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Abstract— A controller dealing with the failure of a quadro-
tor’s motor is presented in this paper. Supposing that the failure
has been already detected by the system, the quadrotor is
modelled as a birotor with fixed propellers and it is controlled
to follow a planned emergency landing trajectory. Theory shows
that, in such a configuration, the aerial vehicle is allowed
to reach any position in the Cartesian space dropping the
possibility to control the yaw angle. Simulations are presented
to confirm the presented methodology.

I. INTRODUCTION

Service aerial robotics is growing day by day. Vertical

Take-off and Landing (VToL) Unmanned Aerial Vehicles

(UAVs) are starting to be employed in anthropic environ-

ments for several applications. Amazon is planning to deliver

packages into customers hands in thirty minutes or less using

hexarotors [1]. Moreover, such aerial vehicles are moving

from passive tasks like inspection [2] and surveillance [3]

into active tasks like grasping [4] and aerial manipulation [5],

[6], [7], [8]. This changing scenario requires the introduction

not only of rules and regulation, but also of safe controllers.

Therefore, the above depicted scenario requires the design

of controllers for safety-critical systems: fault detection,

diagnosis and tolerance approaches become thus essential.

Fault tolerance methods try to maintain the same function-

alities of the system allowing reduced performance when a

damage appears [9]. Passive fault tolerant control systems

(PFTCS) do not alter the structure of the controller, while

the active fault tolerant control systems (AFTCS) reconfigure

the control actions to guarantee stability and acceptable

performance of the system [10].

In the literature, several methods tackle the problem of

controlling a quadrotor in case of sensor [11], [12] and/or

motor faults. The latter case is of interest for this paper. A

Thau observer is employed in [13] to detect the fault in the

aerial vehicle. Assuming that a propeller might lose up to

50% of its efficiency, the model after the failure is estimated

in [14] to guarantee the stability of the aerial platform. A slid-

ing mode controller with a Luenberger observer is employed

in [15] to distinguish between external disturbances and

faults, and reconfigure the controller when a partial failure

is present in the quadrotor’s propellers. An AFTCS with a

Authors are listed in alphabetical order. The research leading to these
results has been supported by the SHERPA collaborative project, which has
received funding from the European Community 7th Framework Programme
(FP7/2007-2013) under grant agreements ICT-600958. The authors are
solely responsible for its content.

Vincenzo Lippiello, Fabio Ruggiero and Diana Serra are with the
PRISMA Lab, Department of Electrical Engineering and Information Tech-
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Gain Scheduling approach is instead employed in [16] in

case of performance loss in each propeller of the quadrotor.

A backstepping approach is proposed in [17] to cope with

a 25% of reduced performance in the quadrotor’s motors. A

number of methods have been tested and compared in [18]

in case of 50% reduced performance in the propellers.

Other methods consider instead the complete failure of a

quadrotor’s propeller. A feedback linearization with a PD-

based controller is employed in [19], but no stability analysis

and coupling effects between inner and outer loops are

considered. An equidistant trirotor is taken into account

in [20], but the designed control law is valid only for spiral

motions. A safety landing of a quadrotor with a propeller

failure is adopted in [21] through a H-infinity loop shaping

method. A LQR controller is exploited in [22] for periodic

solutions in case of single, two opposite and three propellers

failure. Hexacopters have been recently employed to have

redundancy in the system in case of failure of one or more

motors.

In this paper, it is assumed that the failure of one of

the quadrotor’s propellers has been already detected, the

controller has been switched to the emergency landing

modality and the trajectory has been planned. How such

things have been implemented is out of the scope of this

paper: one among the techniques illustrated above in the

literature review might be employed. The approach here

proposed considers to turn off also the propeller aligned on

the same quadrotor axis of the broken motor. In this way, the

resulting configuration is a birotor with fixed propellers1. It

will be proved that each point in the 3D Cartesian space can

be reached by the birotor renouncing to the possibility of

controlling the yaw angle: any emergency landing trajectory

can be thus tracked. The control is designed by employing

a PID based controller, where coupling between inner and

outer control loops are explicitly taken into account in the

stability proof. In [25] authors have employed a backstepping

approach to solve the same issues but theory has covered only

regulation cases: this is overcome by using the proposed PID

based approach.

