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ABSTRACT
In this paper we introduce a feedback system for the en-
hancement of urban areas in Level-1α multitemporal RGB
composite. In particular, our method focus on the interfer-
ometric coherence, whose estimator performances depends
on the dimension of the computation window. The proposed
method allows for the mitigation of this problem, reducing
speckle and increasing the resolution and the accuracy of the
output maps through the generation of an adaptive window,
bringing benefits also in the process of buildings extraction.

I. INTRODUCTION

Urban areas monitoring through satellite imagery is a
powerful tool for large scale analysis and planning activities
concerning with growth tracking, surveillance of critical
infrastructures, three-dimensional modeling, risk analysis
and damage detection in case of natural disasters. This is
witnessed by the huge literature dedicated to this topics in
the last years [1]–[3].

In this paper, we focus on the extraction of urban areas
from SAR images. We think that this operation should be
achievable with simple techniques (being often carried out
by nonexpert users) with limited computational burden. In
fact, this activity assumes relevance when applied to large
scales trying to preserve the original resolution, according to
the limitations dictated by the presence of speckle. In that
regard, the availability of multitemporal datasets allows for
the application of despeckling procedures which preserve the
spatial resolution [4]. Therefore, it is now possible to map
urban areas with resolution in the order of few meters.

We present a feedback system for the MAP3 framework
introduced in [5]. This processing chain rules a new family
of multitemporal sub-symbolic products named as Level-
1α, having a semantic and informative content intermediate
between the classic Level-1 and Level-2 products.

The principal characteristic of this new class of products
is that the association between the color and the scene object
is fixed given the climatic condition. In such representation,
urban areas constitute a particular stable feature and appear
in white since the high contribution of all the bands of
intensity and coherence involved in the color composite.
However, the use of the interferometric coherence poses
some questions about the effectiveness of its estimator

varying the considered scene feature. A raw estimation of
this characteristic of the image can affect its semantic inter-
pretation and successive automatic processing steps aimed,
for example, to the extraction of urban areas, especially when
dealing with high-resolution imagery.

The work is organized as follows. In Section II we discuss
the influence of the size of the mean window in the estima-
tion of the interferometric coherence. The implementation of
the feedback system is presented in Section III. In Section
IV, the benefits of the presented method are explored through
a buildings extraction application. Conclusions are drawn at
the end of the work.

II. ON THE ROLE OF THE MEAN WINDOW IN
THE COHERENCE CALCULATION

In the classic SAR literature, the interferometric coherence
extraction is principally related with the interferometric pro-
cessing for DEMs retrieval or with differential interferometry
techniques for deformation mapping. However, the coherent
characteristic of SAR sensors can find different application
fields such as image enhancement [5], classification [6] and
urban areas mapping [7].

The interferometric coherence is computed by relation:

γ =
E [I1 · I∗2 ]√

E
[
|I1|2

]
· E

[
|I2|2

] , (1)

where E [·] and ∗ indicate the mathematical expectation
and the complex conjugation operations, and I1 and I2 are
the master and slave images, respectively.

Equation 1 requires the selection of the dimension of the
mean window, which determines the performances of the
estimator with respect to the scene objects. Rough surfaces
(e.g., the sea surface) exhibits a stochastic backscattering,
which is expected to produce incoherent signals. An insuf-
ficient dimension of the window would produce a noisy
coherence, with ambiguous results. Man-made structures,
instead, exhibit a high coherence. An estimator with an
excessive mean window dimension could decreases its per-
formances. In fact, urban areas are strongly inhomogeneous
and, especially if the urban texture is not dense, the compu-
tation window could include features like vegetation or roads
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Fig. 1: Castel Volturno town (Italy): (a) De Grandi filtered intensity map and Level-1α representations computed setting the
coherence window dimension to (b) three pixels and (d) eleven pixels.

together with buildings, thus causing a fall in the resulting
coherence.

These concepts should be more clear considering Fig. 1,
in which a portion of the town of Castel Volturno (Italy is
considered). In particular, in Fig. 1a, the De Grandi-filtered
intensity product is shown. In Fig. 1b a Level-1α product
of the scene is depicted. The reference image (blue band)
has been acquired on December 2009, while the test image
on August 2010; thus, about eight months have been passed
between them. We expect that only stable features, such as
buildings, keep high values of the interferometric coherence.
However, the result of the estimation using a three pixels
side window does not coincide with our expectation, as
shown in Fig. 1b. In this representation, urban areas are
well-identified, according to the rationale of the Level-1α
products. Anyway, some anomalies arise. As an example,
wide portions of the sea surface exhibit high coherence
values. This phenomenon, more than be physically not pos-
sible, introduces at visual level an unacceptable granularity.
The use of an eleven pixel square window (see Fig. 1c)
guarantees an adequate average for stochastic signals, paid
with a worse estimation of deterministic signals coming from
urban areas. In both cases the values for the upper and lower
bounds in the quantization process have been set to 0.35 and
0.6, respectively.

Anyway, as shown in the detail of Fig. 2, the urban area is
better identified using the three pixel window (see Fig. 2a).
In the same way, an unacceptable speckle arises with respect
to the case of the eleven pixel window (see Fig. 2b). Thus,
a strategy for adapting the window dimension to the scene
features is needed.

III. FEEDBACK IMPLEMENTATION

In order to adapt the characteristic of the coherence win-
dow to the scene’s objects, we propose a feedback system,
whose rationale is depicted in Fig. 3. The Level-1α products
outputted by MAP3 [5] are used to feed an expert system
driven by an a priori knowledge structured as follows:

(a) (b)

Fig. 2: Castel Volturno town (Italy), detail of a group of
buildings: Level-1α representations computed with coher-
ence window dimension of (a) 3 pixels and (b) 11 pixels.

