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Abstract— A backstepping approach is proposed in this paper
to cope with the failure of a quadrotor propeller. The presented
methodology supposes to turn off also the motor which is
opposite to the broken one. In this way, a birotor configuration
with fixed propellers is achieved. The birotor is controlled to
follow a planned emergency landing trajectory. Theory shows
that the birotor can reach any point in the Cartesian space
losing the possibility to control the yaw angle. Simulation tests
are employed to validate the proposed controller design.

I. INTRODUCTION

The application of Vertical Take-off and Landing (VToL)
Unmanned Aerial Vehicles (UAVs) is moving from passive
tasks like inspection and monitoring [1] into active tasks like
aerial grasping [2] and manipulation [3], [4], [5], [6], [7].
This growing of interest towards service aerial robotics leads
to consider controllers for safety-critical systems.

On the one hand, several techniques have been employed
to control UAVs, e.g., backstepping [8], saturated nested
functions [9], adaptive [10] and predictive [11] controls,
and so on. On the other hand, fault detection and tolerance
approaches are becoming essential due to above described
changing scenario. In particular, the goal of fault tolerance
methods is to maintain the same functionalities in the system
even if reduced performances are present [12]. Passive fault
tolerant systems do not alter the control structure, while
active fault tolerant ones reconfigure the control actions [13].

Performing a literature review, on the one hand, it is
possible to notice that a number of methods address the
problem about controlling a quadrotor in case of motor
failure by considering a partial performance loss in one
or plus motors of the UAV. Supposing a 50% loss in the
efficiency of a quadrotor’s propeller, a method is proposed
in [14] to estimate the aerial vehicle model after the failure,
guaranteeing the stability of the platform. A backstepping
approach is proposed in [15] but only 25% performance
loss in the motors has been considered. Several methods
have been compared in [16] for a 50% loss in propellers
performance. A method to detect a fault is proposed in [17].
A Luenberger observer has been instead employed in [18]
together with a sliding mode controller to reconfigure the
controller when a partial failure appears in one motor of the
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quadrotor. When the loss in the efficiency is verified in each
of the four propellers, the Gain Scheduling approach in [19]
can be employed. On the other hand, other methods consider
the complete failure of a quadrotor’s propeller. Despite the
possibility to control the yaw angle, a feedback linearization
with a PD-based controller is employed in [20] to control a
quadrotor with a complete broken motor. A controller for an
equidistant trirotor is designed in [21], but the formulation is
available only for spiral motions. An H-infinity loop shaping
technique is adopted in [22] for safety landing of a quadrotor
with a propeller failure. Periodic solutions are exploited
in [23] together with a LQR to control the quadrotor in case
of single, two opposing, or three propellers failure. Recently,
hexacopters are used to achieve an actuator redundancy in
the system in case of failure of one or more motors.

In this paper, the failure of a quadrotor’s propeller is
considered, meaning that the motor is completely turned
off. As assumptions, the failure has been already detected in
the system, the controller has been already switched to the
emergency landing modality and such trajectory has been
already planned. How such things have been implemented
is out of the scope of this paper: one among the techniques
introduced in the literature review might be employed. More-
over, in this paper, it is considered to turn off also the motor
aligned on the same quadrotor axis in which the broken
propeller is placed. In this way, the resulting configuration is
a birotor with fixed propellers1. A backstepping approach for
translational movements is employed together with a PID-
based control for angular displacements. Theory will show
that any point in the 3D Cartesian space can be reached by
the birotor, meaning that every planned emergency path can
be followed. The price to pay is the impossibility to control
the yaw angle since it is shown that the birotor continuously
rotates around its vertical axis.

II. MODELING

The model of a quadrotor is initially introduced. Then, the
model of a birotor with fixed propellers is derived.

