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ABSTRACT

In this paper we propose a GIS-based methodology, using optical and SAR remote sensing data, together with
more conventional sources, for the detection of small cattle breeding areas, potentially responsible of hazardous
littering. This specific environmental problem is very relevant for the Caserta area, in southern Italy, where
many small buffalo breeding farms exist which are not even known to the productive activity register, and are
not easily monitored and surveyed. Experiments on a test area, with available specific ground truth, prove that
the proposed systems is characterized by very large detection probability and negligible false alarm rate.
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1. INTRODUCTION

The use of multi-sensors and multi-temporal data has emerged as a very successful approach for many remote-
sensing problems.1,2 However, the integration of such data with other complex data, that are difficult to represent
verbally or sometimes even visually, plays a key role in the analysis of complex phenomena. For these purposes,
the use of Geographic Information Systems (GIS) is steadily increasing. In these systems, geographic data
describing features on the earth’s surface are managed, displayed, manipulated, and analyzed. Moreover, the use
of GIS together with digital remote sensing makes it possible to rapidly collect and analyze spatial data, yielding
a powerful set of tools for the analysis of the environment.

Some related works can be found in the literature. A GIS-assisted system for hazardous waste site monitoring
based on the integration of multispectral and lidar data with numerous types of thematic information has
been proposed.3 Other papers4,5 demonstrate the potential of multi-temporal Landsat images for landfill site
monitoring. Moreover, the use of hyperspectral images to characterize vegetation at hazardous waste sites, with
different analysis methods (vegetation indices, red-edge positioning, and machine learning) has been proposed.6

In parallel with optical remote sensing, research on the use of radar remote sensing data for environmental
crimes has also been going on, with several papers7–9 focusing on the use of synthetic aperture radar (SAR)
interferometry for the detection and monitoring of landfills. In all these papers, interesting cues for future
developments are proposed, concerning in particular the integration of various types of information. However,
this integration is still limited as, for example, optical and SAR data are never exploited jointly in the context
of a GIS-supported system.

In this paper we propose a GIS-based methodology, using optical and SAR remote sensing data, together with
more conventional sources, for the detection of small cattle breeding areas, potentially responsible of hazardous
littering. This specific environmental problem is very relevant for the Caserta area, in southern Italy, where
many small buffalo breeding farms exist which are not even known to the productive activity register, and are



not easily monitored and surveyed. Indeed, the use of multi-sensors10 and multi-temporal11 data has emerged
as a very successful approach for many remote-sensing problems. Starting from the analysis of a small number
of companies already surveyed or known a priori, we extract a general description of some typical features of
such facilities, and of their signatures in remote sensed imagery, both optical and SAR. This information is then
used in a GIS-based processing workflow to detect new facilities of the same type unknown to the official census.
Experiments on a test area, with available specific ground truth, prove that the proposed system is characterized
by very large detection probability and negligible false alarm rate. This paper is organized as follows: Section 2
describes the proposed workflow. In Section 3 experimental results are presented, and conclusions are drawn in
Section 4.

2. FUSION WORKFLOW

The Buffalo breeding facilities (BBFs) have some features that allow developing an efficient workflow that proved
quite effective in the experiments. BBFs are mostly characterized by sheds and by the fenced uncovered spaces
nearby used for breeding and buffaloes and for accumulating animal waste. Features like sheds are distinctly
visible both in optical and SAR images, even if the responses in both kinds of images are not at all specific.
Indeed they can be confused with asphalted roads, which represents another highly reflective cover in optical
images, or even worst in case of generic buildings that are a problem for both sources. Additionally sheds can
be also far from the fenced spaces where buffaloes live, on the other hand, the spectral signature of the manure
is highly specific, easily discriminated from bare soil in the near infrared (NIR) band, and stable to changes in
solar illumination.

