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In this paper, we present an end-user-oriented framework for multitemporal synthetic
aperture radar (SAR) data classification. It accepts as input the recently introduced
Level-1α products, whose peculiarities are the high degree of interpretability and the
increased class separability with respect to single grayscale images. These properties
make the Level-1α products very attractive for the application of simple supervised
classification algorithms. In fact: i) the high degree of interpretability of the maps
makes the training phase extremely simplified; ii) the good separation between the
classes allows for obtaining excellent results using simple discrimination rules. It results
in a simple, fast, accurate and repeatable framework.

1. Motivations

Since the beginning of the synthetic aperture radar (SAR) history, the scientific
community aimed to extract information from data with the purpose to classify
objects on the imaged scenes. One of the first definitions for this activity was given
in Harger (1973): “Classification consists in the discrimination and identification
of randomly reflecting areas, characterized by a certain reflectivity spectral den-
sity”. This definition highlights two aspects: i) Discrimination, i.e. the separation
of objects which share similar characteristics of backscattering at the operating
wavelength. This operation is carried out at a physical/signal level; ii) Identifica-
tion, i.e. the process of the assignment of a label (or a class) to a group of scatterers
identified as similar. This operation is carried out at a semantic level and is powered
by the knowledge of the SAR backscattering mechanism.

A more articulate definition of classification is provided in Campbell and Wynne
(2011): “Classification is the assignment of objects [...] to classes based on their
appearance on the imagery. Often a distinction is made between three levels of
confidence and precision. Detection is the determination of the presence or absence
of a feature. Recognition implies [...] that the object can be assigned an identity
in a general class or category. Finally, Identification means that the identity of an
object or feature can be specified with enough confidence and detail to place it
in a very specific class”. This definition put the accent on the appearance of the
objects, and thus on physical models which allows for the interpretation of the
world representation, i.e. the image, as filtered by the sensor.
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In recent years, the increased volume of available data and calculating power
raised the user requests concerning classification procedures. Thus, while in ’70s
and ’80s the rules were essentially dictated by the SAR community and by research
needs, today the pressure on this activity comes from a wide variety of professionals
and scientists belonging to different disciplines who posed new user-requirements
to the SAR community.

In this context, several outstanding solutions were found. Some authors exploited
multitemporal datasets for extracting time-dependent variables used to discrimi-
nate the behavior of the scene features (Bruzzone et al. 2004). This allowed to
devise robust classification schemas, but the difficulties related to the implemen-
tation of the processing chain could limit their usage. Camps-Valls et al. (2008)
couples multitemporal SAR and optical data to set up a framework based on com-
posite kernels. Davidson and Ouchi (2003) improved a segmentation scheme with
the use of multitemporal data. In Engdahl and Hyyppa (2003), the computation
of some multitemporal quantities allows to reduce the dimension of the original
dataset, selecting the best-suited group of images for unsupervised classification.
In Quegan et al. (2000), backscattering characteristics of a time series have been
analyzed for forest mapping. In Gaetano et al. (2014) a Markov random field frame-
work for multitemporal data segmentation using an homomorphic transformation
was applied.

All these works used multitemporal data in order to improve the performances
of previously introduced schema or to establish new methods of data fusion. This
allowed to better identify features which are assumed to be stable (i.e. the forest
mapping presented in Quegan et al. (2000)), or which hold a specific behavior
along time with respect to a given multitemporal quantity (see Davidson and Ouchi
(2003)). Here, we want to focus on the simplification of the classification schema,
in which multitemporal data are exploited for building a product suitable to be
treated with standard algorithms.

In general, given an application, different approaches lead to different solu-
tions and different answers to the following questions: 1) What is the best al-
gorithm/technique to reach the goal? 2) Which parameters must be tuned for
obtaining a more reliable output?

The answers to these questions dramatically change as a function of the expertise
of the operator.

As for the first question, hundreds of algorithms/techniques with excellent results
exist. An expert user could use his/her skills to select the best solutions for the given
application. A non-expert end-user look toward solutions already implemented in
some available software suite. Moreover, most of the existing methods suffer from
the problem that both the end-user and the SAR expert operator have a limited
control/vision of the operations that lead to the final products.