II. MODELING

First, the model of a quadrotor is described, then the model

of a birotor with fixed propeller is introduced.

Let Σi and Σb be a world-fixed and a body reference

frame, respectively (see Fig. 1). The latter is placed at

1In the literature, a birotor is typically referred to as an aerial vehicle
with two propellers whose alignment can be tilted through other two
actuators [23], [24]
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Fig. 1. Left. The quadrotor and related frames: black, the inertial frame
Σi; green, the body frame Σb; blue, the speed and label of each motor.
Right. The birotor configuration with in red the turned off propellers.

the center of mass of the quadrotor. The rotation matrix

Rb(ηb) ∈ SO(3) defines the attitude of Σb with respect

to Σi, where ηb =
[

φ θ ψ
]T ∈ R

3 is the roll-pitch-yaw

Euler angles vector representing the attitude of the quadrotor.

Let η̇b =
[

φ̇ θ̇ ψ̇
]T ∈ R

3 and η̈b =
[

φ̈ θ̈ ψ̈
]T ∈ R

3

be the first and second time derivatives of ηb, respectively,

and ωbb ∈ R
3 be the angular velocity of the aerial vehicle in

the body frame Σb. The linear relationship ωbb = Q(ηb)η̇b
holds in both directions within the following assumption.

• Assumption 1. The aerial vehicle does not pass through

representation singularities: the allowable configuration

space for the roll-pitch-yaw angles ηb is Q = {ηb ∈
R

3 : θ 6= π/2 + kπ, φ 6= π/2 + kπ, k ∈ Z}.

The detailed expressions for Rb(ηb) and Q(ηb) can be found

in [25], [26].

The dynamic equations of the quadrotor are retrieved

employing the Newton-Euler formulation [27]

mp̈b = mg +Rb(ηb)f
b
b, (1a)

Ibω̇
b
b = −S(ωbb)Ibω

b
b − ga − F oω

b
b + τ bb, (1b)

Ṙb(ηb) = Rb(ηb)S(ω
b
b), (1c)

where pb =
[

x y z
]T

is the position of the aerial

vehicle expressed in Σi, and ṗb =
[

ẋ ẏ ż
]T

and p̈b =
[

ẍ ÿ z̈
]T ∈ R

3 are the related time derivatives; m

denotes the mass of the aerial vehicle; g =
[

0 0 g
]T ∈

R
3 is the gravity vector, with g = 9.81 m/s2; Ib =

diag(
[

Ix Iy Iz
]

) ∈ R
3×3 is the constant inertia matrix of

the quadrotor expressed in Σb; ga = IpS(ω
b
b)e3(ω1 + ω2 +

ω3 + ω4) is the gyroscopic torques due to the combination

of the aerial vehicle rotation and the propellers, with ωi
the speed of the ith propeller, i = 1, . . . , 4, and Ip its

inertia; e3 =
[

0 0 1
]T

and S(·) ∈ R
3×3 denotes the

skew-symmetric operator; F o ∈ R
3×3 is a diagonal positive

definite matrix denoting the air friction coefficient2; f bb ∈ R
3

and τ bb ∈ R
3 are the forces and torques input vectors,

respectively, expressed in Σb.
In the considered case of a quadrotor, the expressions of

the input force and torque are related to four main control

inputs, namely: three control torques around each axis of the

body frame Σb and the total thrust u > 0 perpendicular to the

propellers rotation plane. In detail τ bb =
[

τφ τθ τψ
]T

, and

2In general, the expression of the air drag might be more complicated
depending, for instance, from the square of the velocity.

