; END_FOR;
 FOR I := 1 TO N DO XI[I] := 0.0; END_FOR;
 END_IF ;

 END_FUNCTION_BLOCK

IEC DIS 1131-3 - 263 -

ANNEX G - Index (continued)

F.6.12 Function block RAMP

This function block implements a time-based ramp.

 +-----------+
 | RAMP |
 BOOL---|RUN BUSY|---BOOL
 REAL---|X0 XOUT|---REAL
 REAL---|X1 |
 TIME---|TR |
 TIME---|CYCLE |
 +-----------+

 FUNCTION_BLOCK RAMP

 VAR_INPUT
 RUN : BOOL ; (* 0 - track X0, 1 - ramp to/track X1 *)
 X0,X1 : REAL ;
 TR : TIME ; (* Ramp duration *)
 CYCLE : TIME ; (* Sampling period *)
 END_VAR

 VAR_OUTPUT
 BUSY : BOOL ; (* BUSY = 1 during ramping period *)
 XOUT : REAL := 0.0 ;
 END_VAR

 VAR XI : REAL ; (* Initial value *)
 T : TIME := T#0s; (* Elapsed time of ramp *)
 END_VAR

 BUSY := RUN ;
 IF RUN THEN
 IF T >= TR THEN BUSY := 0 ; XOUT := X1 ;
 ELSE XOUT := XI + (X1-XI) * TIME_TO_REAL(T)
 / TIME_TO_REAL(TR) ;
 T := T + CYCLE ;
 END_IF ;
 ELSE XOUT := X0 ; XI := X0 ; T := t#0s ;
 END_IF ;

 END_FUNCTION_BLOCK

 - 264 - IEC DIS 1131-3

ANNEX G - Index (continued)

F.6.13 Function block TRANSFER

This function block implements a manual transfer station with bumpless transfer.

 +-----------+
 | TRANSFER |
 BOOL---|AUTO |
 REAL---|XIN XOUT|---REAL
 REAL---|FAST_RATE |
 REAL---|SLOW_RATE |
 BOOL---|FAST_UP |
 BOOL---|SLOW_UP |
 BOOL---|FAST_DOWN |
 BOOL---|SLOW_DOWN |
 TIME---|CYCLE |
 +-----------+

FUNCTION_BLOCK TRANSFER

 VAR_INPUT

 AUTO : BOOL ; (* 1 - track X0, 0 - ramp or hold *)
 XIN : REAL ; (* Typically from PID Function Block *)
 FAST_RATE, SLOW_RATE : REAL ; (* Up/down ramp slopes *)
 FAST_UP, SLOW_UP, (* Typically pushbuttons *)
 FAST_DOWN, SLOW_DOWN : BOOL;
 CYCLE : TIME ; (* Sampling period *)
 END_VAR

 VAR_OUTPUT XOUT : REAL ; END_VAR

 VAR XFER_RAMP : INTEGRAL ;
 RAMP_RATE : REAL ;
 END_VAR

 RAMP_RATE := 0.0 ;
 IF NOT AUTO THEN
 IF FAST_UP THEN RAMP_RATE := FAST_RATE; END_IF;
 IF SLOW_UP THEN RAMP_RATE := RAMP_RATE + SLOW_RATE; END_IF;
 IF FAST_DOWN THEN RAMP_RATE := RAMP_RATE - FAST_RATE; END_IF;
 IF SLOW_DOWN THEN RAMP_RATE := RAMP_RATE - SLOW_RATE; END_IF;
 END_IF ;
 XFER_RAMP (RUN := 1, CYCLE := CYCLE, R1 := AUTO,
 XIN := RAMP_RATE, X0 := XIN) ;
 XOUT := XFER_RAMP.XOUT;

END_FUNCTION_BLOCK

IEC DIS 1131-3 - 265 -

ANNEX G - Index (continued)

F.7 Program GRAVEL

A control system is to be used to measure an operator-specified amount of gravel from a silo into
an intermediate bin, and to convey the gravel after measurement from the bin into a truck.

The quantity of gravel to be transferred is specified via a thumbwheel with a range of 0 to 99 units.
The amount of gravel in the bin is indicated on a digital display.

For safety reasons, visual and audible alarms must be raised immediately when the silo is empty.
The signalling functions are to be implemented in the control program.

A graphic representation of the control problem is shown in figure F.2, while the variable
declarations for the control program are given in figure F.3.

As shown in figure F.4, the operation of the system consists of a number of major states,
beginning with filling of the bin upon command from the FILL push button. After the bin is filled,
the truck loading sequence begins upon command by the LOAD pushbutton when a truck is
present on the ramp. Loading consists of a "run-in" period for starting the conveyor, followed by
dumping of the bin contents onto the conveyor. After the bin has emptied, the conveyor "runs out"
for a predetermined time to assure that all gravel has been loaded to the truck. The loading
sequence is stopped and re-initialized if the truck leaves the ramp or if the automatic control is
stopped by the OFF push button.

