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Abstract: This paper presents an optimal trajectory planner for a robotic batting task . The specific case of a table tennis
game performed by a robot is considered. Given an estimation of the trajectory of the ball during the free flight,
the method addresses the determination of the paddle configuration (pose and velocity) to return the ball at a
desired position with a desired spin. The implemented algorithm takes into account the hybrid dynamic model
of the ball in free flight as well as the state transition at the impact (the reset map). An optimal trajectory that
minimizes the acceleration functional is generated for the paddle to reach the desired impact position, velocity
and orientation. Simulations of different case studies further bolster the approach along with a comparison
with state-of-the-art methods.

1 INTRODUCTION

Interest in robotic manipulation without grasping the
objects, i.e., nonprehensile manipulation, is recently
rising. The presence of unilateral constraints in-
creases the complexity in planning and control the
robot that has to dynamically drive the manipulated
object from the initial to the desired configuration.
Nevertheless, as highlighted by (Lynch and Mason,
1999), nonprehensile manipulation allows controlling
extra degrees of freedom. The workspace is thus
increased since the manipulated object can physi-
cally overcome the kinematic limitations of the end-
effector by continuously breaking and creating con-
tacts with the robot. Therefore, a nonprehensile ma-
nipulation task is in general complex, skillful and dex-
terous. Normally, it can be undertaken by splitting
the complex task in many simpler subtasks, usually
called primitives, such as rolling, sliding, throwing,
catching, pushing and batting. The latter is the one
addressed in this paper. Batting combines catching
and throwing in a single collision: a practical exam-
ple is given by the table tennis game. Such a task
requires so high velocities and precision that robotic
companies take it as an example to display the high
performances of their products. For instance, Kuka
has chosen the table tennis game to promote its wares
in a thrilling commercial spot (Kuka, 2014), showing

the potential abilities of robots. The Omron automa-
tion company has also broadcast a video showing its
parallel Delta robot playing table tennis and coaching
humans at CEATEC Japan 2015 exhibition, (Omron,
2015).

The robotic batting task can be tackled with differ-
ent approaches. From the artificial intelligence point
of view, for instance, the aim is to improve the per-
formance of the robot through experience, while also
dealing with temporal issues; from the planning and
control points of view, instead, accurate models are
researched and investigated for autonomous and fast
motion execution; from the perception side, finally,
fast and reliable measurements are requested. This
paper is focused on planning and control aspects, in-
herently considering the hybrid nature of the system
and real-time constraints.

Generally, a robotic system for a batting task (e.g.,
table tennis) should be provided by: a vision system
to track the motion of the ball, a method to estimate
the trajectory of the ball in free flight and its spin,
a decision system to choose the paddle configuration
to direct the ball towards the desired position on the
opposite court, and a trajectory planner for the motion
of the paddle.

The scope of this paper is to provide an optimal
trajectory planner for the paddle to return the ball to
the opposite court at a desired position with an im-



posed spin. At the same time, an improvement of
the decision system proposed by (Liu et al., 2012) to
choose the configuration of the paddle at the impact
time is here described. The proposed algorithm con-
sists of two main phases: the hybrid model solution,
computing the state of the paddle at the impact time
such that the control objective is satisfied, and the tra-
jectory optimization in SE(3), providing the angular
and linear trajectory of the paddle up to the impact
time.

The novelties introduced by this manuscript are
twofold.
• Firstly, in comparison to the state-of-the-art, the

proposed method improves the control accuracy
by considering a full aerodynamic model of the
ball, and taking into account drag and lift forces.
The computation time of the algorithm is also
fast enough to guarantee it can suitably be imple-
mented in real-time.

• Secondly, rigorous methods from calculus on
manifolds are borrowed to generate an optimal
trajectory on SE(3) for the paddle to strike the ball
at the impact time.

2 RELATED WORK

(Andersson, 1989a) describes a tracking system and
a trajectory generation for a table tennis robot player.
The method uses fifth-order polynomials to generate
a trajectory for the paddle intercepting the ball. The
architecture is designed so that the task level control
can monitor the torques of the robot during the move-
ments of the arm, and also adjust the trajectory while
the ball is in free flight. (Andersson, 1989b) shows
how the processing time of a stereo vision system
should be taken into account when it is applied to a
quickly changing operating environment. A table ten-
nis robot player prototype equipped with two levels
control system is described by (Acosta et al., 2003).
The objective of the lower level is to move the cen-
ter of the paddle to the right position to intercept the
ball. The high-level control defines instead the game
strategy. This is done by orienting the paddle to return
the ball to the desired position on the table. The pro-
totype is capable of returning balls with a good suc-
cess rate when their velocity is below 5 m/s and under
small spin effects. A high-speed trajectory planner is
described by (Senoo et al., 2006) and it is applied to
the batting task. The authors also consider the robot
dynamic model within their framework, and they rely
upon a 1kHz high-speed vision system. Nevertheless,
they do not go into details about the controller com-
putational efforts, and they use a simplified version