Define a world-fixed frame Σi and a body frame Σb placed
at the center of mass of the quadrotor (see Fig. 1). The
rotation of Σb with respect to Σi is denoted by the following
rotation matrix Rb(ηb) ∈ SO(3) defined in [26]

Rb(ηb) =





cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ



 ,

1Differently with respect to this paper, in the literature a birotor is an
aerial vehicle with two propellers, whose alignment can be tilted through
other two actuators [24], [25].
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Fig. 1. On left, the quadrotor and related frames. In black the inertial
frame Σi, in green the body frame Σb and in blue the speed and label of
each motor. On the right, the birotor configuration with in red the turned
off propellers.

in which s× and c× are employed in this paper as abbre-
viations for sine and cosine terms, respectively. The vector
ηb =

[

φ θ ψ
]T

∈ R
3 is the set of roll-pitch-yaw Euler

angles denoting a minimal representation of the aerial vehicle
attitude with respect to Σi. Let η̇b =

[

φ̇ θ̇ ψ̇
]T

∈ R
3

and η̈b =
[

φ̈ θ̈ ψ̈
]T

∈ R
3 be the first and second time

derivatives of ηb, respectively. Let ωbb ∈ R
3 the angular

velocity of the quadrotor expressed in Σb. The following
linear relationship holds ωbb = Q(ηb)η̇b [27], with

Q(ηb) =





1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ



 .

Notice that the inverse relationship is defined provided that
θ 6= ±π/2. Hence, it is reasonably assumed throughout
all the paper that the aerial vehicle does not pass trough
representation singularities, meaning that the configuration
space is defined as follows Q = {ηb ∈ R

3 : θ 6= π/2 +
kπ, φ 6= π/2 + kπ, k ∈ Z}. The dynamic equations of the
quadrotor can be retrieved by exploiting the Newton-Euler
formulation [28]

mp̈b = mg +Rb(ηb)f
b
b, (1a)

Ibω̇
b
b = −S(ωbb)Ibω

b
b − ga − F oω

b
b + τ bb, (1b)

Ṙb(ηb) = Rb(ηb)S(ω
b
b), (1c)

where pb =
[

x y z
]T

, ṗb =
[

ẋ ẏ ż
]T

, p̈b =
[

ẍ ÿ z̈
]T

∈ R
3 denote the absolute position, velocity and

acceleration, respectively, of the aerial vehicle expressed in
Σi; m is the mass of the aerial vehicle; g =

[

0 0 g
]T

∈
R

3 represents the gravity vector, with g = 9.81 m/s2; Ib =
diag(

[

Ix Iy Iz
]

) ∈ R
3×3 is the constant inertia matrix of

the quadrotor expressed in Σb; ga = IpS(ω
b
b)e3(ω1 + ω2 +

ω3 + ω4) is the gyroscopic torques due to the combination
of the aerial vehicle rotation and the propellers, with ωi
the speed of the ith propeller, i = 1, . . . , 4, and Ip its
inertia; e3 =

[

0 0 1
]T

and S(·) ∈ R
3×3 denotes the

skew-symmetric operator; F o ∈ R
3×3 is a diagonal positive

definite matrix denoting the air friction coefficient2; f bb ∈ R
3

and τ bb ∈ R
3 are the forces and torques input vectors,

respectively, expressed in Σb.
For a quadrotor, the four control inputs are the control

torques around each axis of the body frame Σb and the total

2Notice that, in general, the expression of the air drag might be more
complicated depending, for instance, from the square of the velocity.

thrust u > 0, perpendicular to the propellers rotation plane.
Hence, the expressions of f

b
b and τ bb in (1) becomes τ bb =

[

τφ τθ τψ
]T

and f bb =
[

0 0 u
]T

. In order to design
the control law on the basis of a simplified model, neglecting
both the air friction terms and ga and writing the dynamic
equations with respect to Σi, the model in (1) becomes [27]

mp̈b −mg = −uRb(ηb)e3, (2a)

M(ηb)η̈b +C(ηb, η̇b)η̇b = Q(ηb)
Tτ bb, (2b)

with M (ηb) = Q(ηb)
TIbQ(ηb) ∈ R

3×3, ηb ∈ Q, the sym-
metric and positive definite inertia matrix, and C(ηb, η̇b) =
QTS(Qη̇b)IbQ + QTIbQ̇ ∈ R

3×3 the Coriolis matrix,
where Q̇ ∈ R

3×3 is the time derivative of Q(ηb).
The total thrust u and τ bb can be related to the squared

speeds w2

i , with i = 1, . . . , 4, of the motors through [27]

u = ρu(w
2

1 + w2

2 + w2

3 + w2

4), (3a)

τφ = lρu(w
2

2
− w2

4
), (3b)

τθ = lρu(w
2

3 − w2

1), (3c)

τψ = cw2

1
− cw2

2
+ cw2

3
− cw2

4
, (3d)

where l is the distance between each propeller and the
quadrotor’s center of mass, ρu > 0 and c > 0 are two
aerodynamic parameters.