Figure F.5 shows the OFF/ON sequence of automatic control states, as well as the generation of
display blinking pulses and conveyor motor gating when the control is ON.

Bin level monitoring, operator interface and display functions are defined in figure F.6.

A textual version of the body of program GRAVEL is given in figure F.7, using the ST language
with SFC elements.

An example configuration for program GRAVEL is given in figure F.8.

 - 266 - IEC DIS 1131-3

ANNEX G - Index (continued)

 +---------+

CONTROL PANEL:

 | SILO | INDICATORS PUSH BUTTONS

 | | ON

 | | CONTROL SYSTEM ON OFF

 | | TRUCK ON RAMP ACKNOWLEDGE

 | | SILO EMPTY FILL

 \ / CONVEYOR RUNNING LOAD

 \ / LAMP TEST

 | | "Silo empty"
 | o | limit switch

2-DIGIT BCD:

 | / | Silo valve DISPLAY THUMBWHEEL
 +---+ BIN LEVEL SET POINT

 | BIN |
 | |

SIREN : SILO EMPTY

 \ / "Bin empty"
 | o | limit switch
 | / | Bin valve
 +---+

"Truck on ramp" limit switch

Figure F.2 - Gravel measurement and loading system

IEC DIS 1131-3 - 267 -

ANNEX G - Index (continued)

PROGRAM GRAVEL (* Gravel measurement and loading system *)

 VAR_INPUT
 OFF_PB : BOOL ;
 ON_PB : BOOL ;
 FILL_PB : BOOL ;
 SIREN_ACK : BOOL ;
 LOAD_PB : BOOL ; (* Load truck from bin *)
 JOG_PB : BOOL ;
 LAMP_TEST : BOOL ;
 TRUCK_ON_RAMP : BOOL ; (* Optical sensor *)
 SILO_EMPTY_LS : BOOL ;
 BIN_EMPTY_LS : BOOL ;
 SETPOINT : BYTE ; (* 2-digit BCD *)
 END_VAR

 VAR_OUTPUT
 CONTROL_LAMP : BOOL ;
 TRUCK_LAMP : BOOL ;
 SILO_EMPTY_LAMP : BOOL ;
 CONVEYOR_LAMP : BOOL ;
 CONVEYOR_MOTOR : BOOL ;
 SILO_VALVE : BOOL ;
 BIN_VALVE : BOOL ;
 SIREN : BOOL ;
 BIN_LEVEL : BYTE ;
 END_VAR

 VAR
 BLINK_TIME : TIME; (* BLINK ON/OFF time *)
 PULSE_TIME : TIME; (* LEVEL_CTR increment interval *)
 RUNOUT_TIME: TIME; (* Conveyor running time after loading *)
 RUN_IN_TIME: TIME; (* Conveyor running time before loading *)
 SILENT_TIME: TIME; (* Siren silent time after SIREN_ACK *)
 OK_TO_RUN : BOOL; (* 1 = Conveyor is allowed to run *)

 (* Function Blocks *)
 BLINK: TON; (* Blinker OFF period timer / ON output *)
 BLANK: TON; (* Blinker ON period timer / blanking pulse *)
 PULSE: TON; (* LEVEL_CTR pulse interval timer *)
 SIREN_FF: RS;
 SILENCE_TMR: TP; (* Siren silent period timer *)
 END_VAR

 VAR RETAIN LEVEL_CTR : CTU ; END_VAR

 (* Program body *)

END_PROGRAM

Figure F.3 - Declarations for Program GRAVEL

 - 268 - IEC DIS 1131-3

ANNEX G - Index (continued)

+--------------------->-----------------+
| |
| +====+====+
| || START ||
| +====+====+
| |
| + FILL_PB & CONTROL.X
| |
| +-----+----+ +---+------------+
| | FILL_BIN |---| N | SILO_VALVE |
| +-----+----+ +---+------------+
| |
| +-----------------------------------*
| | |
| + NOT FILL_PB OR NOT CONTROL.X + LEVEL_CTR.Q
+---+ |
| +------------------>-------------+
| | +-----+-----+
| | | LOAD_WAIT |
| | +-----+-----+
| | |
| | + LOAD_PB & OK_TO_RUN
| | |
| | +----+---+
| | | RUN_IN |
| | +----+---+
| | |
| | +----------------------------*
| | | |
| | + NOT OK_TO_RUN + RUN_IN.T >= RUN_IN_TIME
| | | |
| +---+ +-----+----+ +---+-----------+
| | | DUMP_BIN |---| N | BIN_VALVE |
| | +-----+----+ +---+-----------+
| | |
| | +----------------------------*
| | | |
| | + NOT OK_TO_RUN + BIN_EMPTY_LS
| | | |
| +---+ +----+---+
| | | RUNOUT |
| | +----+---+
| | |
| | +----------------------------*
| | | |
| | + NOT OK_TO_RUN + RUNOUT.T >= RUNOUT_TIME
| +---+ |
+---------------------------------------+

