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The use of remote-sensing images is becoming common practice in the fight against
environmental crimes. However, the challenge of exploiting the complementary infor-
mation provided by radar and optical data, and by more conventional sources encoded
in geographic information systems, is still open. In this work, we propose a new work-
flow for the detection of potentially hazardous cattle-breeding facilities, exploiting
both synthetic aperture radar and optical multitemporal data together with geospa-
tial analyses in the geographic information system environment. The data fusion is
performed at a feature-based level. Experiments on data available for the area of
Caserta, in southern Italy, show that the proposed technique provides very high de-
tection capability, up to 95%, with a very low false alarm rate. A fast and easy-to-use
system has been realized based on this approach, which is a useful tool in the hand of
agencies engaged in the protection of territory.

Keywords: Multisensor data fusion, synthetic aperture radar, GIS, image analysis,
environmental hazard detection, digital image forensics.

1. Introduction

Enforcement of environmental regulation is a persistent challenge, and timely de-
tection of violations is key to holding violators accountable. Typically, the inves-
tigation is triggered by the evidence of the damage, rather than of the illegal
polluting act. Often, the effects appear a long time after the polluting act has been
committed, and in a different place. The correlation between the source and the
damage depends upon the morphology of the scenario and the physical phenom-
ena that allow the transport of the pollutants (Lega et al. 2012a). In these cases,
the effectiveness of investigations can be greatly enhanced by using remote-sensing
data and information technology tools. Continuous and targeted monitoring allows
for efficient police action (Lega and Napoli 2010; Pringle et al. 2012). Successful
identification and prosecution of culprits requires an integrated system based on
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data from several sources, including space, air, waterways, and land monitoring
(Lega et al. 2012b).

Environmental monitoring and analysis - and in particular the detection and
monitoring of environmental crimes - can produce complex data that are diffi-
cult to represent. For these purposes, the use of geographic information systems
(GISs) is often considered (Weng 2002; Gao et al. 2013). Its potential has enor-
mously increased, in recent years, also thanks to the availability of a large body
of remote-sensing imagery in both optical and radar modalities. The problem has
been addressed before in the scientific literature: see, for example, the review papers
of Pohl and Genderen (1998) and Zhang (2010). aimed at improving the accuracy
of image classification, object recognition, change detection and 3D reconstruc-
tion. In particular, some approaches have been proposed that try to integrate data
characterized by different data structures, spatial resolution, and geometric char-
acteristics, such as vector data layers, and optical and synthetic aperture radar
(SAR) images (Solberg, Taxt, and Jain 1996; Weis et al. 2005; Waske and van der
Linden 2008).

With reference to environmental crimes a first step in this direction is found
in (Brilis et al. 2001) where information provided by a ground positioning sys-
tem (GPS) are integrated in a GIS to analyze the source, extent and transport
of contaminants. More recent papers rely heavily, and in various ways, on remote
sensing imagery. Silvestri and Omri (2008) proposed a method for the identification
of uncontrolled landfill by means of multiresolution Ikonos data. In Jensen et al.
(2009) a GIS-assisted system for hazardous waste site monitoring, based on the
integration of multispectral and lidar data with numerous types of thematic infor-
mation, is proposed. Slonecker et al. (2010) reviewed the literature of remote sens-
ing and overhead imaging in the context of hazardous waste and discusses future
trends with special attention to multispectral and hyperspectral remote sensing
data. Faisal, Alahmad, and Shake (2012) and Lein (2013) demonstrate the poten-
tial of multi-temporal Landsat images for landfill site monitoring. Im et al. (2007)
uses hyperspectral images to characterize vegetation at hazardous waste sites, with
different analysis methods (vegetation indices, red-edge positioning, and machine
learning).

In parallel with optical remote sensing, research on the use of radar remote
sensing data for environmental crimes has also been conducted, with several pa-
pers (Ottavianelli et al. 2005; Karathanassi, Choussiafis, and Grammatikou 2012)
focusing on the use of SAR interferometry for the detection and monitoring of
landfill. In all these papers, interesting cues for future developments are proposed,
concerning in particular the integration of various types of information.