f bb =
[

0 0 u
]T

. Neglecting both the air friction terms and

ga in (1) and writing the dynamic equations with respect

to Σi, a simplified model can be considered to design the

control law

mp̈b −mg = −uRb(ηb)e3, (2a)

M(ηb)η̈b +C(ηb, η̇b)η̇b = Q(ηb)
Tτ bb, (2b)

with M(ηb) = Q(ηb)
TIbQ(ηb) ∈ R

3×3, ηb ∈ Q, the sym-

metric and positive definite inertia matrix, and C(ηb, η̇b) =
QTS(Qη̇b)IbQ + QTIbQ̇ ∈ R

3×3 the Coriolis matrix,

where Q̇ ∈ R
3×3 is the time derivative of Q(ηb).

The relationships between the thrust, the control torques

for each quadrotor’s axis and the squared motor speeds w2
i ,

with i = 1, . . . , 4, are given by [28]

u = ρu(w
2

1 + w2

2 + w2

3 + w2

4), (3a)

τφ = lρu(w
2

2 − w2

4), (3b)

τθ = lρu(w
2

3 − w2

1), (3c)

τψ = cw2

1 − cw2

2 + cw2

3 − cw2

4, (3d)

where l is the distance between each motor and the center

of mass of the quadrotor, ρu > 0 and c > 0 are the thrust

and drag factors, respectively.

Suppose without loss of generality that motor 2 is broken,

i.e., w2 = 0 in (3). From (3b) it is possible to notice that a

generic τφ can not be arbitrarily assigned: motor 4 creates

a torque around the x-axis of Σb only in one direction

(assuming that the rotational direction of each propeller is

fixed, as in the most currently available off-the-shelf devices).

Therefore, it is not possible to control the rotation around

the axis of Σb which is perpendicular to the axis where the

broken motor is placed. The assumption to turn off also the

motor placed on the same axis of the broken one is thus made

in this paper3, i.e., w4 = 0 if motor 2 is broken (see Fig. 1,

right). The resulting configuration is hence a birotor with

fixed propellers. The related dynamic model is equivalent

to (2) but the relationships between the thrust, the control

torques and the squared motor speeds differ as follows

u = ρu(w
2

1 + w2

3), (4a)

τφ = 0, (4b)

τθ = lρu(w
2

3 − w2

1), (4c)

τψ = cw2

1 + cw2

3. (4d)

Similar equations can be obtained by considering a failure

on motor 1 and/or 3. The case of two broken motors not

aligned on the same quadrotor’s axis is out of the scope of

this paper.

III. CONTROL LAW

Notice that τψ in (4d) can not be controlled arbitrarily

since it is not possible to change its sign. Hence, it is

possible to independently control only the thrust and the

3The case in which all the three remaining propellers are active is
considered in [22].



torque around the y-axis of the quadrotor. Substituting (4a)

in (4d) yields

τψ = τψ = cu/ρu, (5)

representing the spinning torque of the aerial vehicle around

its z-axis and depending on the current thrust and the

aerodynamic parameters ρu and c. Therefore, the birotor has

the peculiarity to continuously spin around its vertical axis

making not possible to control the yaw angle. It is still pos-

sible to control the thrust and the pitch angle independently.

Recalling Assumption 1, the following control law

τθ =
(

Iycφ + Iys
2

φ/cφ
)

τθ + α1(η, η̇, τψ), (6)

can be considered with τθ a virtual control input and

α1 = Iysφ(τψ − α2(η, η̇))/(Izcφ) + α3(η, η̇),

α2 = −Ixφ̇θ̇cφ + Iyφ̇θ̇cφ − Izφ̇θ̇cφ + Ixψ̇
2cθsφsθ

− Iyψ̇
2cθsφsθ − Ixφ̇ψ̇cθsφ + Iyφ̇ψ̇cθsφ

− Izφ̇ψ̇cθsφ + Ixψ̇θ̇cφsθ − Iyψ̇θ̇cφsθ − Izψ̇θ̇cφsθ,

α3 = −Ixφ̇θ̇sφ − Iyφ̇θ̇sφ + Izφ̇θ̇sφ − Ixψ̇
2cφcθsθ

+ Izψ̇
2cφcθsθ + Ixφ̇ψ̇cφcθ + Iyφ̇ψ̇cφcθ

− Izφ̇ψ̇cφcθ + Ixψ̇θ̇sφsθ − Iyψ̇θ̇sφsθ − Izψ̇θ̇sφsθ.