As for the second question, the great complexity of modern classification algo-
rithms require non trivial expertise in the phase of tuning the required parameters.

However, the active participation of end-users in classification procedures repre-
sent an opportunity to improve the performances in terms of compliance to require-
ments of practical scenarios. This can be possible dulling the hurdles that they can
encounter answering to the two aforementioned questions. Hence, it is necessary
to include simple algorithms in a framework in which the knowledge/expertise re-
quired for classifying a scene is diluted and made accessible to the end-users. This
is feasible via an extreme simplification of the classification schemas, starting from
an adequate choice of the input data. This position is in countertrend with the past
literature in which the development of new algorithms/techniques rather then the
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reasoning on input data is privileged.
This paper is devoted to show that the recently introduced Level-1α products

(Amitrano et al. 2015), based on the physical knowledge of electromagnetic scatter-
ing models and required parameters, allows for the building of such a framework.
It gives the opportunity to use simple, well-known user-oriented classification tools
which, thanks to the characteristics Level-1α imagery, provide excellent results on
complex scenes. Thus, our framework satisfies the fundamental end-user require-
ments of simplicity, velocity, accuracy and repeatability.

2. Multitemporal Level-1α products

In this Section, we briefly recall the rationale of the recently introduced Level-1α
products (Amitrano et al. 2015). These products are obtained from high resolution
Single Look Complex (SLC) SAR data, by properly combining two opportunely
processed intensity channels and the interferometric coherence of the complex data
involved in the composition.

In order to show the characteristics of these products, we use a particularly
illustrative example relevant to a RGB composition of a semi-arid environment.

Figure 1(a) shows a Level-1α product of a rural area of Northern Burkina Faso.
This area is characterized by a Sudanese-Sahelian climate, which consists of a brief
rainy season and a severe dry season at the peak of which (towards the end of April)
the environment is almost completely dry (Amitrano et al. 2014). This information
is important, since it will allow to explain the colorimetric response of the Level-1α
product.

The product depicted in Figure 1(a) is built loading on the green and blue band
two images acquired on March 2011 and April 2011, respectively. The acquisition of
March 2011 is also depicted in Figure 1(b). This comparison trivially highlights the
advantages of a color composite representation instead of a grayscale one in terms
of interpretability of the map. In fact, as an example, the reader can immediately
associate the green color with vegetation or the blue with surface water.

For the ease of the reader, in the following we briefly summarize the results
obtained in Amitrano et al. (2015) and describe how to interpret Level-1α products.

The interpretation of the map is guided by the physical principles that govern the
interaction between the incident electromagnetic wave and the observed surface.
For instance, with the aid of Figure 2 and Figure 3, the following qualitative
classification can be made:

- Blue color indicates the presence of seasonal water (see Figure 3(a)). In fact,
the blue color witnesses a strong dominance in the electromagnetic response
of the image of April with respect to the March’s one, which is negligible.
Therefore, in April (blue band) the basin is almost empty and the electro-
magnetic response is due to bare soil, while in March (green band), because
of the presence of surface water, that response is very low;

- Black color indicates that the response is low in both the intensity images
(e.g., in the immediate nearby of the dam) and this testifies the presence of
surface water which persists in both the acquisitions (see Figure 3(a));

- Balance between the two intensity channels means that no changes have
occurred between the two acquisitions. Hence, this characteristic is proper
of stable features. Of course, the intensity level at which the two channels
are balanced identifies different objects. For example, cyan indicates trees
(see Figure 3(a)). A balance at medium intensity level of the two primary
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(a) (b)

Figure 1. Tougou basin, (a) COSMO-SkyMed Level 1α product -Blue band: 28 April 2011 (dry season);

Green band: 27 March 2011 (dry season); Red band: interferometric coherence- and (b) 27 March 2011
intensity map. Spatial resolution 3 m × 3 m.