In this paper we propose a methodology, using optical and SAR remote sensing
data, together with more conventional sources, for the detection of small cattle-
breeding areas, potentially responsible of hazardous littering. Starting from the
analysis of a small number of companies already surveyed or known a priori, we
extract a general description of some typical features of such facilities, and of their
signatures in remote sensed imagery, both optical and SAR. This information is
then used in a geospatial data-processing workflow to detect new facilities of the
same type unknown according to the official census. Experiments on a test area,
with available specific ground truth, prove that the proposed system is charac-
terized by very large detection probability and a negligible false alarm rate. The
research, carried out in the context of a large regional project (Persechino et al.
2013) aimed at contrasting environmental crime, benefited from continuous inter-
action with various institutions and gathered a variety of complementary scientific
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skills, leading to the implementation of an efficient and user-friendly software tool.
A typical buffalo-breeding facility in Campania, Italy, is characterized by one or

more rectangular sheds with metal cladding. The terrain adjacent to such struc-
tures is divided into spaces available for the animal manger and fenced areas where
buffalo spend most of the day. Sometimes these large enclosures contain artificial
lakes and canopies to protect the animals from the summer heat. Often, another
space or tank is dedicated to the accumulation and deposition of heaps of ma-
nure. Of course, several deviations from this “typical” structure can be found:
sometimes the sheds are relatively far from the fenced areas and can have more
complex geometries, roofs can be made of a different material, etc. The available
administrative data concern the initial registrations of new buffalo-breeding facil-
ities (BBFs) on the productive activity register in the province of Caserta. The
official headquarters of the company is usually (but not always) located near the
facilities.

2. The case study: detection of small buffalo breeding facilities

In this section, we present the case study: the detection of hazards with reference to
BBFs. Also, we describe the available data sources, both optical and SAR, acquired
in the province of Caserta.

2.1 Environmental hazards related to buffalo breeding

Pollutants from manure, litter, and process wastewater can seriously affect human
health and the environment (Horrigan, Lawrence, and Walker 2002; Menzi et al.
2010; Fatta-Kassinosa et al. 2011). Whether from poultry, cattle, or swine, these
contain substantial amounts of nutrients (nitrogen, phosphorus, and potassium),
pathogens, heavy metals, and smaller amounts of other elements and pharmaceu-
ticals (Gerba and Smith 2005). This material is commonly applied to crops associ-
ated with concentrated animal feeding operations (CAFOs) or transferred off site.
Whether over-applied or applied before precipitation events, excess nutrients can
flow from agricultural fields, causing harmful aquatic plant growth, commonly re-
ferred to as algal bloom, which can cause fish death and contribute to dead zones.
In addition, algal bloom often releases toxins that are harmful to human health.

More than 40 diseases found in manure can be transferred to humans, including
the causative agents of salmonellosis, tuberculosis, and leptospirosis. Exposure to
waterborne pathogen contaminants can result from both recreational use of affected
surface water (accidental ingestion of contaminated water and dermal contact dur-
ing swimming) and ingestion of drinking water derived from either contaminated
surface water or groundwater. Heavy metals such as arsenic, cadmium, iron, lead,
manganese, and nickel are commonly found in CAFO manure, litter, and process
wastewater (Jongbloed and Lenis 1998). Some heavy metals, such as copper and
zinc, are essential nutrients for animal growth, especially for cattle, swine, and poul-
try. However, farm animals excrete excess heavy metals in their manure, which in
turn is spread as fertilizer, causing potential run-off problems.

To promote growth and to control the spread of disease, antibiotics, growth
hormones, and other pharmaceutical agents are often added to feed rations or
water, directly injected into animals, or administered via ear implants or tags. Most
antibiotics are not metabolized completely and are excreted from the treated animal
shortly after medication. As much as 80-90% of some administered antibiotics
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occur as parent compounds in animal wastes. Steroid hormones are of particular
concern because there is laboratory evidence that very low concentrations of these
chemicals can adversely affect the reproduction of fish and other aquatic species.
The dosing of livestock animals with antimicrobial agents for growth promotion
and prophylaxis may promote antimicrobial resistance in pathogens, increasing
the severity of disease and limiting treatment options for diseased individuals (EPA
2011).

2.2 Buffalo breeding facilities in the province of Caserta

This specific environmental problem is very relevant for the Caserta area in south-
ern Italy, which therefore represents an interesting case study (Infascelli et al.
2010). Caserta is the northernmost province of Campania, one of the most densely
populated regions of Italy, and among the poorest. Campania is an agricultural re-
gion, very productive and highly specialized, with a model of extensive cultivation.
Nearly 80% of farm work is carried out on family farms, so agricultural production
units are very small (3.6 ha on average). Mainly fruit and vegetables are pro-
duced, but buffalo breeding for mozzarella production is also important. In fact,
the Caserta area is one of the main production sites of the “Mozzarella di Bufala
Campana”, the world-famous fresh cheese holding the status of a protected desig-
nation of origin under the European Union. In 2006 Campania produced 34,000 t
of mozzarella, about 80% of national production.

The food production system in Italy, and especially in Campania, is relatively
vulnerable to waste contamination (Barba et al. 2011). Sometimes, this is due to
the massive level of crime perpetrated by large-scale criminal organizations, but
also it is the result of a culture of illegal practices and neglect widespread among
small farm owners (Esposito et al. 2010; Triassi et al. 2015).