Without loss of generality, suppose that motor 2 is com-
pletely broken, i.e., w2 = 0. Substituting this last in (3b), it is
possible to notice that motor 4 creates only a negative torque
around the x-axis of the aerial vehicle3. It is thus impossible
to change sign to τφ. For this reason, it is assumed to turn
off also motor 4, i.e., w4 = 0, so as to have τφ = 04. In
general, in this paper, it is proposed to turn off the motor
placed on the same axis of the quadrotor where the broken
propeller is located (see Fig. 1, on the right). The resulting
configuration is a birotor with fixed propellers. The dynamic
model of the birotor does not change with respect to (2), but
the relationships in (3) differ as follows

u = ρu(w
2

1 + w2

3), (4a)

τφ = 0, (4b)

τθ = lρu(w
2

3 − w2

1), (4c)

τψ = cw2

1
+ cw2

3
. (4d)

Similar equations can be obtained by considering a failure
on motor 1 and/or 3. In the remainder of the paper, the aerial
vehicle is referred to as a birotor with fixed propellers where,
without loss of generality, motors 2 and 4 have been turned
off. The case of two broken motors but not aligned on the
same quadrotor’s axis is out of the scope of this paper.

It is worth noticing a peculiarity of the birotor with fixed
propellers: τψ in (4d) can not be freely controlled since it
is impossible to change its sign. It is instead possible to

3It has been assumed that the rotational direction of each propeller is
fixed, as in the most currently available off-the-shelf devices.

4The case in which all the three remaining propellers are active is
considered in [23].
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independently control the total thrust u and the torque τθ
around the y-axis of Σb, i.e., the pitch angle. Therefore,
substituting (4a) in (4d) yields

τψ = τψ = cu/ρu, (5)

which is the spinning torque of the birotor around its vertical
axis, depending on the actual thrust and some aerodynamic
parameters. Hence, the birotor continuously rotates around
the z-axis of Σb.

III. CONTROL LAW

Define the following acceleration a =
[

ax ay az
]T

as
a virtual input for the translational part of the system (2a)

a = −(u/m)Rb(φ, θd, ψ)e3 + g, (6)

where θd is the desired value of the pitch angle. Vector a

represents the desired acceleration expressed in Σi in which
the magnitude is given by the total thrust u produced by
the remaining motors 1 and 3, while the attitude is given
by the desired pitch angle, and the current roll and yaw
angles measured by the on board IMU. By inverting (6),
the retrieved values of both the thrust and the desired pitch
are

u = m
√

a2x + a2y + (az − g)2, (7a)

θd = tan−1 (axcψ + aysψ/(az − g)) . (7b)

The goal is thus to design a for the position control phase so
as to compute the desired values of the thrust and the pitch
angle. This last is in turn employed in a low-level control
law to ensure the correct tracking of the planned angle.

• Remark 1. In case of a complete fault of motor 1 and/or
3, similar considerations may be done. In such a case,
the desired angle is the roll, whose desired value can
be computed inverting a = −(u/m)Rb(φd, θ, ψ)e3+g

and obtaining φd = sin−1 (m(µycψ − µxsψ)/u).

The following subsections address separately the design
of the altitude (az), the planar (ax and ay) and attitude (θd)
controls.

A. Altitude control

Denote with pd =
[

xd yd zd
]T

, ṗd =
[

ẋd ẏd żd
]T

and p̈d =
[

ẍd ÿd z̈d
]T

the reference position, velocity
and acceleration, respectively, expressed in Σi. The following
PD-based controller can be employed to track the planned
altitude, namely

az = z̈d + kd,z ėz + kp,zez, (8)

with ez = zd − z, ėz = żd − ż, kp,z and kd,z are positive
gains. Substituting (8) in (6) and considering only the third
component, it is then possible to show the asymptotic con-
vergence of the altitude error to zero as illustrated in [27].