Figure F.4 - SFC of program GRAVEL body

IEC DIS 1131-3 - 269 -

ANNEX G - Index (continued)

+---------+
| |
| + OFF_PB
| |
| +======+======+ +===========+ +---+----------------+
| ||CONTROL_OFF|| || MONITOR ||---| N | MONITOR_ACTION |
| +======+======+ +===========+ +---+----------------+
| |
| + ON_PB & NOT OFF_PB
| |
| +---+---+ +---+----------------------------------+-----+
| |CONTROL|--| N | CONTROL_ACTION | |
| +---+---+ +---+----------------------------------+-----+
| | | +---------------------------------+ |
+---------+ | | BLINK BLANK | |
 | | +-+ +-----+ +-----+ | | | | | | |
 | +---O|&| | TON | | TON | | |
 |CONTROL.X--| |-----|IN Q|-----|IN Q|--+ |
 | +-+ +--|PT | +--|PT | |
 | | +-----+ | +-----+ |
 | BLINK_TIME--+-----------+ |
 | +-+ |
 |CONTROL.X------|&| | | |
 |TRUCK_ON_RAMP--| |---+---------OK_TO_RUN |
 | +-+ | |
 | | +-+ |
 | +-----+ +--|&|--CONVEYOR_MOTOR |
 |JOG_PB------| >=1 |-----| | |
 |RUN_IN.X----| | +-+ |
 |DUMP_BIN.X--| | |
 |RUNOUT.X----| | |
 | +-----+ |
 +--+

Figure F.5 - Body of program GRAVEL (continued)
Control state sequencing and monitoring

 - 270 - IEC DIS 1131-3

ANNEX G - Index (continued)

MONITOR_ACTION

 +---+
CONVEYOR_MOTOR------------------------| & |------CONVEYOR_LAMP
BLINK.Q-------------------------------| |
 +---+
 +-----+
CONTROL.X----------------------------| >=1 |---CONTROL_LAMP
LAMP_TEST------------+---------------| |
 | +-----+
 | +-----+
 +---| >=1 |---------------TRUCK_LAMP
TRUCK_ON_RAMP--------|---| |
 | +-----+
 | +-----+
 +---------------| >=1 |---SILO_EMPTY_LAMP
 +---+ | |
BLINK.Q------------| & |-------------| |
SILO_EMPTY_LS--+---| | +-----+
 | +---+ SIREN_FF
 | +------+
 | | RS |
 +-----------|S Q1|------------SIREN
 SILENCE_TMR | |
 +------+ | |
 | TP | | |
SIREN_ACK-----|IN Q|-----|R1 |
SILENT_TIME---|PT | +------+
 +------+ LEVEL_CTR
 +-----+
 | CTU |
BIN_EMPTY_LS-----------------|R Q|
 +------------------+ | |
 | PULSE | | |
 | +-+ +-----+ | | |
 +---O|&| | TON | | | |
FILL_BIN.X--| |--|IN Q|--+-->CU |
 +-+ | | | |
PULSE_TIME-------|PT | | |
 +-----+ | |
 +------------+ | | +------------+
SETPOINT----| BCD_TO_INT |---|PV CV|--| INT_TO_BCD |--BIN_LEVEL
 +------------+ +-----+ +------------+

Figure F.6 - Body of action MONITOR_ACTION in FBD language

IEC DIS 1131-3 - 271 -

ANNEX G - Index (continued)

 (* Major operating states *)

 INITIAL_STEP START : END_STEP

 TRANSITION FROM START TO FILL_BIN
 := FILL_PB & CONTROL.X ; END_TRANSITION

 STEP FILL_BIN: SILO_VALVE(N); END_STEP

 TRANSITION FROM FILL_BIN TO START
 := NOT FILL_PB OR NOT CONTROL.X ; END_TRANSITION
 TRANSITION FROM FILL_BIN TO LOAD_WAIT := LEVEL_CTR.Q ;
 END_TRANSITION