Substituting (6) in (2b) and considering (4b) and (5) yield

θ̈ = τθ, (7)

meaning that it is possible to control the pitch angle through

a proper choice of the virtual control input τθ. Denoting

with θ̈d, θ̇d and θd the desired acceleration, velocity and

value of the pitch angle, respectively, the following simple

PD controller is chosen

τθ = θ̈d + kd,θ ėθ + kp,θeθ, (8)

with eθ = θd − θ, ėθ = θ̇d − θ̇, ëθ = θ̈d − θ̈, and kp,θ and

kd,θ two positive gains.

A new virtual input acceleration µ =
[

µx µy µz
]T ∈

R
3 can be introduced and it is defined by

µ = −(u/m)Rb(φ, θd, ψ)e3 + g, (9)

representing the desired acceleration vector expressed in

Σi, in which the magnitude is the thrust u produced by

the remaining propellers, while the orientation is given by

the desired pitch and the current measured roll and yaw.

Replacing θ = θd − eθ in (2a), taking into account (9) and

the following trigonometric relationships

sin(a− b) = sin(a)− 2 sin (b/2) cos (a− b/2)

cos(a− b) = cos(a) + 2 sin (b/2) sin (a− b/2)

yields

p̈b = µ+ (u/m)δ(ηb, θd, eθ), (10)

where δ(ηb, θd, eθ) =
[

δx δy δz
]T ∈ R

3 is the following

interconnection vector

δx = 2 cos(φ) cos(ψ) sin (eθ/2) cos (θd − eθ/2) , (11a)

δy = 2 cos(φ) sin(ψ) sin (eθ/2) cos (θd − eθ/2) , (11b)

δz = −2 cos(φ) sin (eθ/2) sin (θd − eθ/2) . (11c)

The virtual control input µ can be thus chosen as follows

µ = p̈d +Kpep +Kdėp, (12)

where Kp, Kd ∈ R
3×3 are positive definite gain matrices,

pd, ṗd, p̈d ∈ R
3 represent the desired position trajectory for

the birotor, and ep = pd−pb, ėp = ṗd− ṗb, ëp = p̈d− p̈b ∈
R

3 are the related tracking errors.

Folding (12) in (10) and (8) in (7) yields the following

closed-loop equations

ëp +Kdėp +Kpep = −(u/m)δ(ηb, θd, eθ), (13a)

ëθ + kd,θ ėθ + kp,θeθ = 0. (13b)

• Remark 1. The closed-loop equations in (13) are

equivalent to generalized mechanical impedances with

programmable stiffness and damping through a proper

choice of the gains. An external disturbance is present

in (13a) due to the coupling between angular and linear

parts through eθ, θd and ηb.

• Remark 2. Two PD controllers have been employed

in (8) and (12). As noticed in [28], an integral action

can be added to increase tracking accuracy without

destroying the stability properties provided in the next

section.

To recap, the proposed architecture is depicted in the

block-scheme of Fig. 2. After computed the position tracking

errors ep and ėp, knowing the feedforward acceleration p̈d,

the virtual control input µ can be computed as in (12). The

desired thrust u and the pitch angle θd can be computed by

inverting (9) as follows

u = m
√

µ2
x + µ2

y + (µz − g)2, (14a)

θd = tan−1((µxcψ + µysψ)/(µz − g)), (14b)

where ψ is retrieved by the IMU measurements. A second-

order low-pass digital filter might be employed to reduce

noise and compute both first and second derivatives of θd,

and hence compute in turn the pitch tracking errors eθ
and ėθ. The control input τθ is then computed as in (6),

with τθ obtained as in (8). Having both the thrust and

τθ, the propeller inputs for the birotor can be computed

inverting (4a) and (4c).