of the reset map in which the spin of the ball after
the impact is not considered. Spin is indeed relevant
for the table tennis game. Moreover, the trajectory
planner they use is based on polynomial primitives,
which has been demonstrated to demand high joint
accelerations. (Nakashima et al., 2010) show how to
obtain the linear and angular ball trajectory informa-
tion from the visual sensors. On the other hand, (Liu
et al., 2012) propose a control method for returning a
table tennis ball to a desired position with a desired
spin. The method determines the state of the paddle
employing the hybrid dynamic model of the ball in
free flight as well as the state transition at the impact.
In order to determine the control action, an approx-
imated aerodynamic model is considered, providing
a satisfactory but less accurate results. (Nakashima
et al., 2014) follow up the work of (Liu et al., 2012) by
focusing on the nonlinear aerodynamics solution. A
finite difference method and a linearization of the dis-
cretized model are employed to solve the two bound-
ary values problem so as to reduce the computational
time. However, they present fewer case studies than
(Liu et al., 2012), while the obtained results are not
so easy to reproduce due to a lack of implementation
details.

The artificial intelligence research community is
applying many learning techniques to the robotic ta-
ble tennis task. (Matsushima et al., 2005) describe
an approach to perform the table tennis task based
on learning. Some impressive table tennis games be-
tween two humanoid robots are performed using the
adaptive trajectory prediction developed by (Zhang
et al., 2012). This model involves an offline train-
ing of the parameters on the base of the recorded state
of the ball. Afterwards, the model parameters are on-
line adapted for estimation and prediction processes.
Other approaches reproduce the movements learned
from human demonstrations. (Mülling et al., 2010)
pursue trajectory generation for the robotic table ten-
nis task from a biomimetic point of view. In the ap-
proach introduced by (Mülling et al., 2013), the robot
first learns a set of elementary table tennis hitting
movements from a human table tennis teacher, and
then generalizes those movements in a wider range
of situations using a mixture of motor primitives ap-
proach. (Huang et al., 2013) propose an active learn-
ing approach where the initial parameters related to
the paddle are computed through a locally weighted
regression method. A simplified hitting scenario task
is implemented by (Oubbati et al., 2013), where a
robot arm hits a ball rolling on an inclined plane
placed in front of the robot. The authors propose a
model that autonomously generates and organizes se-
quences of timed actions. The timing of the move-



ments is controlled by nonlinear oscillators. Their ac-
tivation and deactivation are coordinated by a hierar-
chical neural dynamic architecture. (Yanlong et al.,
2015) find optimal striking points for a table tennis
robot. The choice is based on a reward function,
measuring how well the trajectory of the ball and the
movement of the paddle coincide. Given the striking
point, a stochastic policy over the reward is derived to
evaluate prospective striking points sampled from the
predicted rebound trajectory. In that approach, the re-
sulting learning method takes into account the amount
of experience data and its confidence.

Recently, researchers of aerial robotics have also
been interested in the batting problem. A control ap-
proach to juggle a ball between either a human and
a quadrotor or two quadrotors is showed by (Müller
et al., 2011). (Silva et al., 2015) tackle the task of
hitting a table tennis ball with a commercial drone.
The ball tracking relies only upon the onboard cam-
era and not upon an external motion capture system.
The estimation of the hitting point is performed us-
ing a variation of regularized kernel regression, where
samples are weighted according to their relevance to
the task. The decision phase determines the hitting
motion from a set of primitives learned from human
demonstrations. Finally, (Wei et al., 2015) present
a trajectory tracking control strategy for a ball jug-
gling task on a quadrotor, based on the subspace sta-
bilization approach. An optimal trajectory generation
method is adopted to obtain a dynamically feasible,
minimum jerk trajectory.

3 HYBRID DYNAMIC
MODELING

The hybrid dynamics of the ball consists of the free
flight aerodynamics and the impact reset map. The
former is modeled through Newton’s equations of
motion, while the latter is a reset of the state, updated
according to the impact detection. In order to ana-
lytically model the ball dynamics, the work by (Liu
et al., 2012) is considered. That work is supported
by simulations and experiments in several case stud-
ies and follows up a deep study on the hybrid dynamic
modeling of the table tennis game, (Nakashima et al.,
2010). On the other hand, a first-order dynamics for
the paddle is here introduced, assuming that it is pos-
sible to directly control its velocity.

It is assumed that a point contact occurs between
the ball and the paddle during the impact. Moreover,
as long as the paddle is made of rubber, the rebound
in the direction normal to the paddle’s plane does not
affect the motion of the ball in the other directions.

Figure 1: Ball and paddle coordinate systems.

Finally, since the mass of the paddle is usually bigger
than the mass of the ball, only the velocity of the ball
is considered to be affected by the impact.

According to Figure 1, let ΣW be the fixed world
frame, ΣP be the frame placed at the center of the
paddle, where the z-axis is the outward normal, and
ΣB be the frame placed at the center of the ball. Let
pB =

[
pBx pBy pBz

]T ∈ R3 be the position of the
ball, vB =

[
vBx vBy vBz

]T ∈ R3 be the velocity of
the ball, ωB =

[
ωBx ωBy ωBz

]T ∈ R3 be the spin
of the ball, assumed constant during the free flight,
pP =

[
pPx pPy pPz

]T ∈ R3 be the position of the
paddle, vP =

[
vPx vPy vPz

]T ∈ R3 be the velocity
of the paddle, ωP =

[
ωPx ωPy ωPz

]T ∈ R3 be the
angular velocity of the paddle, all expressed in ΣW .
Finally, let RP ∈ SO(3) be the rotation matrix of ΣP
with respect to ΣW .