 STEP LOAD_WAIT : END_STEP

 TRANSITION FROM LOAD_WAIT TO RUN_IN
 := LOAD_PB & OK_TO_RUN ; END_TRANSITION

 STEP RUN_IN : END_STEP

 TRANSITION FROM RUN_IN TO LOAD_WAIT := NOT OK_TO_RUN ;
 END_TRANSITION

 TRANSITION FROM RUN_IN TO DUMP_BIN
 := RUN_IN.T > RUN_IN_TIME;
 END_TRANSITION

 STEP DUMP_BIN: BIN_VALVE(N); END_STEP

 TRANSITION FROM DUMP_BIN TO LOAD_WAIT := NOT OK_TO_RUN ;
 END_TRANSITION

 TRANSITION FROM DUMP_BIN TO RUNOUT := BIN_EMPTY_LS ;
 END_TRANSITION

 STEP RUNOUT : END_STEP

 TRANSITION FROM RUNOUT TO LOAD_WAIT := NOT OK_TO_RUN ;
 END_TRANSITION

 TRANSITION FROM RUNOUT TO START
 := RUNOUT.T >= RUNOUT_TIME ; END_TRANSITION

Figure F.7 - Body of program GRAVEL in textual SFC representation
using ST language elements
 (continued on following page)

 - 272 - IEC DIS 1131-3

ANNEX G - Index (continued)

(* Control state sequencing *)

INITIAL_STEP CONTROL_OFF: END_STEP

TRANSITION FROM CONTROL_OFF TO CONTROL
 := ON_PB & NOT OFF_PB ; END_TRANSITION

STEP CONTROL: CONTROL_ACTION(N); END_STEP

ACTION CONTROL_ACTION:
 BLINK(EN:=CONTROL.X & NOT BLANK.Q, PT := BLINK_TIME) ;
 BLANK(EN:=BLINK.Q, PT := BLINK_TIME) ;
 OK_TO_RUN := CONTROL.X & TRUCK_ON_RAMP ;
 CONVEYOR_MOTOR :=
 OK_TO_RUN & OR(JOG_PB, RUN_IN.X, DUMP_BIN.X, RUNOUT.X);
END_ACTION

TRANSITION FROM CONTROL TO CONTROL_OFF := OFF_PB ;
END_TRANSITION

(* Monitor Logic *)

INITIAL_STEP MONITOR: MONITOR_ACTION(N); END_STEP

ACTION MONITOR_ACTION:
 CONVEYOR_LAMP := CONVEYOR_MOTOR & BLINK.Q ;
 CONTROL_LAMP := CONTROL.X OR LAMP_TEST ;
 TRUCK_LAMP := TRUCK_ON_RAMP OR LAMP_TEST ;
 SILO_EMPTY_LAMP := BLINK.Q & SILO_EMPTY_LS OR LAMP_TEST ;
 SILENCE_TMR(EN:=SIREN_ACK, PT:=SILENT_TIME) ;
 SIREN_FF(S:=SILO_EMPTY_LS, R1:=SILENCE_TMR.Q) ;
 SIREN := SIREN_FF.Q1 ;
 PULSE(EN:=FILL_BIN.X & NOT PULSE.Q, PT:=PULSE_TIME) ;
 LEVEL_CTR(EN := BIN_EMPTY_LS, CU := PULSE.Q,
 PV := BCD_TO_INT(SETPOINT)) ;
 BIN_LEVEL := INT_TO_BCD(LEVEL_CTR.CV) ;
END_ACTION

Figure F.7 - Body of program GRAVEL in textual SFC representation
using ST language elements (continued)

IEC DIS 1131-3 - 273 -

ANNEX G - Index (continued)

 CONFIGURATION GRAVEL_CONTROL

 RESOURCE PROC1 ON PROC_TYPE_Y

 PROGRAM G : GRAVEL
 (* Inputs *)
 (OFF_PB := %I0.0 ,
 ON_PB := %I0.1 ,
 FILL_PB := %I0.2 ,
 SIREN_ACK := %I0.3 ,
 LOAD_PB := %I0.4 ,
 JOG_PB := %I0.5 ,
 LAMP_TEST := %I0.7 ,
 TRUCK_ON_RAMP := %I1.4 ,
 SILO_EMPTY_LS := %I1.5 ,
 BIN_EMPTY_LS := %I1.6 ,
 SETPOINT := %IB2 ,

 (* Outputs *)
 CONTROL_LAMP => %Q4.0,
 TRUCK_LAMP => %Q4.2,
 SILO_EMPTY_LAMP => %Q4.3,
 CONVEYOR_LAMP => %Q5.3,
 CONVEYOR_MOTOR => %Q5.4,
 SILO_VALVE => %Q5.5,
 BIN_VALVE => %Q5.6,
 SIREN => %Q5.7,
 BIN_LEVEL => %B6) ;

 END_RESOURCE

 END_CONFIGURATION

Figure F.8 - Example configuration for program GRAVEL

 - 274 - IEC DIS 1131-3

ANNEX G - Index (continued)

F.8 Program AGV

As illustrated in figure F.9, a program is to be devised to control an automatic guided vehicle
(AGV). The AGV is to travel between two extreme positions, left (indicated by limit switch S3) and
right (indicated by limit switch S4). The normal position of the AGV is on the left.