Concerning BBF, in particular, besides many technologically advanced and
lawabiding companies, many small factories exist which are not even on the pro-
ductive activity register, and are not easily monitored or surveyed. Awareness of
this problematic issue has been raised by many recent cases of pollution due to
illicit spills involving BBFs. These cases have been reported in the course of in-
spections carried out by forestry personnel in collaboration with the local agencies
in Campania. In particular, these investigations have made it clear that some hold-
ers did not properly accumulate and download all heaps of manure, with several
cubic metres having been downloaded over a few square metres. This is in open
violation of the established specific rules on how wastewater can be spread on soils.
Manure cannot be accumulated in a small area as this represents a serious source
of pollution. This is a bad habit that becomes a serious danger when BBFs are
located in proximity to rivers, archaeological areas, or urban centres.

2.3 Available data

2.3.1 Optical images

Two multiresolution optical images have been used in this work, acquired by the
GeoEye sensor on 2010-07-29 and 2011-08-12, which cover a region of about 20
× 16 km2 in the province of Caserta. Although other images were available, we
considered only these two, acquired at about the same time of the year, in order to
carry out a reliable multitemporal analysis. Each image comprises a panchromatic
band with geometric resolution of 0.5 m/pixel, and a 4-band multispectral image

4



July 5, 2015 International Journal of Remote Sensing Errico2014˙rev7

Figure 1. RGB composite of one of the available optical images. The area is about 14 × 12 km2 with a
spatial resolution of 2 m/pixel for the multispectral bands and 0.5 m/pixel for the panchromatic band.

(Blue, Green, Red, Near-Infrared) co-registered with the panchromatic band but
with a geometric resolution of 2 m/pixel. Radiometric resolution is 8 bits for all
data. Figure 1 shows the RGB composite of the 2010-07-29 image.

2.3.2 SAR images

A set of 15 COSMO-SkyMed single-look complex balanced stripmap SAR images
is available for the project, unevenly spanning a temporal interval of two years,
between December 14, 2009, and October 17, 2011. All the data are HH polarized,
acquired with ascending orbit and look angle of approximately 33o. The data cover
an area of about 40 × 40 km2, with 3 m/pixel spatial resolution (both in range
and azimuth). A calibration set for correcting the effects related to the sensor and
the acquisition geometry can be extracted from the ancillary data provided by the
Italian Space Agency (ASI). In such way, the achievable radiometric accuracy is
about 1 dB. A cut of 5200 × 4600 pixels was used for the proposed project, covering
an area of about 195 km2. Figure 2 shows one of the available SAR images, geocoded
and resampled on a map grid of 0.5 m/pixel (for comparison with the pansharpened
optical image) after the application of the multitemporal De Grandi filter (De
Grandi et al. 1997), followed by a spatial non-local filter (Parrilli et al. 2012).
Multitemporal filtering, by exploiting time diversity, helps in reducing speckle and
hence improves the performance of the successive segmentation step (Gaetano et al.
2014a). In particular, the De Grandi filter is relatively simple and has proved very
effective in the context of several different applications (Ali et al. 2013; Amitrano
et al. 2014; Fontanelli et al. 2014). The subsequent non-local filter exploits spatial
dependencies to further reduce speckle, while preserving relevant image structures,
as shown in Deledalle et al. (2014).
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Figure 2. One of the available SAR images in amplitude format. The area is about 14 × 12 km2 with a
spatial resolution of 3 m/pixel.

Figure 3. Optical (RGB) and SAR (amplitude) images of a selected region of interest (about 337 × 226
m2) with several BBFs.

3. Proposed approach

There are probably many ways to combine and exploit the available data to detect
small BBFs. In the following, we describe a simple processing chain, based on some
preliminary observations on the characteristics of these facilities.

As recorded from the satellite, see Figure 3, BBFs are mainly characterized by
the adjacent sheds and fenced uncovered spaces used for both breeding the buffalo
and accumulating animal waste. Sheds are clearly visible in both optical images,
where they have a saturated response due to their high reflectivity, and the SAR
images, where they contribute bright lines due to double-reflection mechanisms.
However, these responses are not at all specific and can be confused with other
highly reflective covers in the optical images (e.g. bitumenized roads) and, espe-
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Figure 4. High-level processing chain.

cially, with generic buildings in both sources. Moreover, as mentioned above, sheds
are not always close to the fenced spaces where the buffalo live. Conversely, the
spectral signature of the manure is highly characteristic, easily discriminated from
bare ground in the NIR band, and stable to changes in solar illumination. Needless
to say, manure is always present and abundant where the animals live, and indoor
breeding is not an acceptable option in the highly standardized buffalo-breeding
protocol for the “Mozzarella di Bufala Campana” industry. Therefore, we decided
to use GeoEye-1 optical images as main source of information, focusing on the
manure signature.