The continuous ball and paddle dynamics are
given by

ṗB = vB, (1a)
v̇B =−g− kd ||vB||vB + klS(ωB)vB, (1b)
ṗP = vP, (1c)

ṘP = RPS(ωP), (1d)

where g =
[
0 0 g

]T is the gravity acceleration,
||·|| is the Euclidean norm, S(·) ∈ R3×3 is the skew-
symmetric matrix operator. kd and kl are drag and lift
parameters, respectively, and they are typically mod-
elled as

kd = kd(vB,ωB) =
ρπr2(ad +bd f (vB,ωB))

2m
, (2a)

kl = kl(vB,ωB) =
ρ4πr3(al +bl f (vB,ωB))

m
, (2b)

with

f (vB,ωB) =
1√

1+
(v2

Bx+v2
Bx)ω

2
Bz

(vBxωBy−vByωBx)2

. (3)

The meaning of other parameters, like ρ, r, ad , al ,
bd , bl , and their numerical values employed in sim-
ulations are depicted in Section 6, Table 1, where a



standard table tennis ball and a rubber paddle have
been considered.

Since the paddle can modify the ball velocity only
at the impact time, the control action, represented by
the paddle linear and angular velocities, enters the ball
dynamics through the reset map. Assuming that the
superscripts − and + represent the state before and
after the impact time, respectively, the rebound equa-
tions are given by

v+B = vP +RPAvvRT
P(v
−
B −vP)+RPAvωRT

Pω
−
B ,
(4a)

ω
+
B = RPAωvRT

P(v
−
B −vP)+RPAωωRT

Pω
−
B , (4b)

where the matrices of rebound coefficients are defined
as

Avv = diag(1− ev,1− ev,er),Avω =−evrS(e3),
(5)

Aωv = eωrS(e3),Aωω = diag(1− eωr2,1− eωr2,1),

where ei ∈R3 is the unit vector along the ith-axis, i =
{1,2,3}, while ev and ew are described in Section 6,
Table 1.

Notice that (1b) takes into account the spin of the
ball: the magnitude of the drag and lift forces and
their coefficients change according to the spin, influ-
encing the trajectory of the ball. The values of the
components of ωB determine the kind of the spin,
namely: backspin, if ωBy > 0; topspin, if ωBy < 0;
and sidespin, if ωBz > 0. The effect of the spin of the
ball in a table tennis game is not negligible and makes
a difference between a serious table tennis player and
a novice one. Serious players use spin on both their
serves and rallying shots to control the ball and to
force errors from their opponents.

4 BATTING PROBLEM
SOLUTION

In order to accomplish the task of hitting the table ten-
nis ball and directing it to a desired position on the
opposite court with a desired spin, the paddle must
intercept the ball with a certain orientation and ve-
locity. These inputs are computed employing the dy-
namics of the ball in different steps. Firstly, the im-
pact position pi

B =
[
pi

Bx pi
By pi

Bz
]T ∈ R3 and ve-

locity v−B are predicted by assigning the impact time ti,
and the initial position p0

B =
[
p0

Bx p0
By p0

Bz
]T ∈ R3

and velocity v0
B =

[
v0

Bx v0
By v0

Bz
]T ∈ R3 of the ball

produced by the opponent’s hit. This step is accom-
plished solving forward the model (1a)-(1b). Once

Figure 2: Scheme of the steps to generate the paddle trajec-
tory.

the impact position is predicted, assigning the de-
sired position of the ball on the opposite court pd

B =[
pd

Bx pd
By pd

Bz
]T ∈ R3, the desired arrival time td ,

and the desired spin of the ball after the impact,
ω
+d
B ∈ R3, solving backward (1a)-(1b) yields the re-

quired velocity of the ball after the impact v+B ∈ R3.
Afterwards, the orientation Ri

P and velocity vi
P of the

paddle at the impact time may be retrieved, through
the reset map (4), once the spin and velocity of the
ball before and after the impact are assigned. Lastly,
the paddle desired impact configuration is the input
of the optimal trajectory planner described in the next
section. A scheme of the steps required to generate a
suitable paddle trajectory is showed in Figure 2.

4.1 Aerodynamic Model Solution

In order to predict the impact state of the ball and
to compute the post-impact velocity of the ball such
that it reaches the goal, the equations (1a) and (1b) of
the aerodynamic model are employed. However, this
model is nonlinear and coupled, thus an analytic so-
lution does not exist. In the literature (Acosta et al.,
2003), (Müller et al., 2011) and others have consid-
ered a linearized model, or a simplified one for control



purposes to reduce the computations.
The following simplified model of (1a)-(1b) is em-

ployed by (Liu et al., 2012) since it has an analytic
solution

v̇Bx =−cd |vBx|vBx, ṗBx = vBx, (6a)
v̇By =−cd |vBy|vBy, ṗBy = vBy, (6b)
v̇Bz =−g, ṗBz = vBz, (6c)

where cd is a constant drag parameter. In this paper,
instead, a numerical solver suitable for real-time pro-
cess is employed to solve the full aerodynamic model.
The proposed algorithm consists in the two minimiza-
tion problems shown below.