The AGV is to execute one cycle of left-to-right and return motion when the operator actuates
pushbutton S1, and two cycles when the operator actuates pushbutton S2. It is also possible to
pass from a single to a double cycle by actuating pushbutton S2 during a single cycle. Finally,
non-repeat locking is to be provided if either S1 or S2 remains actuated.

Figure F.10 illustrates the graphical declaration of program AGV, while figure F.11 shows a
typical configuration for this program. Figure F.12 shows the AGV program body, consisting of a
main control sequence and a single-cycle control sequence.

LEFT_LS RIGHT_LSFWD_MOTORREV_MOTOR

1 Cycle 2 Cycles

AGV Control Panel

SINGLE_PB DOUBLE_PB

Figure F.9 - Physical model for program AGV

IEC DIS 1131-3 - 275 -

ANNEX G - Index (continued)

 +----------------------+
 | AGV |
 BOOL---|SINGLE_PB FWD_MOTOR|---BOOL
 BOOL---|DOUBLE_PB REV_MOTOR|---BOOL
 BOOL---|LEFT_LS |
 BOOL---|RIGHT_LS |
 +----------------------+

Figure F.10 - Graphical declaration of program AGV

CONFIGURATION AGV_CONTROL

 RESOURCE AGV_PROC: SMALL_PC

 AGV_1
 +--------------------+
 | AGV |
 %IX1---|SINGLE_PB FWD_MOTOR|---%QX1
 %IX2---|DOUBLE_PB REV_MOTOR|---%QX2
 %IX3---|LEFT_LS |
 %IX4---|RIGHT_LS |
 +--------------------+

Figure F.11 - A graphical configuration of program AGV

 - 276 - IEC DIS 1131-3

ANNEX G - Index (continued)

 +----------------------------+
 ¦ ¦
 ¦ +===+===+ (* Main sequence *)
 ¦ |¦START¦|
 ¦ +===+===+
 ¦ ¦
 ¦ +--------------------*----------+
 | | |
 ¦ + READY.X & SINGLE_PB + READY.X & DOUBLE_PB
 | | |
 ¦ +--+---+ +-+-----+ +---+----+ +-+-----+
 ¦ ¦SINGLE+-¦N¦CYCLE¦ ¦DOUBLE_1+--¦N¦CYCLE¦
 ¦ +--+---+ +-+-----+ +---+----+ +-+-----+
 | | |
 ¦ *---------+ + DONE.X
 ¦ ¦ + DONE.X & DOUBLE_PB ¦
 ¦ ¦ +---------------------+
 | | |
 ¦ ¦ +-----+-----+
 ¦ + DONE.X & NOT DOUBLE_PB ¦DOUBLE_WAIT¦
 ¦ ¦ +-----+-----+
 | | |
 ¦ ¦ + READY.X
 | | |
 ¦ ¦ +---+----+ +-+-----+
 ¦ ¦ ¦DOUBLE_2+--¦N¦CYCLE¦
 ¦ ¦ +---+----+ +-+-----+
 | | |
 ¦ ¦ + DONE.X
 | | |
 ¦ +---------------------+---------+
 ¦ ¦
 ¦ +----+-----+
 ¦ ¦NON_REPEAT¦
 ¦ +----+-----+
 ¦ ¦
 ¦ +NOT(SINGLE_PB OR DOUBLE_PB)
 ¦ ¦
 +-----------------------------+

Figure F.12 - Body of program AGV
(continued on following page)

IEC DIS 1131-3 - 277 -

ANNEX G - Index (continued)

 +-------+
 ¦ |
 ¦ +===+===+ (* Perform a single cycle *)
 ¦ |¦READY¦|
 ¦ +===+===+
 ¦ |
 ¦ + CYCLE
 ¦ |
 ¦ +---+---+ +-+---------+
 ¦ ¦FORWARD+-¦N¦FWD_MOTOR¦
 ¦ +---+---+ +-+---------+
 ¦ |
 ¦ + RIGHT_LS
 ¦ |
 ¦ +---+---+ +-+---------+
 ¦ ¦REVERSE+-¦N¦REV_MOTOR¦
 ¦ +---+---+ +-+---------+
 ¦ |
 ¦ + LEFT_LS
 ¦ |
 ¦ +--+-+
 ¦ ¦DONE¦
 ¦ +--+-+
 ¦ |
 ¦ + NOT CYCLE
 ¦ |
 +-------+