• Remark 3. Similar considerations can be made in case

of motor 1 and/or 3 failure. In such event, the desired

angle is the roll whose desired value can be computed

by inverting µ = −(u/m)Rb(φd, θ, ψ)e3 + g and

obtaining φd = sin−1 (m(µycψ − µxsψ)/u).

IV. STABILITY PROOF

In this section it is shown that the tracking errors in (13)

go uniformly asymptotically to zero. However, the state of

the birotor includes also the roll and yaw angles and their

time derivatives: notice that these quantities are not directly

controlled. The behaviour of the uncontrolled accelerations

is studied neglecting Coriolis terms for simplicity. Anyway,

in the simulations of Section V, the related time histories are

depicted and more deep critical comments are provided.
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Let x1 =
[

eTp ėTp
]T ∈ R

6 and x2 =
[

eθ ėθ
]T ∈ R

2

be two vectors denoting the state of the closed-loop system

equations (13a) and (13b), respectively, that can also be

arranged in the following way

ẋ1 = α1(x1,Kp,Kd) + β1(u,m,ηb, θd, eθ), (15a)

ẋ2 = α2(x2, kp,θ, kd,θ), (15b)

where

α1(x1,Kp,Kd) =

[

ėp
−Kdėp −Kpep

]

,

α2(x2, kp,θ, kd,θ) =

[

ėθ
−kd,θ ėθ − kp,θeθ

]

,

β1(u,m,ηb, θd, eθ) =

[

03

−(u/m)δ(ηb, θd, eθ)

]

,

in which 0n ∈ R
n is a n-dimensional null vector. Define the

nominal system as the closed-loop equation (15a) without

the perturbation term β1(u,m,ηb, θd, eθ)

ẋ1 = α1(x1,Kp,Kd). (16)

Consider the next reasonable assumption.

• Assumption 2. The planned linear acceleration is

bounded as follows

‖p̈d‖ ≤ ‖p̈d‖max = B, (17)

with B > 0. In this paper all the norms are Euclidean.

The following theorem [29] is exploited to prove the global

uniformly asymptotically stability of (15).

Theorem 1. Consider the perturbed systems (15), and the

related nominal systems (16) and (15b) for which x1 = 06

and x2 = 02 are two equilibrium points, respectively.

Suppose V1(t,x1) and V2(t,x2) are two Lyapunov functions

of (16) and (15b), respectively, satisfying the following

inequalities

∂Vi/∂t+ (∂Vi/∂xi)αi ≤ −γiΦ2

i (xi), (18a)

‖∂Vi/∂xi‖ ≤ νiΦi(xi), (18b)

for all t > 0, where γi > 0, νi > 0 and Φi(xi) is a positive

definite and continuous function, with i = 1, 2. Moreover,

the perturbation term in (15a) has to satisfy the following

inequality

‖β1(u,m,ηb, θd, eθ)‖ ≤ ξ1Φ1(x1) + ξ2Φ2(x2) (19)

with ξi ≥ 0. Suppose the matrix S ∈ R
2×2 given by

S =

[

γ1 − ν1ξ1 −ν1ξ2
0 γ2

]

(20)

is a M-matrix4. Then, x1 = 06 and x2 = 02 are globally

uniformly asymptotically stable equilibrium points of the

system (15).

Proof. The nominal system (16) has an unique equilibrium

point x1 = 06 since it is a linear system with an associated

Hurwitz state matrix A1 ∈ R
6×6 given by

A1 =

[

O3 I3

−Kp −Kd

]

,

where On, In ∈ R
n×n are zero and identity matrices of

proper dimensions, respectively. Therefore, the following

function V1(x1) = (1/2)xT
1 P 1x1, is a Lyapunov func-

tion for (16), in which P 1 ∈ R
6×6 is a positive definite

symmetric matrix solving A1P 1 + P 1A
T

1 + Λ1 = O6,
for any positive definite symmetric matrix Λ1 ∈ R

6×6.