4.1.1 Aerodynamic Forward Solution

The first problem has the aim to predict the impact
position and velocity of the ball. By assigning the im-
pact time, the ball impact state is predicted according
to the initial position and velocity of the ball produced
by the opponent’s hit. In detail, the algorithm solves
the following minimization problem

min
pi

B,v
−
B

∣∣∣∣∣
∣∣∣∣∣
[

p̃0
B

ṽ0
B

]
−
[

p0
B

v0
B

]∣∣∣∣∣
∣∣∣∣∣
2

, (7)

where pi
B and v−B are the optimizing variables, p̃0

B =
p̃0

B(p
i
B,v
−
B ) and ṽ0

B = ṽ0
B(p

i
B,v
−
B ) are the position and

the velocity of the ball at the initial time, respec-
tively, numerically obtained by backward integrat-
ing (1a) and (1b) starting from the optimization vari-
ables pi

B,v
−
B at time ti. In practice, the minimiza-

tion problem (7) is solved through the Levembert-
Marquardt’s algorithm that is well suited for real-
time computations according to (Lippiello and Rug-
giero, 2012) and (Cigliano et al., 2015). To speed
up the convergence of the nonlinear estimation algo-
rithm (7), the initial guess for pi

B and v−B is calculated
analytically from (6). The work by (Liu et al., 2012)
assumes instead that the impact position of the pad-
dle with the ball is a-priori known. Such assumption
is quite restrictive: hence, here the determination of
such impact position is addressed at run-time.

4.1.2 Aerodynamic Backward Solution

In order to compute the velocity v+B of the ball after
the impact such that it reaches the goal position pd

B
at the time td , the following minimization problem is
solved

min
v+B
‖p̃d

B(v
+
B )−pd

B‖2, (8)

where v+B is the optimization variable and p̃d
B(v

+
B ) is

the position of the ball at time td numerically obtained

by forward integrating (1a) and (1b) starting from pi
B

at ti computed in Section 4.1.1. The result of the min-
imization problem is the value of the velocity of the
ball after impact so that it reaches the desired posi-
tion on the opposite court at td as close as possible.
The initial guess for v+B is calculated analytically from
(6). This choice of the initial condition, together with
the use of the complete aerodynamic model (1a)-(1b)
in (8) to compute p̃d

B(v
+
B ), guarantees that the value

of v+B found by solving (8) is more precise than the
one provided by (6), since the latter employs only a
simplified model.

4.2 Reset Map Solution

Given the pre-impact velocity of the ball v−B as in
Section 4.1.1, and the post-impact one v+B as in Sec-
tion 4.1.2, the paddle configuration can be now com-
puted. Consider the YX-Euler angles (θ,φ) as a para-
metric representation of the orientation of the paddle,
with φ ∈ [−π/2,π/2] and θ ∈ [0,π], and define ṽ =[
ṽx ṽy ṽz

]T
= v+B −v−B and ω̃=

[
ω̃x ω̃y ω̃z

]T
=

ω
+d
B −ω

−
B . The velocity and orientation of the paddle

at the impact time are respectively computed through

vi
P = v−B +Ri

P(I3−Avv)
−1(RiT

P ṽ−Avωω
−
B ), (9a)

Ri
P = RY (θ)RX (φ), (9b)

where I3 ∈R3×3 is the identity matrix, Ri(·) ∈ SO(3)
is the elementary rotation matrix with i= {X ,Y}, rep-
resenting the rotation of an angle around the i-axis,
and θ,φ are such that

ṽz cosφsinθ− ṽx cosφcosθ = ω̃y, (10a)

asin2
φ−2bsinφ+ c = 0, (10b)

where a = e2
c ||ṽ||2, b = ece2S(ṽ)ω̃, c = (e1 +

e3)||ω̃||2−ece2||ṽ||2, and ec = eωr/ev. Notice that the
ball motions have to satisfy the proposition given by
(Liu et al., 2012) (Proposition 1, Section III-A) to
guarantee the existence of a solution.

5 OPTIMAL PADDLE
TRAJECTORY PLANNING

In this section, the problem of generating an optimal
trajectory for the end-effector of the paddle is tackled.
The control design procedure from the previous sec-
tion provides a desired pose and velocity of the pad-
dle and corresponding desired time instant at which to
achieve these. There are many different paths that the
paddle can take to fulfill these requirements. A more
judicious method would be to plan this path such that



a certain objective function is optimized. Differential
geometry offers a way to extend the notion of differ-
entiation from Euclidean space to an arbitrary mani-
fold. Primarily, a short background about differential
geometry is here reported, consequently, the theory
about the minimum acceleration planner for the pad-
dle is described.