After such considerations we decided to use as main source of information the 4-band multispectral GeoEye-1
optical images, focusing on the manure signature. In this process the main purpose is the classification of the
images, which are available at different dates and are processed separately to create maps of candidate BBFs.
The first task carried out on the multiresolution images is pansharpening, which provides a datacube with high
spatial resolution of the panchromatic image and full spectral features. Then image segmentation is used in
order to improve performance and reduce complexity. Given the need to extract region contours as accurately
as possible for subsequent vectorization, we resort to edge-oriented segmentation techniques, in particular we
use the Canny edge detector12 which provides a very good performances. But in the presence of such complex
images as those provided by high-resolution remote sensing, even the best edge detector provides edge maps
that are largely inconsistent, with real edges that go undetected because of insufficient contrast, and false edges
that are generated due to noise and imperfections. So to obtain a close contours a reasonable choice is to use
watershed transform,13 which was not enough because the application of watershed to real-world remote sensing
images provides an exceedingly large number of regions, many of which are due to minor imperfections of the
edge map, or just to the discrete geometry of the images and should be obviously merged together. That is why
we decided to use a more sophisticated segmentation algorithm called Edge Mark and Fill (EMF).14,15 EMF
carries out a marker-controlled watershed segmentation, markers that are regions superimposed to the original
image that force all pixels covered by a given mark to belong to the same segment.

The classification task on the other hand has the purpose to classify each segment of the area of interest as
either manure or not manure based on the spectral response vectors of the component pixels. The manure class is
well represented by a single-mode probability density function (pdf), in particular a multivariate Gaussian with
mean µc and covariance matrix Σc. Moreover, all other classes that are easily recognized, that is green vegetation,
dry vegetation, gray soil or stone, brown soil, asphalt, water, and red roofs are also well described as the manure
class, but they are not in our interest in this research so they are merged all together as not manure class. In
principle, given the spectral vector X(s) = x associated with pixel s, the label or class ĉ(s) ∈ C = 1, 2, ..., C is
chosen according to the MAP (Maximum A-posteriory Probability) rule, that is

ĉ(s) = arg max
c∈C

Pr(c|x) = arg max
c∈C

f(x|c)Pr(c)/f(x) (1)

where f(x) and f(x|c) are the unconditional and conditional pdfs of the data. However, since we assume the
various classes to be equally likely a priori, lacking any information about them, the MAP rule becomes a



Maximum Likelihood rule which, in the Gaussian hypothesis, reduces to

ĉ(s) = arg min
c∈C

[
ln |Σc|+ (x− µc)

T Σ−1c (x− µc)
]

(2)

Finally, to reduce the influence of noise, the decision is made on regions rather than pixels. For each homoge-
neous region singled out by segmentation, the average spectral signature is computed, and this is used in the
classification step. Thanks also to this choice, the classification appears to be quite reliable, despite the simple
multivariate gaussian model adopted.

Since we are dealing with images coming from multiple sources, the coregistration process is necessary to
avoid inaccuracies that can hardly affect the quality of the final image analysis product.16 This task is necessary
to guarantee a precise spatial correspondence among physical areas and objects in various images. To achieve
a good quality of coregistration, the rectification was applied using Rational Function Model (RFM),17 which
requires a DTM (Digital Terrain Model) of the whole area and at least 39 Ground Control Points (GCPs) of
which besides the image coordinates, also the 3D (altimetric and planimetric) position in a geodetic-cartographic
reference system must be known. A 5m × 5m DTM of the region of interest was built by means of linear
interpolation on vector maps in scale 1:5000, and over 100 GCPs were considered for RFM application. The
quality of coregistration was tested by considering the positional error, that is, the difference between the exact
and estimated coordinates, computed both on the GCPs and on a disjoint set of Check Points (CPs). The
standard deviation of the error turned out to be always below 1m for GCPs, and slightly more than 1m for CPs.

The major drawback of this workflow is the presence of a lot of false alarms caused by shadows projected
by buildings over bare soil that are plentiful in urban area because the high density of buildings. To solve
this problem we will use the multi-temporal SAR stack, which is processed jointly, to detect and create a map
of man-made areas. The simplest way to separate man-made areas from natural ones based on SAR images
is to exploit the interferometric coherence between successive acquisition because of their different scattering
formation physical principles.18 SAR images must be coregistered with one-another in order to estimate the
average interferometric coherence and, subsequently, the urban/rural mask. The coregistration comprises three
steps19 during which the alignment is progressively refined until a precision in the order of fractions of a pixel is
reached. The map is obtained by firstly co-registering the SAR images with one-another, and then computing
the stack of interferometric phases and the corresponding coherence map, which is eventually thresholded to
provide the desired urban mask.

The last step of the workflow is to process in a GIS environment both the cadastral map, including prior
information on the location of facilities officially registered and all these outputs that firstly have to be converted
from raster to a vectorial format. In the data fusion block, the classification maps corresponding to the various
dates (two in our case) are combined through a logical AND, discarding in advance, however, regions too small
and isolated. Detections occurring in urban areas, singled out thanks to the SAR-domain processing, are removed
as well. Eventually a map of possible BBFs unknown to the official registry will be the result of the entire process.