(a) (b) (c) (d) (e) (f) (g)

Figure 2. Table of colors associable with the classes identifiable on the RGB composition depicted in Figure
1(a). In particular: (a) Dark pastel green (“Grasses”), (b) Cyan (“Trees”), (c) Oxford blue (“Seasonal
water”), (d) White (“Man-made scatterers”), (e) Tea leaf (“Rocks”, “Humid soil”), (f) Black (“Weak
scatterers”), (g) Prussian blue (“Bare dry soil”).

colors, i.e. tea leaf color (see Figure 2), marks humid soils and rocks. Finally,
the balance at low levels of green and blue (with tonalities which could be
identified with Prussian blue or Dark green) indicates bare soil. Since in
Figure 1(a) the two images have been both acquired in the dry season,
the dominant color is cyan in its various gradation, i.e. soil with various
percentage of moisture (see Figure 3(a) and Figure 3(b));

- Tonalities of green color indicate low vegetation and crops (see Figure 3(a)).
These areas can be observed only in the immediate nearby of the dam and are
identified by the zones in which the electromagnetic response of the March’s
image (green band) is dominant with respect to April’s (blue band) thanks to
the backscattering enhancement due to volumetric effects triggered by leafs
(Fung 1979);

- Bright targets indicate man-made objects (see Figure 3(a) and Figure 3(b)),
having a high contribution of all the bands which form the RGB composition.
These features would be indistinguishable from trees or other highly reflective
natural targets without taking into account of interferometric coherence.

As explained in Amitrano et al. (2015), the main characteristic of Level-1α im-
agery is that the association color-object (being physical-based) is stable for varia-
tion of climatic conditions and scene structure. Therefore, the above consideration
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(a) (b)

Figure 3. Details of the Level-1α product depicted in Figure 1(a): (a) a rural area in the nearby of a dam
and (b) a small human settlement.

Figure 4. Block diagram of the proposed classification framework. The pre-classification block is detailed

in Section 3.1. The post-classification phase is discussed in Section 3.3. In particular, the vector mode filter

implementation is described in 3.3.1; a solution for morphological filtering is provided in 3.3.2. Results of

the classification framework are discussed in 4.

hold for an image acquired on an urbanized scene in temperate environment as the
one we will analyze in Section 4, given a proper selection of the reference image,
which is guided by the application (Amitrano et al. 2015), such as the detection of
seasonal crops.

3. Definition of the classification framework

In Figure 4 the block diagram of the proposed framework is shown. It is artic-
ulated in three steps, pointing to the redistribution of the complexities from the
classification phase to those of pre- and post-classification. This simple architecture
is possible thanks to the usage of the Level-1α products which are characterized by
i) a high level of interpretability and ii) a good separability between the observable
classes. The former characteristic makes these products very attractive for super-
vised classification procedures, since their interpretability facilitates the training
phase. The latter characteristic allows to carry out the classification procedure with
simple algorithms which require only few parameters to be set.

The architecture presented in Figure 4 is rather standard, at least in the first two
stages (named as “pre-classification” and “classification” in the picture). Therefore,
it is poorly suited for being applied to SAR data. However, the introduced novelties,
concerning the input products for the classifier and the post-processing phase (in
which two morphological operators are used) allows for obtaining performances
fully comparable with those of definitely more complex algorithms. It is worthwhile
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to remark that Level-1α imagery is obtained by multitemporal processing of N
images, even if each product involves only two of them, as stated in Amitrano
et al. (2015). As all multitemporal processing, the quality of the products increases
as the number of the available images increases.

The proposed approach looks towards temporal series of classification maps,
introducing a novelty with respect to the past literature in which typically aimed
at producing a single classification map by integrating the information acquired by
N acquisitions considered as stand-alone events. Nevertheless, when N acquisitions
of the same scene are available, a series of N − 1 products and classification maps
can be retrieved. This could be useful if a long-term environmental monitoring is
required, since the changes between one acquisition and another can be recorded
with a programmed revisit time. In the case of archive data the entire extent of the
time series can be exploited to perform historic investigations and/or statistics. At
semantic level, the detectable classes have a different meaning with respect to the
classic SAR literature. In fact, our framework brings to a labeling which depends on
the comparison of objects backscattering with respect to a pre-established reference
situation, rather than on the temporal behavior of the scene with respect to some
multitemporal quantities.