5.1 Differential Geometry Background

In this context, trajectories for which it is possible to
specify the initial and final position and velocity of the
motion are of interest. Note that, the motion may be
specified in either the joint space, which is a torus, or
the task space, which is the special Euclidean group
of three-dimensions over the reals. At this stage, it
is assumed that the path is generated on an arbitrary
Riemannian manifold M (do Carmo, 1992). Let γ :
(a,b) −→ M be the path, and ⟪·, ·⟫ be the metric on
M. Let f : (−ε,ε)× (a,b)−→M be a proper variation
of γ; that is, it satisfies

f (0, t) = γ(t), ∀t ∈ (a,b)
f (s,a) = γ(a), and f (s,b) = γ(b)

Two vector fields are relevant along the path γ. The
first one is called the variation field and is defined by

Sγ(s) :=
∂ f (s, t)

∂s
=

d ft(s)
ds

The second vector field of importance is the velocity
vector field of γ, given by

Vγ(s) :=
dγ(t)

dt
=

∂ f (s, t)
∂t

=
d fs(t)

dt
In order to perform calculus on the curves of this Rie-
mannian manifold, the Levi-Civita connection ∇ is in-
troduced. Given a curve γ(t) and a connection, there
exists a covariant derivative, which is denoted by D

dt .
The Levi-Civita connection satisfies the following

compatibility and symmetry conditions, presented in
this order:

(11a)
d
dt
⟪U,W⟫ = ⟪DU

dt
,W⟫+ ⟪U,

DW
dt
⟫

(11b)∇XY − ∇Y X = [X ,Y ]

for any vector fields U and W , along the differentiable
curve γ, and any vector field X ,Y ∈ X(M).

The curvature R of a Riemannian manifold M is
a correspondence that associates to every pair X ,Y ∈
X(M) a mapping R(X ,Y ) : X(M)−→ X(M) given by

R(X ,Y )Z = ∇Y ∇X Z − ∇X ∇Y Z + ∇[X ,Y ]Z,
where Z ∈ X(M). Some of the properties of the cur-
vature that are going to be used are

D
∂t

D
∂s

X − D
∂s

D
∂t

X = R
(

∂ f
∂s

,
∂ f
∂t

)
X ,

〈R(X ,Y )Z, T 〉 = 〈R(Z,Y )X ,Y 〉.

5.2 Minimum Acceleration Planning

In this work, the acceleration functional in SE(3) is
minimized by following theory developed in (Zefran
et al., 1998). The acceleration functional to be mini-
mized by the choice of the path to be followed by the
paddle is

(12)J =
∫ tb

ta
〈∇V V,∇V V〉dt,

where [ta, tb] is the time interval over which the trajec-
tory is planned, V = (ωP,vP) ∈ se(3) is the velocity
of the paddle along a particular path, and ∇ denotes
the Levi-Civita affine connection derived from a par-
ticular choice of metric on SE(3). This latter object
allows one to perform differentiation along curves on
any smooth manifold. In particular, in (12), it is used
to express the inner product of the acceleration of a
particular path with itself, which may also be identi-
fied by the squared norm of the acceleration of this
path at a particular point. If the metric on SE(3) is
taken in the form

W =

[
αI3 0
0 βI3

]
where α,β > 0 so that for T1,T2 ∈ se(3), then
⟪T1,T2⟫ = t>1 Wt2 with t1 and t2 the 6× 1 compo-
nents of T1 and T2, then the Levi-Civita connection
can be computed to be

∇XY =

{
d
dt

ωy +
1
2

ωx × ωy,
dvy

dt
+ ωx × vy

}
where ωx and ωy are the angular components and vx
and vy are the linear components of the rigid body
velocities X ∈ se(3) and Y ∈ se(3), respectively.

Equating the first variation of the cost func-
tional (12) to zero provides necessary conditions for
the path to be a minimizer of the acceleration func-
tional. This necessary condition is a fourth order
boundary problem given by

(13)∇V ∇V ∇V V + R(V,∇V V)V = 0,

where R is the curvature tensor associated with the
Levi-Civita affine connection (do Carmo, 1992). This
condition can be written down in terms of the angular
and linear velocity components of the paddle as

(14a)ω
(3)
P + ωP × ω̈P = 0,

(14b)p(4)
P = 0,

where (·)(n) denotes the nth derivative of (·). These or-
dinary differential equations turn into a well-defined
boundary value problem with the addition of the



boundary conditions. For the differential equa-
tions (14a) governing the optimal rotational path, the
boundary conditions are

(15a)RP(ta) = R0
P ωP(ta) = ω

0
P,

(15b)RP(tb) = Ri
P, ωP(tb) = ω

i
P,

where R0
P and ω0

P are the initial orientation and angu-
lar velocity of the paddle, respectively. Similarly for
the differential equations (14b) governing the optimal
translational path of the paddle, the boundary condi-
tions are

(16a)pP(ta) = p0
P vP(ta) = v0

P,

(16b)pP(tb) = pi
P vP(tb) = vi

P,

In practice, the optimal translational motion of the
paddle is found by merely solving a small scale linear
system of equations obtained by (14b) and (16). As
a result, it may be performed very fast. On the other
hand, in order to determine the rotary motion of the
paddle, a boundary value problem needs to be solved.
The boundary value problem is time invariant and non
linear, but the forcing function (14a) is hardly compli-
cated. In Section 6, the computational burden of the
proposed optimal paddle trajectory planner is deeply
analysed.

6 SIMULATIONS

This section shows the results obtained in simulation.
Section 6.1 shows an exemplar simulation of the pro-
posed algorithm (see Figure 2). The comparative case
studies in Section 6.2 show instead the results of the
comparison between the proposed solution to com-
pute the ball post-impact velocity (see Section 4.1.2)
and the one used in (Liu et al., 2012). Lastly, in Sec-
tion 6.3 the optimal planner simulations are focused
on the paddle motion to highlight the properties of
the planned trajectories.