P

P

x

y

d

Fig. 2. The xy-plane of Σi is here represented. The point P represents
the current position pb of the birotor projected in such a plane. The point
Pd represents the desired position pd of the birotor on the same plane. The
green vector is the current heading vector of the birotor in the xy-plane
of Σi, which continuously rotates as the yaw angle. The red vector is the
planar error creating an angle of atan2(ey , ex) with respect to the x-axis.

B. Planar control

As the quadrotor, the birotor is an underactuated system.
In order to move in the xy-plane of Σi, the aerial vehicle
has to rotate around the x or y-axis of Σb so as to create a
projection vector of the vertical axis of Σb in the xy-plane
of Σi allowing the planar movement.

The birotor considered here can only rotate around the y-
axis of Σb and it continuously spins around z-axis. In this
configuration, the projection of the birotor vertical axis into
the xy-plane is a rotating vector with rate ψ̇ (see Fig. 2).
The following kinematic constraint can be hence considered
in Σi

[

ẋ ẏ
]T

= G(ψ)υ =
[

cosψ sinψ
]T
υ, (9)

where υ is the magnitude of the projection vector and it
is a virtual input to design in order to obtain the desired
planar velocities. Since the goal is to design the desired
accelerations ax and ay , differentiating (9) with respect to
time yields

[

ax ay
]T

=
[

ẍ ÿ
]T

= Ġ(ψ, ψ̇)υ +G(ψ)α, (10)

with α = υ̇.
Define the planar errors as ex = xd − x and ey = yd − y.

Only for demonstration purposes, a regulation case, i.e.,
ẋd = ẏd = 0, is here considered to design the control
law. Therefore, considering the time derivatives of the planar
errors and taking into account (9) yield

[

ėx ėy
]T

= −G(ψ)υ, (11a)

υ̇ = α, (11b)

in which the two virtual control inputs α and υ have to be
designed to nullify both ex and ey .

• Remark 2. Notice that the system (11) is similar to the
dynamic model of a mechanical system which is subject
to nonholonomic constraints: (11a) may represent the
kinematic model, while (11b) may denote the so-called
dynamic extensions [26]. The main difference is that the
constraint matrix G here depends on the yaw angle ψ
which is an uncontrollable state variable of the system.

A backstepping approach is employed to zero the planar
errors. The following theorem [29] is hence introduced.

4784



Theorem 1. Consider the system (11a)-(11b). Let ξ(ex, ey)
be a stabilizing state feedback controller for (11a) with
ξ(0, 0) = 0. Let V (ex, ey) be a Lyapunov function satisfying

∂V

∂ [ex, ey]
T
G(t)ξ(ex, ey) ≤ −W (ex, ey), (12)

for each value of ex and ey , with W (ex, ey) a semi-positive
definite function. The following state feedback control law

α =
∂ξ

∂ [ex, ey]
T
G(t)G(t)T

[

ėx
ėy

]

−
∂V

∂ [ex, ey]
T
G(t)

− kb

(

G(t)T
[

ėx
ėy

]

− ξ(ex, ey)

)

, (13)

marginally stabilizes the origin of system (11a)-(11b), which
is ex = ey = υ = 0, with kb a positive gain.

Proof. The following sate feedback control is employed to
stabilize (11a)

υ = ξ(ex, ey) = kυ

√

e2x + e2y cos(atan2(ey, ex)− ψ(t)),

(14)
with kυ a positive gain. Moreover, notice that ξ(0, 0) = 0.
The function V (ex, ey) = (1/2) [ex, ey]

T
[ex, ey] can be

chosen as a Lyapunov function to show the stability of
the point ex = ey = 0 in (11a). By considering the
time derivative of V (ex, ey) and the system (11a), taking

into account ex =
√

e2x + e2y cos(atan2(ey, ex)) and ey =
√

e2x + e2y sin(atan2(ey, ex)) yields

∂V

∂ [ex, ey]
T
Gξ = −kυ(e

2

x + e2y) cos
2(atan2(ey, ex)− ψ(t)),

in which dependencies have been dropped. Denoting with
W = kυ(e

2
x + e2y) cos

2(atan2(ey, ex)− ψ(t)), it is possible
to notice that this function is semi-positive definite and it is
zero if and only if

atan2(ey, ex)− ψ(t) = kπ/2, 5 (15)

with k = ±1,±3,±5, . . .. Inequality (12) has been then
verified.