3. EXPERIMENTS

We will consider in the experiments the measures, used in two-class hypotheses test, called precision P , recall
R, and the synthetic F1 measure F . Indeed, we are interested in detecting the presence of a given target class,
manure in classification, and buffalo breeding facility in detection. These measures are defined, w.r.t. a generic
class T , as

P = Pr(c = T |ĉ = T ) (3)

R = Pr(c = T |ĉ = T ) (4)

and

F =
2PR

P +R
(5)

where c and ĉ indicate the true and selected class/hypothesis.
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Figure 10. Training (left) and test (right) sets for classification. Red boxes correspond to “manure” areas.

matic procedure, e.g. (Xiao et al. 2007; Gaetano et al. 2012). In EMF, two types
of markers are automatically generated and fused, based, respectively, on the mor-
phological properties of the Canny edge map, and on the spectral properties of the
corresponding close regions. Thanks to such markers, a much more compact and
meaningful segmentation map is obtained than that provided by simple watershed.
The interested reader is referred to the original papers for all technical details. In
Fig. 9(c), we show some of the markers generated by EMF superimposed on the
original image of part (a). Thanks to such markers, the final segmentation map,
shown in part (d), comprises a much smaller number of segments with the same
accuracy, partially closing the gap with the ideal map that a human being would
generate.

4.2 Spectral Classification

Our aim is to classify each segment of the area of interest as either “manure”
or “not manure” based on the spectral response vectors of the component pix-
els, obtained through the pansharpening of the multiresolution optical image. To
this end, given the wealth of information available, we resort to supervised clas-
sification. A relatively small area of the image, shown in Fig.10(a), is selected as
training set, taking care to include all the features that will be found in the test
set where the analysis will be eventually carried out. Classification performance is
then evaluated on a different area of the image, the test set, shown in Fig.10(b).
In particular, we want to make sure that all major classes found in the test set are
represented in the training set as well. Besides “manure”, several other classes are
easily recognized, that is “green vegetation”, “dry vegetation”, “gray soil or stone”,
“brown soil”, “asphalt”, “water”, and “red roofs”. In Fig.10, to avoid cluttering
the figure, only the “manure” training and test samples are highlighted through
red boxes. Given this detailed classification, it is reasonable to characterize each
class c = 1, . . . , C through a single-mode probability density function (pdf), and in
particular, a multivariate Gaussian with mean µc and covariance matrix Σc. These
synthetic statistics are maximum-likelihood estimated based on the training data,
with high reliability, given the low-dimensionality (four) of the vector space, much
smaller than the number of available pixels per class.
In principle, given the spectral vector X(s) = x associated with pixel s, the

label or class ĉ(s) ∈ C = 1, 2, . . . , C is chosen according to the MAP (Maximum

12

Figure 1. Training (left) and test (right) sets for classification. Red boxes correspond to manure areas.

training classification precision recall F-measure

pixel pixel 0.862 0.975 0.915
pixel segment 0.902 0.995 0.946

segment segment 0.854 0.994 0.919
Table 1. Comparison of training/classification combinations.

For the classification task, we resort to supervised classification, given the wealth of information available.
A relatively small area of the image, shown in Fig. 1a, is selected as training set, taking care to include all
the features that will be found in the test set where the analysis will be eventually carried out. Classification
performance is then evaluated on a different area of the image, the test set, shown in Fig. 1b. Our classifier
is trained on the pixels drawn from the training set, while the decision is made on segments, namely on the
average spectral response computed over all pixels belonging to a segment. This mixed solution was chosen after
comparing performance with the other meaningful alternatives, where training and classification are performed
both on pixels or both on segments. Results are reported in Table 1, w.r.t. the target class manure, and are
computed pixel-wise irrespective of how the decision is made. Although the performance is definitely good in all
cases, the selected mixed solution guarantees an appreciable gain in precision, and therefore in the F-measure.