Inequalities (18) are then satisfied with [29]

γ1 = λΛ1
, ν1 = 2λP1

, Φ1(x1) = ‖x1‖,

where λ
×

and λ× denote the minimum and maximum

eigenvalues, respectively, of a squared matrix. In the same

way, the nominal system (15b) has an associated Hurwitx

state matrix A2 ∈ R
2×2

A2 =

[

0 1
−kp,θ −kd,θ

]

.

The following function V2(x2) = (1/2)xT
2 P 2x2, is a Lya-

puonov function for (15b), in which P 2 ∈ R
2×2 is a positive

definite symmetric matrix solving A2P 2 + P 2A
T

2 +Λ2 =
O2, for any postive definite symmetric matrix Λ2 ∈ R

2×2.

Inequalities (18) are then satisfied with

γ2 = λΛ2
, ν2 = 2λP2

, Φ2(x2) = ‖x2‖.

4A matrix is called a M-matrix if each off-diagonal element is less or at
least equal to zero and if each principal minor is positive [29].



In order to verify (19), the bounds for both the thrust u
and the perturbation term δ(ηb, θd, eθ) are provided. Taking

into account (9), (12), (17), the following bound holds

|u| = m‖p̈d + g −Kpep −Kdėp‖
≤ m(B + g) +m

√
2max{λKp

, λKd
}‖x1‖. (21)

Considering the components of the term δ(ηb, θd, eθ) in (11),

the following bounds can be verified

|δx| ≤ |eθ|, |δy| ≤ |eθ|, |δz| ≤ |eθ|, (22)

where | · | denotes the absolute value and in which the

following relationships

| sin(eθ/2)| ≤ |eθ/2|, | sin(a)| ≤ 1, | cos(a)| ≤ 1, (23)

with a = {θd − eθ/2, ψ, φ}, have been employed. Taking

into account (22) yields

‖δ(ηb, θd, eθ)‖ =
√

δ2x + δ2y + δ2z ≤
√
3|eθ|. (24)

Since the following inequalities holds

|eθ| ≤ ‖x2‖,
and taking into account (21) and (24), the following bound

of the perturbation term β1(u,m,ηb, θd, eθ) can be provided

‖β1‖ ≤
√
3(B + g +

√
2max{λKp

, λKd
}‖x1‖)‖x2‖

≤
√
3(B + g + χ

√
2max{λKp

, λKd
})‖x2‖, (25)

where it has been supposed that ‖x1‖ ≤ χ, with χ >
0 an arbitrary constant. Hence, taking into account (25),

inequality (19) is verified with

ξ1 = 0, ξ2 =
√
3(B + g + χ

√
2max{λKp

, λKd
}).

Matrix S in (20) is then equal to

S =

[

λΛ1
−2λP1

√
3(B + g + χ

√
2max{λKp

, λKd
})

0 λΛ2

]

,

which could be easily verified is a M-matrix for any value

of χ, that could be thus taken as χ = ∞ without putting

any restriction to x1 and then keeping global the whole

derivation.

Since the assumptions of the Theorem 1 has been verified,

the proof continues as in [29], and then x1 = 06 and x2 =
02 are globally uniformly asymptotically stable equilibrium

points of (15).

The other state variables of the birotor are now analysed.