The model parameters considered to simulate the
physical system (1) and (4) are listed in Table 1. A
procedure to identify the aerodynamic and rebound
parameters is described by (Nonomura et al., 2010).
The simulations described below are implemented
in the Matlab environment: the ode45 solver, with
the events option, is used for the dynamic model;
the lsqcurve f it function, based on the Levembert-
Marquardt’s algorithm, is employed to find the aero-
dynamic forward and backward solutions; the bvp4c
function is used for the minimum acceleration plan-
ner.

Table 1: Dynamic parameters.

r Ball radius 2e-2 m
rp Paddle radius 1.5e-1 m
m Ball mass 2.7e-3 kg
ρ Air density (25◦C) 1.184 kg/m3

g Gravity constant 9.81 m/s2

ev Velocity rebound coefficient 6.15e-1
eω Spin rebound coefficient 2.57e3
er Linear rebound coefficient 7.3e-1
ad Drag coefficient 5.05e-1
bd Drag coefficient 6.5e-2
al Lift coefficient 9.4e-2
bl Lift coefficient -2.6e-2
cd Simplified drag coefficient 5.4e-1

6.1 Batting Task Simulation

In this case study the proposed algorithm, depicted in
Figure 2, is simulated. Then, supposing to have at dis-
position the estimated trajectory of the ball from the
visual system and the desired final configuration of
the ball, it is possible to compute the optimal paddle
trajectory to achieve the batting task through the two
minimization problems (7) and (8), and the solution
of (9) and (14).

Therefore, the visual measurement system is as-
sumed to provide the initial position, linear and an-
gular velocity produced by the opponent’s hit, re-
spectively correspondent to p0

B =
[
1.2 0.7 0.9

]
m,

v0
B =

[
−3 0.2 1.5

]
m/s and ω

−
B =

[
0,150,0

]
. The

impact time is fixed to ti = 0.5 s and the desired final
position of the ball on the opposite court is assigned
as pd

B =
[
1.9 0.8 0.02

]
m. The desired flight time

and post-impact ball spin are assumed to be respec-
tively td = 0.6 s and

[
ω
+
By,ω

+
Bz
]
=
[
−100,0

]
rad/s.

The third component of the desired post-impact spin
of the ball, ω

+d
B , is computed from the equation

ṽT
B ω̃B = 0. It is remarkable that, since the goal is

achieved when the ball hits the table on the opposite
court, the final goal time is evaluated when the third
component of the position vector of the ball is equal
to the radius of the ball.

In this case study, the aerodynamic forward solu-
tion of (7) is pi

B =
[
−0.1394 0.7892 0.4820

]T m
and v−B =

[
−2.4156 0.1570 −2.9788

]T m/s, the
aerodynamic backward solution of (8) is v+B =[
4.0516 0.0214 2.0984

]
m/s, while the solution of

reset map (9) is

Ri
p =

 0.8614 0.0054 0.5080
0 0.9999 −0.0106

−0.5080 0.0092 0.8613


and vi

P =
[
1.4388 0.0220 −0.1131

]T m/s. The



Table 2: Ball pre-impact configuration.

v−B [m/s] ω
−
B [rad/s]

1
[
−2.5,0,0.1

] [
0,150,0

]
2

[
−4.5,0,0.3

] [
0,−150,0

]
3

[
−2.75,−0.8,−0.5

] [
0,−50,150

]
optimal trajectory is consequently planned solv-
ing (14).

The time histories given by the simulation of this
case study are depicted in Figure 3. In particular, the
3D trajectories of both the ball and the paddle are rep-
resented in Figure 3(a). The solid line represents the
motion of the ball, while the trajectory for the paddle
is depicted by a dashed line. The blue cross represents
the final desired position of the ball pd

B, while the blue
circle is the initial position of the paddle p0

P. Assum-
ing that ∆ti is the difference between the planned and
the actual impact time, ∆pi

B the Euclidean norm of
the difference between the planned impact position of
the ball and the actual one, ∆td the difference between
the desired final time and the actual one, ∆pd

B the Eu-
clidean norm of the difference between the desired
position of the ball pd

B and the actual one. In this case
study, the time and position impact and final errors
are respectively ∆ti = 4.5e−3 s, ∆pi

B = 1.73e−2 m,
∆td = 1.9e− 3 s and ∆pd

B = 9.4e− 3 m. Therefore,
the average of the errors is acceptably small for a ta-
ble tennis robot.

A video can be found in (Serra et al., 2016) which
shows the simulation of this case study performed in
Matlab, while visualization employs the V-Rep envi-
ronment. A 21 degree of freedom humanoid robot is
used for the simulation. The 7 degree of freedom right
arm is equipped with a parallel jaw gripper, which
firmly grasps the paddle.