Therefore, explicitly computing (13), the following control
law stabilizes the origin of system (11) as proved in [29]

α = (ėx(kυ + kb) + ex)cψ + (ėy(kυ + kb) + ey)sψ

+ kυkb

√

e2x + e2y cos(atan2(ey, ex)− ψ(t)). (16)

• Remark 3. Notice that only marginal stability is pro-
vided in Theorem 1. This is reflected in the semi-
positive definiteness of the time derivative of the Lya-
punov function. However, as it could be seen in Sec-
tion IV, the birotor does not stuck in the condition
provided by (15) due to the continuous rotation of the
birotor around its vertical axis.

5This condition is verified when yaw angle ψ is at π/2 with respect to
the direction leading to Pd in the xy-plane (See Fig. 2).

C. Pitch control

Recalling the definition of the configuration space Q, the
following control law can be considered for the pitch angle
of the birotor

τθ =
(

Iycφ + Iys
2

φ/cφ
)

τ θ + χ(ηb, η̇b, τψ), (17)

with τθ a virtual control input and

χ = Iysφ(τψ − η̇T

b L1(ηb)η̇b)/(Izcφ) + η̇T

b L2(ηb)η̇b,

with

L1 =





0 l1 l2
l3 0 l4
l5 l6 l7



 , L2 =





0 l8 l9
l10 0 l11
l12 l13 l14



 ,

where l1 = Iycφ, l2 = Iycθsφ, l3 = −(Ix + Iz)cφ, l4 =
Ixcφsθ , l5 = −(Iy + Iz)cθsφ, l6 = −(Iy + Iz)cφsθ , l7 =
(Ix−Iy)cθsφsθ , l8 = Izsφ, l9 = Ixcφcθ, l10 = −(Ix+Iy)sφ,
l11 = Ixsφsθ, l12 = (Iy − Iz)cφcθ , l13 = −(Iy + Iz)sφsθ
and l14 = (Iz − Ix)cφcθsθ .

Substituting (17) in (2b) and considering (4b) and (5) yield

θ̈ = τ θ. (18)

Denoting with θ̈d, θ̇d and θd the desired acceleration, ve-
locity and value of the pitch angle, respectively, the following
PD-based controller can be designed

τ θ = θ̈d + kd,θėθ + kp,θeθ, (19)

with eθ = θd−θ, ėθ = θ̇d− θ̇, ëθ = θ̈d− θ̈, and kp,θ and kd,θ
two positive gains. Folding (19) in (18) yields the following
closed-loop equation

ëθ + kd,θėθ + kp,θeθ = 0,

which is globally asymptotically stable.

D. Considerations about the control scheme

In order to summarize the achieved control design, the
proposed architecture is depicted in the block-scheme of
Fig. 3. First, the position errors components ex, ey, ez are
computed, as well as the related time derivatives ėx, ėy, ėz .
Knowing the feedforward acceleration z̈d, it is possible to
compute the control input az as in (8). Taking into account
both (14) and (16), the other two components of the virtual
control input a are retrieved as in (10). The desired total
thrust u and the pitch angle θd are then computed as in (7).
A second-order low-pass digital filter is employed to reduce
noise and compute both first and second derivatives of θd.
Afterwards, the pitch tracking errors eθ and ėθ are computed.
The control input τθ is then retrieved as in (17), with τθ
obtained in (19). Finally, the propellers speeds for the birotor
are given by (4a) and (4c). An integral action might be
added in (8) and (19) to increase tracking accuracy without
destroying stability properties [27].

Notice that the birotor state includes also the roll and yaw
angles and their time derivatives. These quantities are not
directly controlled and hence an analysis is required to check
the boundedness of these variables. To roughly perform such
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Controller
Eq. (10)-(14)-(16)

Fig. 3. Block scheme of the proposed control architecture. In red, the corresponding equations in the paper related to each block.

analysis, the Coriolis term in the dynamic model (2b) is
neglected. Taking into account (4b) and (5) yields

φ̈ = −
sin(eθ − θd)(Izτθsφ + Iyτψcφ)

IyIz cos(eθ − θd)
,

ψ̈ =
Izτθsφ + Iyτψcφ
IyIz cos(eθ − θd)

,

whose absolute values can be both bounded as follows by
taking into account (5) and some trigonometric relationships

φ̈max = ψ̈max =
ρuIz|τθ|+ cIy|u|

ρuIyIz | cos(eθ − θd)|
.