In SAR images, manure does not exhibit a distinctive backscatter. However, we
use the SAR stack to detect and mask built-up areas, thus reducing false alarms.
This is especially valuable since most false alarms are related to shadows projected
by buildings over bare soil, which abound in urban areas due to the high density
of buildings.

In Figure 4 we show a high-level block diagram of the proposed workflow. Several
optical images available at different dates are processed independently to generate
maps of candidate BBFs. The whole multi-temporal SAR stack is instead processed
jointly to produce the built-up areas mask. These outputs are then converted in a
vectorial form and processed in the GIS environment, together with the cadastral
map including prior information on the location of facilities officially registered.
The final product is a map of likely BBFs unknown to the official registry, which
can be used in turn as input for on-site inspections by the environment protection
and law enforcement agencies.

In Figure 5 we show finer details for the optical and SAR processing chains. The
main goal of optical image processing is classification: based on their properties,
pixels are labeled as either “manure” or “not manure”. To improve performance
and reduce complexity, classification is carried out on homogeneous image segments
rather than isolated pixels. Therefore, after a preliminary pansharpening, the image
is segmented, in order to identify its elementary homogeneous regions. Each high-
resolution segment is then characterized by its spectral signature and classified.

The SAR image processing block, instead, provides a map of the urban areas in
the scene. This is obtained by first co-registering the SAR images to a common
master, and then computing the stack of corresponding coherence maps which is
thresholded to provide the desired urban mask.

In the data fusion block (see Figure 4), after geo-referencing and co-registering
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all products, the classification maps corresponding to the various dates (two in our
case) are combined through a logical AND, discarding in advance, however, regions
too small and isolated. Detections occurring in urban areas, singled out thanks to
the SAR-domain processing, are removed as well. The resulting map, converted
from raster to vectorial form, is eventually compared with the cadastral map to find
suspect BBFs. Despite its simplicity, this workflow turns out to be quite effective,
as shown in Section 7, and easily manageable by nonexpert users, as the operators
of governmental agencies may be expected to be. In fact, the output BBFs map
can be obtained and updated with a small number of simple operations, making
the human-machine interaction experience quick and comfortable, thus oriented
towards the end-users community (Madhok and Landgrebe 2002; Gaetano et al.
2014a; Amitrano et al. 2015).

4. Optical-domain Image Processing

The first task carried out on the multiresolution images is pan-sharpening, which
provides a data cube with full spatial and spectral resolution. We resort here to
the Gram-Schmidt method, which has become very popular for pan-sharpening
(Laben and Brower 200) due to its good performance over a wide variety of ap-
plications (Du et al. 2007; Yusuf et al. 2012). Moreover, it is implemented in the
ENVI package, one of the most commonly used commercial software packages for
the processing of remote-sensing images. In the following, the segmentation and
classification processing are discussed.

4.1 Segmentation

Remote-sensing images come in the form of arrays of pixels, hardly a good basis
on which to make reliable decisions. Therefore, it is convenient to raise the descrip-
tion to a higher level, by identifying elementary regions, or segments, which are
internally homogeneous, and hence characterized by means of a few compact fea-
tures. These are, however, large enough to simplify all subsequent processing and
enable the fast and reliable achievement of all application goals. This processing
paradigm is also referred to as object-based image analysis (OBIA) or geospa-
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(a) (b) (c) (d)

Figure 6. Edge Mark and Fill segmentation. (a) original RGB clip (about 540 × 200 m2), (b) watershed
segmentation map, (c) morphological and spectral markers, (d) EMF segmentation map.

tial OBIA (GEOBIA), and is widely adopted as shown in the review proposed in
Blaschke (2010).

In the present study, given the need to extract region contours as accurately
as possible for subsequent vectorization, we resort to edge-oriented segmentation
techniques based on the watershed transform. First, we compute the map of image
edges on the high-resolution panchromatic component.

However, the application of watershed to real-world remote sensing images, see
Figure 6(a), provides an exceedingly large number of regions, Figure 6(b), many
of which are due to minor imperfections of the edge map, or just to the discrete
geometry of the images and should be obviously merged together. We therefore
apply a more sophisticated segmentation algorithm, called Edge Mark and Fill
(EMF), proposed originally in (Gaetano et al. 2012) and generalized in (Gaetano
et al. 2014b) for color and multiresolution images. Edge detection is here performed
using the Canny edge detector (Canny 1986), which is largely available and flexible
and has been proven to perform well within the EMF framework.