6.2 Comparative Case Studies

The purpose of this subsection is to compare the
proposed planning method with the state-of-the-art
approach introduced by (Liu et al., 2012), which
presents several case studies, with ample implemen-
tation details, allowing a fair and critical compari-
son. Three case studies are considered, respectively:
backspin, topspin and sidespin. In order to obtain
a fair comparison with the work (Liu et al., 2012),
the first step of the proposed algorithm is not taken
into account, i.e. the ball pre-impact state is as-
sumed to be known a-priori and then the minimiza-
tion problem (7) is not solved. As a matter of fact,
in each of these cases, the impact position of both
the ball and the paddle is assigned to be pi

P = pi
B =[

−0.15 0.70 0.25
]

m, while the linear and angu-
lar velocity of the ball before the impact for the back-

(a) 3D trajectories of the ball, solid line, and the paddle,
dashed line, obtained with the proposed method. The
blue circle represents the initial position of the paddle,
while the blue cross is the desired final position of the
ball.

(b) From the top to the bottom: magnitude of the
planned linear and angular velocity of the paddle, evalu-
ation of the acceleration functional J in (12) between the
motion plan devised using the Euler angles and the op-
timal proposed one. The red star represents the impact
time ti.

Figure 3: Batting Task Simulation.

spin (1), topspin (2) and sidespin (3) case studies are
shown in Table 2. On the other hand, the impact time
is ti = 0.1 s, the desired goal position for the ball is
pd

B =
[
2.055 0.7680 0.02

]
m, while the desired fi-

nal time is td = 0.6 s. Moreover, the desired spin
of the ball after the impact

[
ω
+
By,ω

+
Bz
]

is set for the
first, second and third case studies to

[
−100,0

]
rad/s,[

100,0
]

rad/s and
[
0,−100

]
rad/s respectively, ac-

cording to the setting of the work described in (Liu
et al., 2012).

The results obtained for each of the three case
studies are depicted by their time histories in Fig-
ures 4, 5 and 6, respectively. In particular, the 3D
trajectories of both the ball and the paddle are rep-
resented in Figures 4(a), 5(a) and 6(a), respectively.
The solid line represents the ball, while the paddle
is depicted by a dashed line. The time histories of
each component pBx, pBy and pBz related to the tra-
jectory of the ball are represented in Figures 4(b), 5(b)



Table 3: Comparative case study 1 - Numerical results.

∆ti [s] ∆pi
B [m] ∆td [s] ∆pd

B [m] tc[ms]
A 5.2e-3 1.3e-2 1.12e-2 5.47e-2 9e-3
B 5.14e-3 1.29e-2 4.88e-3 6.47e-4 21

Table 4: Comparative case study 2 - Numerical results.

∆ti [s] ∆pi
B [m] ∆td [s] ∆pd

B [m] tc[ms]
A 3.86e-3 1.74e-2 4.26e-2 1.3e-1 8e-3
B 4.01e-3 1.81e-2 7.34e-4 3.29e-2 21

Table 5: Comparative case study 3 - Numerical results.

∆ti [s] ∆pi
B [m] ∆td [s] ∆pd

B [m] tc[ms]
A 4.88e-3 1.42e-2 2.12e-2 1.03e-1 1e-2
B 4.86e-3 1.41e-2 9.02e-4 1.94e-2 25

and 6(b), respectively, for both of the compared meth-
ods: the solid line graphs the solution obtained by ex-
ploiting the method described by (Liu et al., 2012),
while the dashed curve illustrates the trajectory of the
ball obtained using the proposed method. The figures
indicate that the proposed method yields an improve-
ment over (Liu et al., 2012) by directing the ball closer
to the goal configuration.

The quantitative results for the backspin, topspin
and sidespin case studies are shown in Tables 3, 4
and 5, where A represents the results obtained em-
ploying the Liu’s planner, whereas B the results ob-
tained employing our planner. The first two columns
of each of the aforementioned tables refer to the preci-
sion of the impact. In both the approaches the results
are very similar. The gist of the comparison may be
captured by analyzing the last three columns of these
tables. The final time error is reduced by about an
order of magnitude. The Euclidean norm of the er-
ror between the actual final position of the ball and
the desired one is smaller by about an order of mag-
nitude, too.

Unfortunately, experiments are not yet available
for the proposed approach since the practical set-up
is under development. However, the switching from
Matlab into C++ language is already accomplished.
The computational time tc required to solve at run-
time both the simplified aerodynamic model and the
complete one is show in the last column of Tables 3,
4 and 5. The code is running on a computer with
specifications Intel Core 2 Quad CPU Q6600 @ 2.4
GHz, Ubuntu 12.04 32-bit operating system, includ-
ing the Levenberg-Marquardt C++ library (Lourakis,
2004). The same numerical results obtained with
Matlab have been retrieved, but the evaluation of the
computation burden is more precise, in the sense that
it is the one that will appear during the practical exper-
iments. To elaborate, compared to (Liu et al., 2012),
the prosented method increases the accuracy of the fi-

(a) 3D trajectories of the ball, solid line, and the paddle,
dashed line, obtained with the proposed method. The
blue circle represents the initial position of the paddle,
while the blue cross is the desired final position of the
ball.

(b) Comparison between ball trajectories: the solution
given by analytically solving (6) is depicted through a
solid line, the proposed one is instead represented with
a dashed line. The blue cross represents the desired final
position of the ball.

(c) From the top to the bottom: magnitude of the
planned linear and angular velocity of the paddle, evalu-
ation of the acceleration functional J in (12) between the
motion plan devised using the Euler angles and the op-
timal proposed one. The red star represents the impact
time ti.