Notice that φ̈max and ψ̈max depend on the inertia, the
aerodynamic parameters, the total thrust, the pitch torque, the
desired pitch and the related error. The thrust can be bounded
as in [27], as well as the actuated torque. Notice that the
denominator is not a problem in the assumed configuration
space Q. For a more deep analysis, the Coriolis term should
be included, but the expressions become complicated. The
yaw and roll velocities can be shown to be bounded as well,
but it is here omitted due to space limitation. However, the
related time histories are depicted in the next section and
more critical comments are provided.

IV. SIMULATIONS

A. Technical details

The proposed control law has been designed on the
basis of the dynamic model (2). However, the birotor is
continuously spinning around its vertical axis and then some
aerodynamic effects should not be any more neglected. To
properly validate the controller through simulations, the more
accurate dynamic model (1) has been thus considered to
simulate the aerial vehicle behaviour. Moreover, although
the planar controller in Section III-B has been derived for
regulation tasks, tracking cases are instead considered in the
following tests.

The parameters employed in the following simula-
tions are now introduced. Such parameters have been
retrieved considering a real Asctech Pelican quadro-
tor [30]. The considered mass and intertia are 1.2 kg and
diag(3.4, 3.4, 4.7)·10−3 kgm2, respectively. The distance of
each propeller to the center of mass of the aerial vehicle is
l = 0.21 m, while the aereodynamic parameters in (4) are

ρu = 1.8 · 10−5 Ns2/rad2 and c = 8 · 10−7 Nms2/rad2. The
inertia of the propeller is Ip = 3.4 · 10−5 kgm, and the term
ga in (1b) for the birotor is given by IpS(ωbb)e3(ω1 + ω3).
In order to consider saturations of the actuators, a maximum
speed wi has been considered in the simulation equals to
630 rad/s (about 6000 rpm). It has been verified in the
practice that the birotor at steady-state has a constant rotation
speed of about 7 rad/s around its vertical axis. In this way,
the friction coefficients in (1b) have been set to F o =
diag(0, 0, 7 · 10−2) kgm2/s.

The gains for the altitude controller have been tuned to
kp,z = 100, kd,z = 10 with an integral action tuned to 0.01.
Concerning the backstepping controller, the gains are kb = 4
and kυ = 0.1. The gains for the pitch controller have been
tuned to kp,θ = 64, kd,θ = 17.6 with an integral action
tuned to 100. The sample time for acquiring measurements
and giving the propellers speed has been set to 10 ms.

B. Case studies and discussion of the results

In the following, three case studies are described. Some
other case studies can be found in the multimedia attachment.
Each planned trajectory ends in the origin of Σi where the
birotor stays in steady-state for few seconds. The turning off
phase of the two remaining propellers is neglected.

1) Case study A: A diagonal emergency landing trajectory
is considered in this case study. The birotor starts with
an initial yaw velocity of 3 rad/s from the point pb =
[

1 1 1
]T

m in Σi and reaches the origin of the Cartiesian
system in 20 s. The initial and final linear velocities and
accelerations are put to zero without loss of generality: a
seventh-order polynomial has been employed for trajectory
planning to guarantee the above defined conditions. The
birotor stays for other 10 s in a steady-state condition.

The time history of the position error norm is depicted in
Fig. 4(a), while the pitch error is shown in Fig. 4(b). These
results show also some robustness property of the proposed
control law since this last has been designed on the basis
of a simplified model and the theory has been provided for
regulation problems. The visible oscillations are due to the
continuous spinning of the birotor around its vertical axis. It
has been verified that a relationship between the oscillations
in the error plots and the steady-state yaw velocity exists.
Notice that the yaw angle velocity is shown in Fig. 4(c),
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Fig. 4. Case study A: diagonal emergency landing trajectory. Subfigure
(a): norm of the position error. Subfigure (b): pitch error. Subfigure (c):
time history of the uncontrolled yaw angle velocity. Subfigure (d): time
history of the uncontrolled roll angle. Subfigure (e): commanded velocities
of the propellers. In detail, in blue the propeller 1 and in red the propeller 3.
Subfigure (f): 3D Cartesian planned path. In blue the desired path, the actual
one is instead depicted in red. Subfigure (g): planar acceleration control law
α in (16). Subfigure (h): time history of the time derivative of the Lyapunov
function introduced in the proof of Theorem 1.