Figure F.12 - Body of program AGV (continued)

 - 278 - IEC DIS 1131-3

ANNEX G - Index (continued)

IEC DIS 1131-3 - 279 -

ANNEX G - Index (continued)

ANNEX G - Index (informative)

Primary references for delimiters and keywords are given in annex C. The point of definition of a
term is shown in bold face type.

absolute time, 29

access path, 105, 107-9
communication, 15-18
keyword, 40
loading/deletion, 15
programming, 19-20

action, 77, 83-92, 118, 120
control, 88-92
qualifiers, 88

action block, 83, 86, 87, 88

active association, 88, 89

activity flow, 128

aggregate, 10

argument, 44, 61, 120, 121, 122

array, 44
access path, 107
declaration, 33-34, 41
initialization, 33, 42-43
location assignment, 41
usage, 38, 127

assignment, 45, 46, 47, 79
FOR loop variable values, 126
function block parameters, 62
of input values, 125
operator, 33, 79
statement, 124, 125

based number, 10, 27-28

basic code table, 24

bistable function block, 70-71

bit string
comparison, 54
data types, 30-32
functions, 54-55
initial value assignment, 42-43
variable declaration, 40-41

body
function, 46, 47, 48, 125
function block, 61-76

 - 280 - IEC DIS 1131-3

ANNEX G - Index (continued)

program organization unit, 130

IEC DIS 1131-3 - 281 -

ANNEX G - Index (continued)

Boolean
AND, in ladder diagrams, 135
data type, 30-32
default initial value, 34
edge detection, 63, 72
expression, 79, 122, 126, 127
functions, 54-55, 89
input, action control, 88, 89
input, RETURN, 132
literals, 27-28
negation, 45, 119
operators, 120, 123
OR, LD vs. FBD, 138
output, 132
signal, 132
values, power flow, 134
variable, 38, 77, 78, 83, 84, 87, 88, 110, 126, 132
variable, in ladder diagrams, 135, 137

byte (data element size), 38

BYTE (data type), 30-32, 34

call
operator, 120, 121

case (of characters), 24, 25, 29

CASE statement, 124, 126

character code, 24, 26, 28, 58

character set, 9, 24-25, 77, 99, 128, 136

character string
character positions in, 58
comparison, 58
data type, 30-32
functions, 58-59
initialization, 42-43
literals, 28
variable declaration, 40-41

cold restart, 39, 40, 41, 42, 43

comment, 26, 119

comparison
bit strings, 54
character strings, 58
functions, 54, 59

compilation, 22

 - 282 - IEC DIS 1131-3

ANNEX G - Index (continued)

compliance, 21-23
action declarations, 83
EXIT statement, 125
PC systems, 21
programs, 23
sequential function chart (SFC), 104
step/action association, 86
syntax, 22

concatenation
action blocks, 86, 87
hierarchical addresses, 37
time data, 60

conditional
call, 121
instruction, 120
jump, 132
return, 132

configuration, 14-15
communication, 15-18
elements, 105-17
initialization, 15
programming, 19-20
starting and stopping, 15

connection, 17, 76

connector, 79, 81, 128, 129

contact, 135-36

counter, 73

data type
compliance, 22
declaration, 33-34
elementary, 30-32
generic, 32, 48, 49
initialization, 34-35
of an expression, 122
of functions, 47
of input parameters, 47
of internal variables, 47
programming, 19-20
usage, 36

date and time, 74
data types, 30-32
default initial values, 34
functions, 59
literals, 30

decimal number (decimal literal), 27-28, 128

declaration, 19-20
access paths, 107-9
actions, 83-85, 88
configurations, 105-17

IEC DIS 1131-3 - 283 -

ANNEX G - Index (continued)

data types, 33-34
function blocks, 61, 62-69
functions, 47-48, 125
programs, 76
resources, 107-9
tasks, 110-17
variables, 39-40, 137

default value, 48
FOR increment, 126
function block inputs, 63
of data types, 34-35
of variables, 39, 42-43
task interval, 110

delimiter
comments, 26
LD network, 134
network label, 128
time literals, 29-30

direct representation, 37-38, 76, 107, 108
in programs, 76
initial value assignment, 42-43
variable declaration, 40-41

double word, 30-32
size prefix, 38

duration
data type (TIME), 30-32
literals, 29
of action qualifiers, 88
of step activity, 93

edge detection, 63, 66
function blocks, 72

EN/ENO (enable) variables, 46, 47

errors, 44, 48, 78, 89, 93, 125, 127, 128
documentation, 22
handling, 22, 23, 46
reporting, 22