The block diagram presented in Figure 4 is quite generic. In the following subsec-
tions we delineate a schema which allows to reduce drastically the pre-classification
activities necessary for supervised classification procedure and, in general, intro-
duces significant simplification in all the other blocks of the chain.

3.1. Pre-classification

Level-1α products defined by MAP3 (Amitrano et al. 2015) are particularly well-
suited for supervised classification procedures. In fact, these products have the
peculiarity of introducing a good separation between the classes, which can be
identified using simple algorithms. Moreover, the training phase is simplified thanks
to their high degree of interpretability, which allows to identify objects by simple
and fast visual inspection. Conversely, this operation could be very complex and
tedious when considering a single channel image, especially if the operator has no
a priori knowledge about the scene.

The supervised approach requires the user to select representative training data
for each of a predefined number of classes. Classification performance is highly de-
pendent on users ability in modeling the class distribution. With this respect, the
users experience is crucial for identifying and locating the best training areas that,
ideally, should be homogeneous and known, or, at least, recognizable (Townshend
1981). The introduction of the Level-1α products strongly mitigates these uncer-
tainty factors since they can be easily managed and interpreted also by nonexpert
users.

3.2. Classification

In our framework the complexity of the classification algorithm is redistributed
toward the phases of pre- and post-classification, allowing to avoid the usage of
complicated decision rules. Therefore, in this work we used the maximum likelihood
(ML) classifier. This choice was guided by the simplicity of the set up and by their
wide availability on commercial and open-source suites.

However, it is worthwhile to note that due to the strong inhomogeneity of the
urban areas we exploit the high separability of this feature characteristic of the
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Level-1α products using an interferometric coherence-derived mask. In fact, as
explained in Richards (1999), the ML classification used in this work assumes that
the statistics for each class in each band are normally distributed and calculates
the probability that a given pixel belongs to a specific class. In Level-1α imagery,
it is not possible to assume that the urban area has this type of distribution, being
it very heterogeneous. Therefore, we used the interferometric coherence, which is
represented in the red band of the Level-1α product, for identifying the features
belonging to this class. In fact, it is well known that urban structures have typically
a high value of interferometric coherence, therefore they can be easily detected by
thresholding this quantity.

3.3. Post-classification

The output of the classification procedure could be mottled, especially if complex
scenes are analyzed. Hence, an adequate post classification step is required in order
to obtain a more homogeneous output map. In this work, we propose a simple post
classification phase composed of two steps: i) application of a mode filter and ii) of
a morphological filter that generates the final output. These activities are described
in detail in the following paragraphs.

3.3.1. The vector mode filter

The mode filter is a reliable solution for filtering the output of the selected clas-
sifier, obtaining homogeneous classification maps with minimum alteration of its
informative content.

The mode filter substitutes the central pixel of a sliding window with the mode
computed within the window itself. However, the execution of that filter must
take into account three requirements: simplicity, accuracy and velocity. In fact, the
implementation of a sliding window running throughout the whole scene implies
a high computational burden, which has to be carefully managed in order reduce
the execution times. As a matter of fact, for a m × n image and a square sliding
window of dimension l (with l odd), the number of windows to be evaluated is
(n− l + 1) (m− l + 1). Hence, for example, if the scene is 5000 × 5000 pixels and
the sliding window is a three pixels square side, the number of windows to be
processed is 24980004.

A solution for implementing the sliding windows particularly suitable for vec-
torial languages is to exploit the Hankel indexing (Partington 1989). To this end,
assign to each element of the scene a linear index, for example proceeding along the
rows of am×nmatrix, obtaining the matrix I:Ii,j = j+(j − i) (i− 1)+n (i− 1) , i =
[1, . . . ,m] , j = [1, . . . , n]. The purpose is to process the sliding window in vector
form, i.e. to build an index matrix W in which each row collects the elements of a
window.