Neglecting the Coriolis terms in (2b) and taking into ac-

count (4b) and (5) yield

φ̈ = − sin(eθ − θd)(Izτθsφ + Iyτψcφ)

IyIz cos(eθ − θd)
,

ψ̈ = (Izτθsφ + Iyτψcφ)/ (IyIz cos(eθ − θd)) ,

whose absolute values can be both bounded by

φ̈max = ψ̈max = (ρuIz|τθ|+cIy|u|)/(ρuIyIz| cos(eθ−θd)|),
where (5) and (23) have been considered. Then, it can

be noticed how the maximum roll and yaw accelerations

depend on the inertia and aerodynamic parameters, the thrust,

the applied pitch torque, the desired pitch and the related

error. Notice that the denominator is not a problem thanks

to Assumption 1. Moreover, since Theorem 1 holds, the

thrust is limited and the actuated torque is bounded as well,

even because there are saturations in the actuators, then

the accelerations are bounded. For a deep analysis, even

the Coriolis terms should be included, but the expressions

become cumbersome. Moreover, for the yaw and roll veloc-

ities similar consideration can be carried out, showing their

boundedness, but this is here omitted due to space limitation.

V. SIMULATIONS

The proposed control law has been derived starting from

the simplified dynamic model (2). However, the birotor is

continuously spinning around its vertical axis and some

aerodynamic effects become not so negligible. In order to

properly validate the controller, the more accurate dynamic

model (1) has been hence considered to simulate the be-

haviour of the aerial vehicle.

In the following simulations, the employed dynamic pa-

rameters have been retrieved by experiments performed

with off-the-shelf available quadrotors [22], [30]. In de-

tail, the chosen mass and the inertia are 1.2 kg and

diag(3.4, 3.4, 4.7)·10−3 kgm2, respectively. The parameters

in (4) are l = 0.21 m, ρu = 1.8 · 10−5 Ns2/rad2 and

c = 8 · 10−7 Nms2/rad2. The propeller’s inertia is Ip = 3.4 ·
10−5 kgm, and the term ga in (1b) for the birotor is given by

IpS(ω
b
b)e3(ω1+ω3). A saturation for the maximum speed of

the propellers wi has been set to 630 rad/s (about 6000 rpm).

The birotor at steady-state has a constant rotation speed of

about 7 rad/s around its vertical axis. The friction coefficients

in (1b) have been set to F o = diag(0, 0, 7 · 10−2) kgm2/s.

The gains of the controller have been tuned by trial and

error to Kp = diag(1.2, 1.2, 25), Kd = diag(1.6, 1.6, 8),
kp,θ = 25 and kd,θ = 50. The integral actions have been

put to diag(0.5, 0.5, 10) for the linear components and 1 for

the pitch control. The measurements and the control law are

retrieved and given to the system, respectively, at each 10 ms.

Three case studies are considered in the following. Other

case studies are included in the multimedia attachment.

Without loss of generality, each planned trajectory ends in

the origin of the Cartesian system Σi where the birotor

stays for a while to evaluate steady-state performance. In the

presented plots, the phase regarding the propellers turning-

off is neglected.

1) Case Study A: In this case study, a straight line

emergency landing trajectory is planned. Starting from pb =
[

1 1 1
]T

m in Σi, the birotor has to reach the origin of

the Cartesian system in 20 s. The initial and final velocities

and accelerations are put to zero. A seventh-order polynomial

has been employed for trajectory planning to guarantee the

above defined conditions. The birotor stays for other 30 s in

a steady-state condition.

Figs 3(a) and 3(b) show the time histories of the position

error norm and the pitch error. The visible small oscillations

are due to the continuous spinning of the birotor around its
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Fig. 3. Case study A. Diagonal emergency landing trajectory. The norm
error of the position and the pitch error are depicted in subfigures (a) and (b),
respectively. The uncontrolled state variables are shown in subfigures (c),
yaw angle velocity, and (d), roll angle. The commanded propeller velocities
are represented in subfigure (e) with the following legend: blue, propeller
1; red, propeller 3. The 3D Cartesian planned path is shown in blue in
subfigure (f), while the actual one is depicted in red.

vertical axis. The yaw angle velocity is depicted in Fig. 3(c),

where the steady-state value is reached in less than 1 s

(starting from a value of 3 rad/s). It might be possible to see

a relationship between the oscillations in the error plots and

the steady-state yaw velocity. Fixing the planned trajectory

and the gains, varying the aerodynamic parameters c and

ρu it is possible to modify (5) and hence the velocity in

Fig. 3(c). Moreover, Fig. 3(d) shows that the uncontrolled roll

angle remains limited. The commanded propeller velocities

are depicted in Fig. 3(e) where it is possible to notice that

their values do not saturate. The comparison between the

planned 3D path and the actual one is represented in Fig. 3(f).

