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Optimal control problem

m Linear constraints:

Methodology and results

m Nonlinear structure of the momentum dynamics is considered.

m Ground contact forces are separated from the other external = (1,2) Dynamic and kinematic feasibility of motion;
forces and torques. = (3,4) Simple bounds on the external wrench.
m Kinematic and dynamic feasibility constraints are enforced in m Objective function:
each iteration of the Newton method. = (1) Smoothness of motion of the center of mass;
m Simulations of walking up and down stairs with hand supports = (2) Reference for the height of the center of mass;
demonstrate the validity of the approach. = (3) Reference for the center of pressure;
= (4,5) Minimum external wrench.
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m [ he center of pressure is represented as:
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0<¢ <6 <¢, 0<¢ <6<,

m So we have:
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m Bounds are updated at each iteration from the previous iterate: m Center of pressure and center of mass within 107 m of their

(1) ) G—1) _ optimal values in just 1 iteration.
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m Solutions are obtained in approximately 8 ms - average time
over the whole trajectory generation.
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