In order to get this matrix, consider the Hankel-like matrix of dimensions k × l,
where k = n − l + 1. This matrix is such that its generic element a is such that
ai,j = ai−1,j+1.

The matrix H collects on each row the first l elements of the sliding windows
which involve the first row of the matrix I. Therefore, we can place side by side to
the H matrix l columns with an index jump of n with respect to the elements Hi,l.
This operation has to be repeated l − 1 times, i.e. once for each remaining row of
the sliding window. Hence, the intermediate matrix T has dimensions k × l2 and
it is obtained as in the following pseudo-code:
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FOR i = 1, l DO
T(∗, ilu1 + v1) =H+nih,

END

where v1 is a vector, v1 = [1, 2, . . . , l], u1 is a vector of dimensions [1× l] whose
elements are all equal to 1, and h is a matrix whose elements are all equal to 1, i.e.
h:hi,j = 1, ∀i ∈ [1, . . . , k], ∀j ∈ [1, . . . , l2]. We indicated with the asterisk T(∗, . . .)
that the operation involves all the row of the matrix T using a notation typical of
many programming languages.

The matrix T represents the sliding windows for the first l rows of the matrix
W. The last step is to replicate this matrix by rows k times inserting an indexes
jump of l every k rows as follows:

FOR j = 1, k DO
W(jku2 + v2, ∗) =T+njt,

END

where v2 is a vector v2 = [1, 2, . . . , k], u2 is a vector of dimensions [1× k] whose
elements are all equal to 1, and h is a matrix whose elements are all equal to 1, i.e.
t:ti,j = 1,∀i ∈ [1, . . . , nw], ∀j ∈ [1, . . . , l2]. Each row of the matrix W is composed
by the linear position index of the pixels belonging to a sliding window. The matrix
dimensions are nw × l2 , where nw = n × (l − 1)/2 ×m × (l − 1)/2, with l odd.
Applying the indexes matrix obtained in such a way to the input image, we get
the sliding windows in vector form in which the mode has to be computed. We
implemented an optimized procedure to accomplish this task, which is structured
as below:

- Let NC be the number of classes present within the classification map and
build a three dimensional matrix C of dimensions nw × l2 ×NC such that

C(∗, ∗, i) = Z + iz, i = 1, 2, , NC , (1)

where Z is a matrix in which all the elements are equal to zero red and z is a
matrix of the same dimensions of the matrix Z whose elements are all equal to
1. The matrix C is composed by a series of matrices in which all the elements
are equals between them and equal to the position index of the element in
the third dimension of C. Hence, C(∗, ∗, 1) =Z+z, C(∗, ∗, 2) =Z+2z and so
on;

- Let S the matrix of the sliding windows and replicate it in the third dimension
NC times. In such way, S and C are two matrices of dimensions nw× l2×NC ;

- Make the subtraction A = S−C; in such way, along the third dimension of
A we find a zero when the position index coincides with the class indicated
in the matrix S;

- Mark with one all the positions in which there is a zero in the matrix A;
- Introduce the matrix B obtained by the summation by row of the matrix A.

This matrix have dimensions nw ×NC . The values of B along the columns
indicates how many times each class appears in each window;

- Compute the maximum of the matrix B by rows: the position index of the
maximum of each rows indicates the mode of the window.

This vector approach allows to process a scene of size of the order of 4984×5831
in about one minute on a machine with 12 GB of RAM memory and 8 processors.
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The same operation carried out with no vectorization has been completed in about
8 minutes.

3.3.2. Morphological filtering

Mathematical morphology is the most appropriate instrument for extracting image
components that are useful in the representation and description of region shape,
such as boundaries, skeletons and convex hull. Moreover, morphological techniques
are also used for image preprocessing and/or postprocessing for filtering, thinning
and pruning activities (Gonzalez and Woods 2007). In this section, in order to
optimize the classification map, we use a “closing” morphological operator with
square structuring element. It is obtained through the application of the two basic
morphologic operators of dilation and erosion. This filter tends to smooth sections
of contours fusing narrow breaks and long, thin gulfs and eliminating small holes
and filling gaps in the contour (Gonzalez and Woods 2007).