EMF carries out a marker-controlled watershed segmentation. Markers are re-
gions superimposed to the original image that force all pixels covered by a given
mark to belong to the same segment. They can be put manually by an operator, a
tedious and low-precision task or, more interestingly, through some specific auto-
matic procedure, e.g. (Xiao et al. 2007; Gaetano et al. 2012). In EMF, two types
of markers are automatically generated and fused, based, respectively, on the mor-
phological properties of the Canny edge map, and on the spectral properties of
the corresponding adjacent regions. In Figure 6(c), we show some of the markers
generated by EMF, superimposed on the original image. Thanks to such markers,
the final segmentation map, shown in part (d), comprises a much smaller number
of segments with the same accuracy, partially closing the gap with the ideal map
that a human being might generate.
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Figure 7. Training (left) and test (right) sets for classification. Red boxes correspond to “manure” areas.

4.2 Spectral Classification

Our aim is to classify each segment of the area of interest as either “manure” or
“not manure”, based on the spectral response vectors of the component pixels,
obtained through the pansharpening of the multiresolution optical image. To this
end, given the wealth of information available, we resort to supervised classification.

The spectral response of “manure” cannot be discriminated from that of other
semantic classes, and hence a more general “wet soil” class was used with regard to
classification. As discussed in the following, “manure” can be discriminated with
respect to other land covers of the “wet soil” spectral class only by going beyond
spectral analysis. The proposed model eventually comprises 15 classes (see Table
2), including for example “green vegetation”, “dry vegetation”, and “bare soil”.
For our purposes, however, all segments not classified as “wet soil” are eventually
collected in a single class and discarded from further analysis.

A relatively small fraction of the image was selected as the training set, taking
care to include all the features of interest. More precisely, for each class of interest,
we selected from 20 to 50 segments each comprising a few hundreds pixels, except
for some classes of particularly small objects, such as clay, asphalt, green roofs,
and trees. In fact for these classes smaller ground truth segments are needed (fewer
than 100 pixels) for reliable annotation. Overall, about 200,000 pixels were used
for the training set. In the same manner, we formed a test set of approximately
110,000 pixels, taking care to avoid any intersection between training set and test
set segments. Figure 7(a) shows some “wet soil” training set segments (to avoid
cluttering the figure, segments of other classes are not shown), while Figure 7(b)
shows some test set segments of the same class.

Given this detailed 15-class model, it is reasonable to characterize each class
c = 1, . . . , C through a single-mode probability density function (pdf), and in
particular, a multivariate Gaussian with mean µc and covariance matrix Σc. These
synthetic statistics are maximum-likelihood estimated based on the training data,
with high reliability, given the low-dimensionality (four) of the vector space, much
smaller than the number of available pixels per class.

Given the spectral vector X(s) = x associated with pixel s, the label or class
ĉ(s) ∈ C = 1, 2, . . . , C is chosen according to the MAP (Maximum A-posteriori
Probability) rule. However, lacking any prior information on the classes, this re-
duces to the maximum likelihood rule, and eventually, for the assumed Gaussian
statistics, to

ĉ(s) = arg min
c∈C

[
ln |Σc|+ (x− µc)TΣc

−1(x− µc)
]

(1)
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To reduce the influence of noise, the decision is made on segments, rather than
pixels. For each homogeneous region singled out by segmentation, the average spec-
tral signature is computed and used for classification. Segmentation granularity is
kept high in order to preserve the homogeneity of the spectral response in the same
segment. As a consequence, the physical objects of the scene are often composed
by several segments. Because of the use of segments rather than pixels, the classifi-
cation appears to be fairly reliable, despite the simple multivariate Gaussian model
adopted.

5. SAR-domain Image Processing

The goal of SAR-domain processing is to extract a pixel-based map of urban ar-
eas, through the analysis of interferometric coherence. To this end, SAR images
are preliminarily coregistered with one-another by a three-step procedure (Li and
Bethel 2008) during which the alignment is progressively refined, first using or-
bit information, then the cross-correlation between coupled windows, and finally
optimizing results with Powell’s method.

Man-made areas can be separated from natural ones based on the interferomet-
ric coherence between successive acquisitions, because of their different scattering
formation physical principles (Rosen et al. 2000). Indeed, in man-made areas the
back-scattering is dominated by the multiple reflections between the building ele-
ments and the ground. Moreover, double and triple reflections due to the dihedrals
and trihedrals are stable also with respect to variations in the observation ge-
ometry (Ferretti et al. 2007). Rural areas, typically composed of trees, cultivated
fields, grasses and crops, exhibit instead back-scattering values that are strongly
influenced by the observation geometry as well as by changes in the scene. This
causes low values of interferometric coherence, especially if it is computed with a
large temporal baseline. Of course, the typical time lapse necessary to cause an
appreciable fall of the coherence is different for each of the above cited objects and
depends also on the season (for example, a single rainfall can change the scene
characteristics with a dramatic reduction of the coherence between the pre-event
and post-event images) (Franceschetti et al. 2003).