2) Case Study B: The same planned trajectory of case

study A is employed but noise has been added to the mea-

surements signals so as to simulate typical issues which could

appear in the practice. In particular, a measurement white

noise has been added to position (variance: 49 · 10−6 m),

linear velocity (variance: 25·10−4 m/s), orientation (variance:

3 ·10−4 rad) and angular velocity (variance: 2.7 ·10−3 rad/s)

measurements signals. Moreover, initial roll and pitch angles

have been set to 4 degrees so as to simulate the case in which

the tolerant control is switched-on and the initial conditions

of both angles are reasonably nonzero.

The time histories are represented in Fig. 4. The stability

is preserved showing some robustness properties of the

developed control law. The uncontrolled variables remain
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Fig. 4. Case study B. Diagonal emergency landing trajectory with noise
in the measurement signals and nonzero initial conditions on roll and pitch
angles. The norm error of the position and the pitch error are depicted in
subfigures (a) and (b), respectively. The measured roll angle is depicted
in subfigure (c). The commanded propeller velocities are represented in
subfigure (d) in which blue is propeller 1 and red propeller 3.
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Fig. 5. Case study C. Emergency landing trajectory with the presence of an
obstacle. The norm error of the position and the pitch error are depicted in
subfigures (a) and (b), respectively. The uncontrolled state variables are
depicted in subfigures (c), yaw angle velocity, and (d), roll angle. The
commanded propeller velocities are represented in subfigure (e) whose
legend is: blue, propeller 1; red, propeller 3. The 3D Cartesian planned
path is shown in blue in subfigure (f), the actual one is depicted in red, and
the obstacle is represented with an asterisk.

bounded as well as the pitch and position errors.

3) Case Study C: In this case study, the presence of an

obstacle along the emergency landing trajectory has been



simulated. The planned trajectory is first a semi-circle and

then a vertical straight line towards the origin of the Cartesian

system Σi, in such a way to avoid an obstacle. The circular

path starts at the point p1 =
[

0.5 0.5 1
]T

m and it is

planned to pass through p2 =
[

0.5 0.5 0.5
]T

m and

p3 =
[

0.5 0.5 0
]T

m. Only half of this circle is followed.

The duration of the trajectory upon this semi-circle is 20 s.

Initial velocity and acceleration are set to zero, hence a

seventh order polynomial for arclength parameterization has

been employed. The vertical straight line lasts 25 s and the

vehicle remains 15 s in steady-state.

Position error norm and the pitch error are shown in

Figs 5(a) and 5(b), respectively. Yaw angle is depicted

in Fig. 5(c), while roll time history is represented in-

Fig. 5(d). The commanded propellers velocities are depicted

in Fig. 5(e) where it is possible to notice again that their

values do not saturate. The comparison between the planned

3D path and the actual one is represented in Fig. 5(f), where

it is shown the planned semi-circle, the vertical straight line

and the presence of the obstacle.

VI. CONCLUSION AND FUTURE WORK

A controller dealing with problems related to the failure

a quadrotor’s propeller has been designed. The proposed

solution considers to turn off also the motor on the same

quadrotor axis of the broken propeller. With the proposed

control law, the aerial vehicle can reach any point in the

Cartesian space dropping the possibility to control the yaw

angle. Any emergency landing trajectory can be then in

principle considered. Future work will be focused on exper-

imental evaluation and issues related to outdoor scenarios.
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