Figure 4: Comparative case study 1.

nal desired position an order of magnitude for topspin
and sidespin cases and two orders of magnitude for
the backspin case. Furthermore, the C++ implemen-



(a) 3D trajectories of the ball, solid line, and the paddle,
dashed line, obtained with the proposed method. The
blue circle represents the initial position of the paddle,
while the blue cross is the desired final position of the
ball.

(b) Comparison between ball trajectories: the solution
given by analytically solving (6) is depicted through a
solid line, the proposed one is instead represented with
a dashed line. The blue cross represents the desired final
position of the ball.

(c) From the top to the bottom: magnitude of the
planned linear and angular velocity of the paddle, evalu-
ation of the acceleration functional J in (12) between the
motion plan devised using the Euler angles and the op-
timal proposed one. The red star represents the impact
time ti.

Figure 5: Comparative case study 2.

tation of the proposed nonlinear minimization prob-
lem, which considers the full aerodynamic model of
the ball, takes about 20 ms to give the desired veloc-

(a) 3D trajectories of the ball, solid line, and the paddle,
dashed line, obtained with the proposed method. The
blue circle represents the initial position of the paddle,
while the blue cross is the desired final position of the
ball.

(b) Comparison between ball trajectories: the solution
given by analytically solving (6) is depicted through a
solid line, the proposed one is instead represented with
a dashed line. The blue cross represents the desired final
position of the ball.

(c) From the top to the bottom: magnitude of the
planned linear and angular velocity of the paddle, evalu-
ation of the acceleration functional J in (12) between the
motion plan devised using the Euler angles and the op-
timal proposed one. The red star represents the impact
time ti.

Figure 6: Comparative case study 3.

ity of the ball after the impact. This duration is grater
than what is shown in (Liu et al., 2012), but it is still
acceptable for real-time implementation.



6.3 Optimal Planner Simulations

For each case study, the paddle trajectory is planned
over the time interval [ta, tb] = [t0, ti− ε], where ε =
0.02 s. The paddle trajectory is supposed to start still,
from the origin of the world frame, with initial ori-
entation R0

P = RY (π/2)RX (0), without loss of gener-
ality. According to the proposed algorithm, the posi-
tion, orientation and linear velocity of the paddle at
the impact time are given by the ball reset map solu-
tion. The Euclidean norm of the linear and angular
velocities of the paddle, planned with the minimum
total acceleration, are represented by the top and mid-
dle plots in Figures 4(c), 5(c), 6(c) and 3(b), for each
simulation.

Once the desired orientation is achieved with zero
angular velocity, the angular acceleration is set to
zero so that the orientation of the paddle remains the
same until the impact occurs. As long as one has
the control authority at the torque level, this con-
trol strategy, which switches only once, is straight-
forward to implement. Once the impact has occurred
at time ti, notice that the linear velocity of the pad-
dle is exponentially dissipated by the following term
exp(−µ(t− (ti +δ))), where t is the time, µ = 50 and
δ = 0.02, so that the paddle stops.

The optimal trajectory discovered by solving the
two-point boundary value problem (14) indeed min-
imizes the L2 norm of the total acceleration of the
paddle. So as to illustrate this fact, another typical
trajectory for the orientation of the paddle is planned.
This alternative plan constructs a third-order polyno-
mial function for the Euler angles, φ and θ, such that
the initial and final orientation and angular velocity
constraints are satisfied. Both the angular acceler-
ation that corresponds to this motion plan and the
acceleration functional J in (12) are then computed.
For each case study, the bottom time histories of Fig-
ures 3(b), 4(c), 5(c) and 6(c), depict the value of the
difference of the acceleration functional between the
motion plan devised using the Euler angles and the
optimal motion plan. Notice that the value of this cost
functional is positive at t = ti, indicating that the opti-
mal motion plan indeed yields a smaller value of the
acceleration functional than a typical plan performed
using polynomials on the Euler angles, φ and θ.

About the computational burden of the proposed
planner, the code has been translated in C++ and eval-
uated on the same PC as in Section 6.2. The boundary
value problem for the optimal paddle trajectory plan-
ner takes less than 30ms. To sum up, after the high-
speed vision system gives a stable trajectory estima-
tion of the ball coming towards our court, it is possi-
ble to compute the desired trajectory for the paddle in
50ms (20ms + 30ms), hitting the ball with a proper ve-

locity to redirect it to the opposite court at the desired
position with the imposed spin. Another possibility
is that, once the desired impact position, velocity and
orientation is determined, one can immediately start
controlling the paddle to achieve these via a PD con-
troller, and revert to a trajectory following controller
once the optimal trajectory is available and is period-
ically updated.

7 CONCLUSIONS AND FUTURE
WORK

The presented paper proposes an algorithm to plan a
robotic batting task. In particular, a table tennis game
performed by a robot has been considered. The pro-
posed solution improves the control accuracy while
dealing with the real-time constraint. A coordinate-
free, smooth, optimal motion plan, that minimizes the
acceleration functional of the paddle, is proposed. As
future work, the proposed technique is planned to be
validated through experimental studies. Different op-
timal planners which make use of the dynamic model
of the robotic manipulator grasping the paddle may
also be considered.
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