Fig. 3: MAP3 processing chain with feedback system.

- Level-1α products analysis: the characteristics of inten-
sity and coherence of the MAP3 output are evaluated;

- Adaptive coherence window generation: an adaptive
coherence window is implemented basing on the above
analysis; in such way the coherence estimate by equa-
tion (1) is optimized for the considered target since the
coherence window dimension decreases in presence of
highly reflective targets;

- New coherence map: the final coherence map is assem-
bled and given as input in the quantization process for
the generation of the refined Level-1α products.

In Fig. 4a and In Fig. 4b we show a subset of the consid-
ered Level-1α product before and after the feedback applica-



tion, respectively. Qualitatively, it is remarkable how, more
coherent targets are retrieved without introducing speckle.
Quantitatively, the application of the feedback causes an
increasing in the mean coherence for the considered subset
from 0.43 (considering the 11 pixel window) to 0.5. Thus,
the gain is of about 15%.

(a) (b)

Fig. 4: A subset of the considered Level-1α product (a)
before and (b) after the feedback application.

IV. BUILDINGS EXTRACTION
Level-1α imagery offer the possibility to quickly extract

some image features through the exploitation of opportune
bands combination, which is a technique widely adopted
dealing with optical images.

Here, we propose a simple formulation suitable for build-
ings extraction:

BI =
R ·G ·B
2553

, BI ∈ [0, 1] , (2)

where the acronym BI stands for Building Index. The
physical explanation is readily provided. In fact, buildings
are typically highly reflective and strongly coherent. Thus,
this feature has a response to the BI closer to unit. Features
such as trees or layover, which can cause misclassifications
in intensity-based extractions due to their high backscattering
(especially when performed on high-resolution images), are
typically not coherent and then pushed towards values of the
BI close/equal to zero.

This formulation is particularly suited for nonexpert SAR
users, which are typically reluctant in the usage of compli-
cate techniques, and looks towards large scale applications
since its negligible computational burden.

In Fig. 5 we show the result of the proposed framework. In
Fig. 5a we show a buildings mask obtained via thresholding
of the map resulting by the application of (2) to the original
Level-1α product (see Fig. 4a), composed using the 11
pixels coherence window. In Fig. 5a the mask has been
obtained from the refined Level-1α product (see Fig. 4b).
In both cases, we adopted a threshold value of 0.5. Finally,
in Fig. 5c we overlaid the two aforementioned masks. In
this representation, green pixels represent “building points”
detected both before and after the refinement; red pixels

indicates detections made only after the refinement; yellow
pixels represent detections made only before the refinement.

Qualitatively, the application of the feedback produces a
richer buildings mask, as shown in Fig. 5c.

Quantitatively, in the considered subset we found only 56
detections belonging to the no-feedback case (blue pixels
in Fig. 5c). The number of new “building points” detected
thanks to the feedback application is about 11800 (red pixels
in Fig. 5c) while those detected in both cases is about 27700
(green pixels in Fig. 5c). Thus, the obtained gain with the
feedback application is in the order of 40% with respect to
the no-feedback case.

IV-A. Semantic queries
Level-1α products are defined in a space C of 2553

colors, and practically thus belong to the world of continuous
variables. In this representation, each pixel is defined by an
RGB triplet which is as such a-semantic.

Anyway, Level-1α imagery allows for moving toward
object-based analysis. The first step is the introduction of a
basic semantic which could be, as suggested in [8], a color
label, i.e. a categorical variable. Here, we used a Kohonen-
like network [9] for re-quantize the refined Level-1α product
in N categories (i.e. colors), each of which associated with
a label rather than an RGB code.

In Fig. 6a we show the result of the re-projection from
the space C into 49 categories. At visual level, the reader
should appreciate as very little differences arise with respect
to the continuous product depicted in Fig. 4b. Operatively,
the semantic query for buildings extraction equivalent to (2)
is to require that “building points” exhibit white color. In
such way, we are looking to points whose BI is equal to 1.
In order to set the equivalent of a threshold, other colors can
be considered, such as light pink.

In Fig. 6b we show the result of the application of this
semantic query to the refined Level-1α product. In this
representation, green points have been detected both with
the semantic query and by thresholding the map obatined by
the application of (2) to the continuous product, red points
have been detected only in the continuous case and yellow
points only through the semantic query. We registered an
agreement between the BI-derived mask and that derived
via the semantic query in the order of 91%.

Semantic reasoning as well as the BI formulation allows
for retrieve diffused maps which, depending on the applica-
tion, are alternative and/or preparatory for scattering-based
punctual/local analysis [10], [11].

V. CONCLUSIONS

In this paper we presented a feedback system for the
enhancement of urban areas in Level-1α imagery. The pro-
posed method implements an expert system based on the
characteristic of coherence and reflectivity of the products
outputted by the MAP3 framework allowing for mitigate
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Fig. 5: Buildings masks obtained (a) before and (b) the feedback application. (c) Overlay between the two masks.

the effects related with the choice of the coherence window
dimension. The obtained results testify the goodness of
the proposed method both from semantic and operative
standpoints.

From the semantic standpoint, the feedback allows for an
enhancement of the urban areas through the retrieval of more
coherent target thanks to the adaptive coherence window.

From the operative standpoint, the proposed approach
allows for a more precise mapping of the buildings in the
study area through the implementation of a simple and
automatic procedure based on the characteristics of Level-1α
imagery.

(a) (b)

Fig. 6: (a) Refined Level-1α re-quantized in 49 categories
and (b) result of the application of the semantic query.
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