For the selected solution, we computed over a total of N = 113367 pixels, the complete 15-class confusion
matrix A with entries aij counting the number of pixels of class j that have been classified as belonging to class
i. Based on a confusion matrix, several global quality indicators are usually computed. The overall accuracy
(OA), which represents the percentage of sample pixels that are correctly classified, is defined as

τ =
∑

i

aii/N. (6)

The kappa coefficient, defined as

κ =
N
∑

i aii −
∑

i ai+a+i

N2 −∑i ai+a+i
(7)

with ai+ =
∑

j aij and a+i =
∑

j aji, discounts successes obtained by chance, and is therefore more conservative
(it can be also negative). The average accuracy (AA), also frequently used, is defined as the mean of per-class
producers accuracies aii/a+i. Finally, the normalized accuracy norm is computed on a confusion matrix modified
in order to give equal importance to all classes, irrespective of the number of samples in each one. These indexes
are all very high for our classifier: τ = 78.19%, κ = 76.05%, AA = 80.98%, τnorm = 86.92% especially considering
the large number of classes considered some of which pretty similar to one another.

Detection performance is assessed on the image shown in Fig. 2. The small region in the red box will be
used for visual inspection. Our goal is i) to detect BBFs, when present, and ii) to avoid declaring their presence
otherwise. The ground truth was provided by an expert photointerpreter who analyzed thoroughly the whole



Figure 2. The image used in the experiments. The small region in the red box is used for detailed visual inspection of
results.

Figure 3. Segment level decision on the small area of the image at the two dates. Green: correct, red: false alarms.



urban mask images precision recall F-measure

T1 0.950 0.197 0.326
NO T2 0.975 0.234 0.378

T1 + T2 0.925 0.872 0.897
T1 0.950 0.307 0.464

YES T2 0.975 0.514 0.673
T1 + T2 0.9325 0.959 0.942

Table 2. Detection performance with different variants of the proposed procedure.

image and detected eventually 40 BBFs, drawing their approximate contours in GIS as regular polygons, shown
in yellow (nine of them) in the example clip of Fig. 3.

In the same figure we also show the segments that have been classified as wet soil, in green (correct decision)
when they are mostly inside a BBF area, in red (false alarm) when they are mostly outside all of them. However,
we are interested in detecting facilities, not segments. Therefore we use these data to label the 40 BBFs as either
detected, when comprising at least a green segment, or missed, when no green segment falls within its bounding
polygon. In the example clip, all 9 BBFs are detected at both dates. With this information, we can compute a
meaningful recall indicator. As for precision, no similar conversion seems possible, and we are forced to operate
at segment level, computing precision as the ratio between the number of segments (green) correctly declared
wet soil, presumably manure, and the number of all segments (green or red) declared wet soil, irrespective of
their real class, thus including errors. Although working at segment-level, this latter indicator provides a good
insight on the quality of the whole procedure. If precision is too low, in fact, the technique points out many
more targets than actually present, becoming basically useless. To reduce false alarms we resort to a suitable
map of man-made areas, obtained starting from the SAR coherence map. However, we further process this
image, taking advantage on information on build- ing density, readily available in the GIS environment, after
a suitable GCP-guided co-registration, to extract the map of dense man-made areas shown in Fig. 4, which
allows us to separate urban from rural regions in the scene. In the last row of Tab. 3 we report the performance
indicators obtained with the proposed procedure (last row) including the masking of dense urban regions and the
combination of multitemporal data. In the same table we also show results obtained with some variants where
some of the available pieces of information are neglected. When only one date is considered, either T1 or T2, we
obtain a lot of false alarms, causing a very low recall and F-measure. This is already clear in Fig. 3, where many
red segments appear. However, while regions in BBFs are persistent, because they are continuously covered by
manure, external regions are only occasionally classified as such, maybe because periodically fertilized, and can
be eliminated through a multitemporal analysis. By using a simple logical AND, we obtain the pretty good
indicators in the third row. Fig. 5 shows the effects of the logical AND on our example clip. However, this is
not always the case, reducing slightly precision to 0.925. In the last three rows of the table we report the same
data when the mask for dense urban areas is used. Recall improves significantly because bare soil areas, when
shadowed by buildings, generate a large number of false alarms. On the other hand, precision is obviously not
affected by masking, because BBFs are always rather far from large urban centers. The full fledged technique
guarantee eventually both high precision (37 facilities detected out of 40) and high recall (only 12 false alarm
segments out of 306).

4. CONCLUSION

We proposed a methodology for detecting environmental hazards based on SAR and multispectral data and
GIS-based processing. The proposed system shows quite satisfactory results, and it can be a valuable help to
counter and control environmental crimes. Of course, the proposed methodology can be easily converted to
tackle other environmental hazards by modifying some input data, and some processing tasks. A campaign of
validation on a wider test area is under development.
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