4. Experimental results

In this section we applied the proposed framework to a Level-1α product extracted
from a set of COSMO-SkyMed images acquired over the city of Castel Volturno
(Italy) in stripmap mode (3 m spatial resolution) and HH polarization between
December 2009 and October 2011. In particular, the product used for classification
involves two images acquired on December 2009 (reference image, blue band) and
August 2010 (test image, green band). Therefore, according with the rationale of
Level-1α imagery, this product is well-suited for detecting summer crops, since
the enhancement of backscattering produced by the growth of plants and fruits
(Fung 1979) causes for this feature a dominant response of the green band in the
RGB composite. In general, since the colorimetric response of Level-1α imagery is
invariant for scene and climatic conditions, all the considerations made in Section
2 about the association color-object hold for the scene here presented.

The validation of the classification procedure has been performed using an ex-
ternal ground truth derived from the CORINE land cover (Feranec et al. 2007).
Seven classes (“Grassland”, “Summer crops”, “Urban areas”, “Woods”, “Winter
crops”, “Water” and “Temporary water”) were extracted, as shown in Figure 5(a),
for a total extension in the order of 200000 pixels. However, it is remarkable that
the class “Temporary water” does not exist in the CORINE land cover product.
For this reason, a ground truth for such class has been built exploiting the SAR
product.

The Level-1α product of the study area is depicted in Figure 5(b). The used
training sets are depicted in Figure 6. The first experiment was the solution of
the classical SAR classification problem, i.e. a four classes classification (Bruzzone
et al. 2004) for the features “Water”, “Temporary water” (TW), “Urban areas”
and “Woods/grasses/crops”. Results of this experiment are shown in Figure 7(a)
and Table 1. The registered kappa coefficient κ and overall accuracy are 0.78 and
93.65%, respectively.

As a general comment, in Table 1, a moderate interclass confusion between
the classes “Urban areas” and “Woods/Grasses/Crops” (WGC) is registered. This
is due to the high resolution of the input maps which contrasts with the ground
truth extracted from a land cover whose objective is to identify large homogeneous
areas, which, in the case of urban areas, include other features (such as trees and
grassland or gardens) detectable on the SAR product.
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(a) (b)

Figure 5. Castel Volturno, (a) CORINE land cover with the extracted ground truth and (b) the relevant

Level-1α product. Reference image: December 2009; Test image: August 2010.

(a) (b)

Figure 6. Castel Volturno, training sets: (a) woods (red), water (blue), temporary water (magenta) and

(b) winter crops (green), grasses (yellow), summer crops (orange).

Table 1. Castel Volturno, four classes classification confusion matrix. κ = 0.78, overall accuracy: 93.65%.
PA: producer accuracy. UA: user accuracy.

TW WGC Urban Water PA (%) UA (%)

TW 89.75 1.30 0.52 0.47 89.75 59.84
WGC 10.25 96.61 33.46 0.19 96.61 95.97
Urban 1.13 65.44 65.44 86.97
Water 0.96 0.58 99.34 99.34 85.86

The model can be complicated separating “Woods” (prevalently located at south-
west of our scene, as clearly observable in the Level-1α product of Figure 5(b))
from “Grassland and Crops” (GC), as shown in Figure 7(b) and Table 2. The
separation is quite good and in fact the registered κ and overall accuracy (which
are 0.741 and 90.44%, respectively) are only slightly lower with respect to the four
classes problem.

Results of the six classes experiment are shown in Figure 7(c). In this case we
separated “Summer crops” (Sc) from “Grassland and winter crops” (GWc). This
separation is possible thanks to the characteristics of the Level-1α products. In fact,
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(a) (b)

(c) (d)

Figure 7. Castel Volturno, ML classification with (a) four, (b) five, (c) six and (d) seven classes.

Table 2. Castel Volturno, five classes classification confusion matrix. κ = 0.741, overall accuracy: 90.44%.