In the available dataset, the average interval between two acquisitions is in the
order of one month, which is sufficient for assuming that only stable targets (such
as buildings and roads) exhibit a high level of interferometric coherence. However,
in order to minimize the probability of false alarms, a mean coherence map was
generated by averaging all the coherence maps between an image assumed as ref-
erence and all others. Figure 8 represents the mean coherence values (left) and
map (right) of the whole SAR scene under analysis, projected onto the WGS84
geographic coordinate system (north at top), where the sea has been manually
removed since it is irrelevant to the analysis conducted in this work. Note that
to obtain the binary map, man-made and natural areas are separated by simple
thresholding (Gaetano et al. 2014a).

As a final step, we go from pixel-level to region-level maps, based on prior in-
formation. Indeed, urban zones are areas of significant spatial extension with a
high-density of man-made structures. Following this definition, we first compute
local density by averaging the pixel-level map in a circular region of radius 200 pixel
(600 m) centered on the target. Then the density map is thresholded, and small
(less than 10000 pixels) isolated regions are removed. Eventually, only high density
large regions are classified as urban areas. Figure 9 depicts the full pan-sharpened
data set available. The highlighted portion (in yellow) overlaps the co-registered
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Figure 8. Geocoded mean coherence map (left) and corresponding man-made mask (right). Bright pixels
indicate mostly man-made structures.

Figure 9. Dense urban areas (in lilac) extracted by refining the man-made map, superimposed on the
RGB composite image.

SAR multitemporal data and is hence used in this work.

6. Data fusion

In the data fusion block, decisions are made based on all available pieces of in-
formation. Before that, however, co-registration and rectification are required, in
order to provide coherent data.

6.1 Coregistration between SAR and optical images

SAR/optical image registration aims at correcting the misalignment of geocoded
SAR with respect to the rectified optical images. The SAR geocoded images were
obtained via a range-Doppler mode, with a 20 m-resolution digital elevation model
(DEM) for compensation of terrain-induced distortion.

Although many automatic registration techniques have been proposed in the lit-
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erature (e.g., (Inglada and Giros 2004; Suri and Reinartz 2010; Fan et al. 2013)),
their robustness is still limited. Therefore, we refined the SAR/optical alignment
with user-defined Ground Control Points (GCPs), whose selection is time consum-
ing and influenced by the operator sensitivity, but must be performed only once
for the whole dataset.

In order to improve the accuracy of the GCPs identification in the SAR maps, a
multitemporal De Grandi filter has been applied to the entire available dataset, in
order to reduce the effects of speckle without loss of spatial resolution, followed by
nonlocal spatial despeckling (Parrilli et al. 2012). Then, the selection of GCPs was
based on the identification of points that are easily recognizable and detectable
in both the SAR and optical maps, despite their different geometries. Hence, the
point candidate to be selected as GCPs should be relative to areas which are
stable in amplitude (on the SAR map) and easily separable from surrounding
regions (Zitova and Flusser 2003), such as road crossings, buildings, boundaries
between homogeneous areas, or other dominant features observable in both images.

Thirty uniformly distributed GCPs were selected for building the warp poly-
nomial needed to align the SAR to the optical reference image. This processing
allowed an alignment in the order of pixel size, which is consistent with the project
objectives.

6.2 Rectification based on a DEM

Often georeferencing is not sufficient to guarantee a precise spatial correspondence
among physical regions and objects in the various images, even when DEMs are
used for either orthorectification or geocoding. To improve the geometric qual-
ity of the original images, rectification was applied using the rational function
model (RFM) (Tao and Hu 2000), adopted with success in many applications (e.g.
Maglione, Parente, and Vallario (2014)). This approach requires a DEM of the
whole area and at least 39 GCPs with known image coordinates and 3D (alti-
metric and planimetric) position in a geodetic-cartographic reference system. A
5m×5m DEM of the region of interest was built by means of linear interpolation
on vector maps at a scale of 1:5000, with 99 GCPs for the first image and 201 for the
second. Accuracy was tested by considering the difference between the exact and
estimated coordinates, by means of root mean squared error (RMSE =

√
MSE).

RMSE turned out always to be below 1 m for GCPs, and slightly higher than that
for a disjoint set of control points.