 - 284 - IEC DIS 1131-3

ANNEX G - Index (continued)

evaluation
of assignment statements, 125
of CASE expressions, 126
of expressions, 122-23
of function blocks, 111
of functions, 44, 53, 123, 125
of instructions, 119-21
of language elements, 111
of network elements, 130
of networks, 61, 130-31, 135, 138
of programs, 111
of transitions, 94, 95, 96, 97

execution
of actions, 77, 88
of EXIT statements, 127
of function blocks, 61, 72, 110
of functions, 44, 46-47
of instructions, 119-21
of iteration statements, 126-27
of loop elements, 130
of programs, 132
of selection statements, 126

execution control element, 77, 110, 130, 132-33, 135

extensions, 22, 24, 26, 37
documentation, 22
processing, 22
usage, 23

falling edge, 63, 65, 72

feedback
path, 130, 131
variable, 130

FOR statement, 126-27

function, 44-60
compliance, 22
control statements, 125-26
extensible, 50
in LD language, 135
overloaded, 48, 49, 52, 54
programming, 19-20
return value, 125
signal flow, 128
typing, 48

IEC DIS 1131-3 - 285 -

ANNEX G - Index (continued)

function block, 14-15, 61-76
action control, 88-92
communication, 15-18, 76
compliance, 22
control statements, 125-26
in LD language, 135
instance, 110
operation, 73, 74
programming, 19-20
retentive, 78
SFC structuring, 77
signal flow, 128
type, 61

function block diagram (FBD), 14, 138
execution control, 132-33
loops in, 130
signal flow in, 128

function block diagram (fbd)
action blocks in, 87

generic data types, 32, 48, 49

global variable, 105
communication, 15, 17
declaration, 39-40, 76, 107-9
function block instance, 61
initial value assignment, 42-43
initialization, 15
loading/deletion, 15
programming, 19-20

hierarchical addressing, 37

identifier, 25, 47, 61, 77, 79, 123, 128

implementation-dependent
feature, 22, 23, 39, 41, 126
parameter, 21, 33, 37, 38, 50, 73, 93
side effects, 62

initial
state, 77
step, 77, 78, 93

initial value
assignment, 42-43
default, 34-35
feedback variable, 130
FOR loop variable, 126
function block variables, 63, 125

initialization, 15, 39
function blocks, 62-69, 93
programs, 76, 93
SFC networks, 93

 - 286 - IEC DIS 1131-3

ANNEX G - Index (continued)

steps, 78

input
declaration, 39-40, 47-48, 62-69
dynamic, 63
extensible, 50
initialization, 39
instance name, 61
location prefix, 38
negated, 45
operators (IL language), 121
overloaded, 48, 49
parameter, 44, 61, 125
parameter, read/write privileges, 62
program, 108
string, 51
variable, 61, 76, 107, 135

input/output
parameter, 62-69
variable, 61

instance
function block, 61, 63, 65, 110
name, 61, 63, 65

instantiation
action control, 89
function block, 76
program, 76

instruction, 79, 83, 119-21

integer
data types, 30-32, 126
literal, 12, 27-28, 128

invocation
by tasks, 110
function block, 61, 62, 63, 121, 124, 125-26, 125
of actions, 77
of functions, 44, 45, 121, 122-23
of non-PC language elements, 19
recursive, 44
return from, 132

iteration, 125, 126-27

IEC DIS 1131-3 - 287 -

ANNEX G - Index (continued)

keyword, 26
Boolean literals, 27, 79
data types, 30-32
ELSE statement, 126
FOR statement, 126
function block declaration, 63
function declaration, 47
IF statement, 126
program declaration, 76
REPEAT statement, 127
time literals, 29-30
transition, 79
variable declaration, 39-40
WHILE statement, 127

label, 119, 120
connector, 128
network, 128, 130, 132

ladder diagram, 134-37
evaluation, 130-31
execution control, 132-33
network, 79

language element, 9, 14-15
compliance, 21-23
programming, 19-20, 76

library, 19-20, 107

literal, 27-30, 119, 122, 134

logical location, 37, 39, 40

long real, 30-32

long word, 30-32

memory, 135

memory (user data storage)
allocation, 39-40, 137
direct representation, 37-38
initial value assignment, 42-43
initialization, 39

named element, 38, 125, 128

network, 88, 128
direction of flow, 128
evaluation, 61, 130-31, 135, 138
function block diagram (FBD), 79, 83
label, 132
ladder diagram (LD), 79, 134
sequential function chart (SFC), 77, 91, 93

numeric literals, 27-28

off-delay, 13, 74-75

 - 288 - IEC DIS 1131-3

ANNEX G - Index (continued)