TW GC Urban Woods Water PA (%) UA (%)

TW 89.75 1.26 0.52 1.95 0.47 89.75 59.84
GC 10.25 94.72 33.18 30.85 0.19 94.72 93.64
Urban 1.20 65.44 0.01 65.44 86.87
Woods 1.99 0.28 64.31 64.31 68.67
Water 0.83 0.58 2.89 99.34 99.34 85.56

summer cultivations have a response which turns into green since the dominance of
the test (summer) band with respect to the reference (winter) one. However, this
splitting caused a fall of the κ and of the overall accuracy to 0.563 and 70.46%,
respectively. This can be explained by the fact that if the harvesting has been
already performed on some fields (in fact, the test band has been acquired at the
end of August), and their response looses the volumetric contribution given by the
abundant presence of leafs and plants and turns toward those of a pasture. The
complete confusion matrix for this experiment is reported in Table 3.
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Table 3. Caserta dataset, six classes classification confusion matrix. κ = 0.563, overall accuracy: 70.46%.

Class abbreviations: TW: Temporary water, GWc: Grassland and winter crops, Sc: Summer crops. PA:
producer accuracy, UA: user accuracy.

TW GWc Sc Urban Woods Water PA (%) UA (%)

TW 89.75 0.03 2.59 0.52 1.95 0.47 89.75 59.84
GWc 80.07 34.55 16.97 8.72 80.07 68.5
Sc 10.25 17.36 57.22 16.21 22.12 0.19 57.22 68.12
Urban 0.86 1.58 65.44 0.01 65.44 86.87
Woods 1.62 2.40 0.28 64.31 64.31 68.67
Water 0.06 1.67 0.58 2.89 99.34 99.34 85.56

A further splitting is possible. In fact, winter crops should exhibit a higher
backscattering in winter and, as a consequence, a response which turns into blue
on the Level-1α product. The results of this seven classes procedure are shown in
Figure 7(d). However this strongly depends on the type of cultivations and on
the sowing time. In fact, in souther Italy, autumn/winter cereals are seeded usu-
ally in November due to the mild climate. The relevant fields not always reach a
backscattering such as to be separated from grassland at the end of December.
In fact, in the study area, this cultivations experienced their maximum growing
stadium usually in May/June since the harvesting is performed at the beginning
of summer. For this reason, the class “Winter crops” is highly absorbed by the
“Grassland” one. The registered κ for this classification is 0.462 while the overall
accuracy is 60.58%. The confusion matrix is omitted for brevity.

5. Conclusions

In this work we introduced an end-user-oriented framework for the classification of
multitemporal SAR data which exploits the characteristics of the Level-1α prod-
ucts. The proposed framework makes use of simple tools well-known in literature
and, fusing the concepts of classification and change detection, contextualizes its
products in the field of the time series of classification maps. The extracted classes
have a different semantic content with respect to the past literature since the de-
tection is made by comparison of objects backscattering with respect to a reference
situation rather by the analysis of the temporal behavior along the entire series.

The proposed approach exploits the peculiarity of the Level-1α products: in-
terpretability and class separability. The former property makes our framework
particularly well-suited for supervised classifications, since the training step is sim-
plified and fast. The latter property allows for using of very simple classification
algorithms. This allows for reduce the complexity of the whole activity, making
this schema particularly attractive for nonexpert SAR users. In fact, from the end-
users’ standpoint, the proposed framework fulfills the requirements of simplicity,
repeatability, velocity and accuracy. In particular: i) the use of the Level-1α opti-
mize the the selection of the training sets; ii) the simplicity of the training step and
of the decision rule ensures the classification procedure to be completed in a very
short time. The post-classification phase also has a small computational burden,
thanks to the vector form of the mode filter and to the mathematical morphology
robustness; iii) the procedure is simply replicable either for different elements of
the same time series or for other scenes with characteristics completely different;
iv) the obtained results testify the potentiality of the proposed framework in terms
of accuracy and reliability of the output maps.
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Due to the simplicity of the schema, in many cases high level classes can be
obtained. This is particularly useful in operative contexts when quick preliminary
analysis are needed. In this optic, our framework acts as a pre-classifier whose
results can be exploited for more detailed investigations.
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