6.3 Decision

After co-registering all products, several simple decision rules can be enacted based
on the segment-level classification of optical images and on the urban mask. In
particular, we show results obtained using only one or both of the optical images
and with and without urban masking. When two images are used, only segments
detected in both are taken into account (hence, a more conservative choice). More-
over, the urban mask, when used, allows one to discard segments detected in urban
areas. A more detailed description of the decision process is deferred to the next
section, in the context of the experimental analysis.
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7. Experimental results

Here we report results of experiments carried out to validate the proposed algo-
rithm. We will analyze separately the performance of classification and detection
tasks. However, since in both cases we are eventually interested in detecting the
presence of a given target class, “manure” in classification, and “buffalo breeding
facility” in detection, we will consider always the same measures, used in two-class
hypotheses tests, namely precision P and recall R, and the synthetic F1 measure
F . These measures are defined, w.r.t, a generic target class T , as

P = Pr(c = T | ĉ = T ) (2)

R = Pr(ĉ = T | c = T ) (3)

and

F =
2PR

P +R
(4)

where PR denotes probability, and c and ĉ indicate the true and selected
class/hypothesis. A high precision indicates that when the target class is detected,
the decision is very likely correct. A high recall indicates that when the target class
is present, it will be very likely detected. Therefore, both measures are desired to
be large, and by tuning the classification parameters one may increase one of them
but decrease the other. A synthetic measure of performance is the F -measure,
a harmonic mean of precision and recall, which is large only when one or both
indicators are rapidly reducing in value.

7.1 Classification

Our classifier is trained on pixels drawn from the training set, while the decision
is made on segments, namely on the average spectral response computed over all
pixels belonging to a segment. This mixed solution was chosen after comparing per-
formance with the other meaningful alternatives, where training and classification
are performed both on pixels or both on segments. Results are reported in Table 1,
w.r.t. the target class “wet soil”, and are computed pixel-based irrespective of how
the decision is made. Although the performance is definitely good in all cases, the
selected mixed solution guarantees an appreciable gain in precision, and therefore
in the F -measure. Indeed, when decisions are made on individual pixels, the influ-
ence of noise is more relevant, causing a drop in both precision and recall. In the
third case, instead, the problem is likely the limited number of segments available
for training, which reduces the ability of the classifier to deal with outliers of other
classes. We underline also that the pixel-based solution must be excluded not only
for its inferior performance, but also because we will use segments as the basis for
the detection of BBFs.

For the selected solution, we computed the complete 15-class confusion matrix
A over a total of N=113367 pixels, with entries aij counting the number of pixels
of class j that have been classified as belonging to class i. Based on a confusion
matrix, several global quality indicators are usually computed. The overall accuracy

14
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training classification precision recall F-measure

pixel pixel 0.862 0.975 0.915

pixel segment 0.902 0.995 0.946

segment segment 0.854 0.994 0.919

Table 1. Comparison of training/cassification combinations.

τ , defined as

τ =
∑
i

aii/N (5)

is the percentage of sample pixels that are correctly classified. The Kappa param-
eter, defined as

κ =
N
∑

i aii −
∑

i ai+a+i

N2 −
∑

i ai+a+i
(6)

with ai+ =
∑

j aij and a+i =
∑

j aji, discounts successes obtained by chance,

and is therefore more conservative (it can be also negative). The average accuracy
(AA), also frequently used, is defined as the mean of per-class producer’s accuracies
aii/a+i. Finally, the normalized accuracy τnorm is computed on a confusion matrix
modified as described in Congalton (1991) in order to give equal importance to all
classes, irrespective of the number of samples in each one. These indexes are all very
high for our classifier: τ = 78.19%, κ = 76.05%, AA = 80.98%, τnorm = 86.92%,
especially considering the large number of classes considered, some of which pretty
similar to one another.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Σ

1 9712 2502 89 1233

2 42 4764 4806

3 76 86 1450 4 71 174 541 982 16 3400

4 4 8 3 593 2 610

5 62 4788 3 6 10 163 5432

6 18 9779 311 3 311 161 35 10618

7 79 3026 3105

8 5 1 1991 402 2399

9 609 15191 9 848 1 16658

10 1203 5 17 542 7203 2 11 8983

11 265 14 41 57 3 18 1402 616 47 42 2505

12 433 14417 17 14867

13 60 4214 574 4848

14 18 165 6 159 130 109 153 11199 67 12006

15 5 48 144 49 2 10939 11187

Σ 10532 7360 3471 593 4886 25511 3512 2058 2251 8538 1550 14586 5000 11820 11659

Table 2. 15-class confusion matrix. Labels: 1=Shallow Water, 2=Deep Water, 3=Asphalt, 4=Pools,
5=Rock, 6=Bare Soil, 7=Wet Soil, 8=Clay Roofs, 9=Asphalt Roofs, 10=Metal Roofs, 11=Green Roofs,
12=Trees, 13=Grass, 14=Sparse Vegetation, 15=Dry Vegetation.

In Table 2 we report the confusion matrix. With perfect classification, only di-

15



July 5, 2015 International Journal of Remote Sensing Errico2014˙rev7

Figure 10. The image used in the experiments. Performance is computed on the large region in the yellow
box. The small region in the red box is used for detailed visual inspection of results.