on-delay, 13, 74-75

operand
function as, 44
of an expression, 122-23
of an instruction, 119-21

operator
assignment, 33, 79, 125
Instruction List, 119-21
overloaded, 48
precedence, 122, 123
Structured Text (ST), 122-23
symbols, 53, 55, 56, 57

output
action control, 88
declaration, 62-69
function block, 124, 138
graphical representation, 45, 61
location prefix, 38
negated, 45
network, 138
parameter(s), 45, 61
parameter, read/write privileges, 62
program, 108
string, 51
typed, 48
values, 61
variable declaration, 39-40
variables, 61, 76, 107, 135

overloading, 32, 48
of operators, 120, 122

parameter
actual, 45, 49, 135
formal, 45, 49, 61, 135
formal, declaration, 47-48, 62-69, 76
input, 44, 61, 125
output, 45, 61
passing, 39, 63

parentheses, 26, 33, 38, 42, 79, 120, 123, 125

power flow, 87, 128, 132, 134, 135

power rails, 128, 132, 134

pre-emptive scheduling, 110-17

priority
of tasks, 110-17
of transitions, 94, 95, 96, 97

IEC DIS 1131-3 - 289 -

ANNEX G - Index (continued)

program, 14-15, 19-20, 76
communication, 15-18
compliance, 23
declaration, 39, 61, 68, 76, 108
retentive, 78
scheduling, 110-17
semaphore use in, 71
SFC structuring, 77

program organization unit, 44, 61
compliance, 21
declaration, 39, 44
initial state, 77
jumps in, 132
networks in, 128, 130, 135, 138
scheduling, 110-17
SFC partitioning of, 77
state, 77

programming, 15, 19-20, 134, 138

real literal, 27-28

resource, 14-15, 76
communication, 18
declaration, 107-9
global variables in, 107
initialization, 15, 39
programming, 19-20
starting and stopping, 15, 110

retentive data
declaration, 39-40, 76, 137
in function blocks, 63
in steps, 78
initial value assignment, 42
initialization, 39
keyword, 40
type assignment, 40-41

return, 120, 121, 124, 125, 132

rising edge, 63, 65, 72, 74, 110

rung, 83, 134

scope
global, 107
of actions, 83
of declarations, 39
of function block instances, 61
of networks, 128
of steps, 77
of transitions, 80

selection
functions, 54, 59

 - 290 - IEC DIS 1131-3

ANNEX G - Index (continued)

statements, 126

semantics
Instruction List (IL), 119-21
Structured Text (ST), 122-27

semigraphic representation, 9, 63, 109, 128, 129

sequential function chart (SFC)
activity flow, 128
compliance, 104
convergence, simultaneous, 93
divergence, selection, 94, 95, 96, 97
divergence, simultaneous, 93
elements, 14, 70, 71, 77-92, 118, 127, 128
elements, compatibility of, 104
errors, 93
evolution, 93-103
programming, 19

signal flow, 128, 138

single data element, 36, 37-38

step, 77-78
action association, 86
activation, 93
active, 77, 78, 88, 93
deactivation, 77, 85, 93
duration, 93
elapsed time, 77, 78
flag, 77, 78
inactive, 77, 134
initial, 77, 78, 93
initialization, 78
retentive, 78
state, 77, 93, 94, 95, 96, 97, 100, 101

structured data type, 61
declaration, 33-34
initialization, 34-35
usage, 36

structured variable, 38, 44
access path, 107
assignment, 125
declaration, 41
initialization, 42-43
step elements, 77

subscripting, 38
array initialization, 42

symbolic representation, 37, 40

synchronization
interprocess, 127
of function blocks, 110-17

syntax, 14

IEC DIS 1131-3 - 291 -

ANNEX G - Index (continued)

documentation, 22
step/transition, 93

task, 14-15, 110-17
declaration, 107-9
programming, 19-20

TIME data type, 30-32, 77, 78, 88
default initial value, 34
function blocks, 74
functions, 60

time literal, 29-30

time of day
data types, 30-32
default initial value, 34
functions, 60
keywords, 30
literals, 29-30

timer, 74-75

transition, 77, 79-82
clearing, 93, 101
clearing time, 93
condition, 77, 79-82, 83, 93
enabled, 93, 100
evaluation, 94, 95, 96, 97
priority, 94, 95, 96, 97
symbol, 93

type conversion
functions, 49, 50-51

underline character, 25, 27, 48

unsigned integer, 128
data types, 30

 - 292 - IEC DIS 1131-3

ANNEX G - Index (continued)

variable, 37-43
declaration, 47-48, 62-69
usage, 36

WAIT function, 83, 127

warm restart, 39

wired OR, 138

IEC DIS 1131-3 - 293 -

ANNEX H - Software compliance testing (informative)

This topic is under consideration for future standardization.

-- END OF PART 3 --