while the uncontrolled roll angle is depicted in Fig. 4(d) and
it is limited. The commanded velocities of the propellers
and the difference between planned and executed paths are
shown in Fig. 4(e) and Fig. 4(f), respectively. Notice that
the propeller speeds do not saturate. Fig. 4(g) shows the
time history of the virtual input α designed in (16). In
order to show that the Lyapunov function never stops in the
condition described in (15), Fig. 4(h) depicts the time history
of the time derivative of the Lyapunov function V (ex, ey)
introduced in the proof of Theorem 1. It is possible to notice
that when (15) is verified, then the plot is zero. However, due
to the continuous spinning of the yaw angle, its value starts
again to be less than zero driving the birotor towards the
desired configuration. Finally, when the planar error is zero,
the time derivative of V (ex, ey) remains null as well.
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Fig. 5. Case study B: diagonal emergency landing trajectory with noise in
measurement signals. Subfigure (a): norm of the position error. Subfigure
(b): pitch error. Subfigure (c): measure of the uncontrolled roll angle.
Subfigure (d): commanded velocities of the propellers. In detail, in blue
the propeller 1 and in red the propeller 3.

2) Case study B: The same diagonal emergency landing
trajectory of the previous case study is considered, but
noise has been added to the measurement signals. In detail,
white noise has been considered for the following quantities:
measure of the absolute position of the birotor (variance:
49 · 10−6 m), linear velocity (variance: 25 · 10−4 m/s), IMU
measure of the orientation (variance: 3 · 10−4 rad) and IMU
measure of the angular velocity (variance: 2.7 · 10−3 rad/s).
Moreover, it is reasonable to consider that when the fault
tolerant control is switched-on, the initial conditions of both
roll and pitch are not zero. In this case study, such initial
values have been set to 4 deg. Time histories in Fig. 5 show
that the errors remain bounded as well as the uncontrolled
variables, while the propeller speeds do not saturate.

3) Case study C: The presence of an obstacle is con-
sidered in this case study. Hence, first a semi-circle is
planned to avoid such obstacle, then a vertical straight line
towards the origin of Σi is considered. The semi-circle starts
at the point p1 =

[

0.5 0.5 1
]T

m and passes trough

p2 =
[

0.5 0.5 0.5
]T

m and p3 =
[

0.5 0.5 0
]T

m.
The duration of this part is 20 s with initial and final
linear velocity and acceleration set to zero. A seventh-
order polynomial is employed for arclength parameterization
for the semi-circular path. The vertical straight line has a
duration of 25 s. The vehicle stays in steady-state for 5 s.

The tracking is accurate as shown in Fig. 6(a) and
Fig. 6(b). Uncontrolled variables are bounded (Fig. 6(c) and
Fig. 6(d)). The propeller commanded velocities, which do
not saturate, and the comparison between planned and actual
paths are depicted in Fig. 6(e) and Fig. 6(f), respectively.

V. CONCLUSION AND FUTURE WORK

A backstepping controller has been designed to cope
with the problem of controlling a birotor with fixed (non-
tilting) propellers. This could be useful in situations where a
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Fig. 6. Case study C: emergency landing trajectory with an obstacle.
Subfigure (a): norm of the position error. Subfigure (b): pitch error. Subfigure
(c): uncontrolled yaw angle velocity. Subfigure (d):uncontrolled roll angle.
Subfigure (e): commanded velocities of the propellers. In detail, in blue the
propeller 1 and in red the propeller 3. Subfigure (f): 3D Cartesian planned
path. In blue the desired path, the actual one is depicted in red. The asterisk
denotes the obstacle’s position.

quadrotor completely loses one of its motor and it is assumed
to turn off also the opposite actuator. The proposed approach
shows that each point for Cartesian space can be reached by
the birtor: each emergency landing trajectory can be thus
planned. Future work is focused on experimental evaluation
and problems related to an outdoor scenario.
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