Figure 11. Segment-level decisions on the same small area of the image at the two dates. Green=correct,
red: false alarm.

agonal entries should be larger than 0, and indeed, most off-diagonal entries are
0 (blank) or very close to it. In any case, we are especially interested in the “wet
soil” class, number 7, including “manure”, for which both producer’s and user’s
accuracy are clearly very high.

7.2 Detection

Detection performance is assessed on a large part of the available image, shown in
the yellow box of Figure 10, while the small region in the red box will be used only
for visual inspection. Measuring performance is less obvious in this case. Our goal
is to detect BBFs, when present, and to avoid declaring their presence otherwise.
First, to measure success in the first task, we need a ground truth which identifies
all such facilities in the test area. Therefore, an expert photointerpreter (the first
author of this work) analyzed thoroughly the whole image and, based also on other
complementary sources of information, detected eventually 76 BBFs, drawing their
approximate contours in GIS as regular polygons, shown in yellow (nine of them)
in the example clip of Figure 11.

This figure also shows the segments classified as “wet soil”, in green (correct
decision) when more than 50% of the segment is inside a BBF, or in red (false
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variant images urban mask precision recall F-measure

1 T1 0.973 0.154 0.266

2 T1 NO 0.986 0.234 0.379

3 T1 + T2 0.934 0.862 0.897

4 T1 0.973 0.272 0.425

5 T1 YES 0.986 0.426 0.596

6 T1 + T2 0.934 0.949 0.941

Table 3. Detection performance with different variants of the proposed procedure.

alarm) otherwise. However, we are interested in detecting facilities, not segments.
Therefore, we use these data to label the 76 BBFs as either detected (when com-
prising at least one green segment) or missed (when no green segment falls within
its bounding polygon). In the example clip, all nine BBFs are detected at both
dates. With this information, we can compute a meaningful recall indicator. In
regard to precision, no similar conversion seems possible. So we are forced to op-
erate at segment level, computing precision as the ratio between the number of
segments (green) correctly declared “wet soil”, possibly manure, and the number
of all segments (green or red) declared “wet soil”, irrespective of their real class,
thus including errors. Although working at segment level, this latter indicator pro-
vides a good insight into the quality of the whole procedure. If precision is too
low, the technique indicates many more targets than actually present, becoming
basically useless. To reduce false alarms we resort to the urban mask of Figure 9,
computed from the SAR coherence map.

In Table 3 we report the performance indicators obtained using all pieces of
information available (last row) or just some of them. In the first two cases, only
one of the optical images is used, either T1 or T2. In both cases almost all BBFs
are detected (high precision), but also thousands of “manure” regions unrelated
with BBFs (low recall) resulting in an acceptable overall performance, as testified
by the very low F -measure value. This was to be expected from the analysis of
Figure 11, where many red segments appear. However, while regions in BBFs are
persistent, because they are continuously covered by manure, external regions are
only occasionally classified as such, maybe because periodically fertilized, and can
be eliminated through a multitemporal analysis. By combining the maps relative to
both time instances through a simple logical AND (case 3), a much better recall is
obtained. However, although not in the example clip, some BBFs are lost due to the
logical AND, reducing slightly precision. Despite this loss a much higher F -measure
is observed. Figure 12 shows the effects of the logical AND on our example clip. In
the last three rows of the table we report the same data as before when the mask
for dense urban areas, derived from SAR images, is also used. This mask allows
us to reject a number of bare soil areas that, when shadowed by buildings, are
spectrally indistinguishable by wet soil, generating a large number of false alarms.
Therefore, recall increases significantly with respect to the corresponding cases
without urban mask, while precision is obviously not affected by masking, because
BBFs are always rather far from large urban centers. The full fledged technique
(case 6) guarantees eventually both high precision, with 71 facilities detected out
of 76, and high recall, with only 30 false alarm segments out of 590.
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Figure 12. Segment-level decisions based on multitemporal data. No false alarm occurs in the clip.

8. Conclusions and future research

We have proposed a methodology for detecting small buffalo-breeding facilities
based on multi-sensor and multitemporal remote-sensing data and GIS-based pro-
cessing. The performance of the proposed system is quite satisfactory with an
F -measure always above 0.9. Hence, it can be a valuable tool for monitoring envi-
ronmental hazards, adaptable to different tasks by modifying the input data, and
also in regard to various highly data-dependent processing tasks, such as denoising
or segmentation. For example, work is under way to adapt the tool to the detect
illegal landfill.

Of course, there is room for further improvement under several points of view.
First of all, with more images available, a better decision strategy could be im-
plemented, so as to detect all areas of interest with limited false alarms. However,
even with the data currently available, performance could be improved by better
exploiting information available in the GIS, such as the position of candidate areas
w.r.t. the road network and waterways, or other geographic layers coming from
different sources. Work is currently under way to investigate these issues.
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