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Abstract—In this paper, we present a technique for
improving the representation of built-up features in model-
based multitemporal SAR RGB composites. The proposed
technique exploits the MAP3 framework to generate an
a priori information which is used to implement an
adaptive selection of the coherence window size. Image
texture is used to support the coherence information in
case of decorrelation. The coherence information, powered
by texture analysis and combined with backscattering
amplitude, provides an unique representation of built-up
features, which allows for an immediate detection of urban
agglomerates by human operators and is an advantaged
starting point for urban area extraction algorithms.

Index Terms—multitemporal sar, fuzzy logic, data representa-
tion, urban areas

I. INTRODUCTION

The first contact with Earth observation data is
realized by visual inspection, through which images
are understood [1]. However, this is not an easy
task, especially dealing with synthetic aperture radar
(SAR) data, whose interpretation requires a techni-
cal expertise typically not held by multidisciplinary
users.

As stated in [2], “a good knowledge representa-
tion design is the most important part of solving
the understanding problem”. Therefore, the remote
sensing community started to think about new pro-
cess model, in which the machine is a support for
the operator in taking decisions [1], [3] rather than
an executor of an algorithm completely unknown to
the analyst. Clearly, the realization of an effective
human-machine interaction, also takes place through
a comfortable data visualization. Recently, some
of the authors introduced the MAP3 framework
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[4] to build two classes of multitemporal RGB
composites [4], [5]. The products have the aim i)
to lower the expertise level required for managing
SAR data, providing products easily interpretable
and processable with simple algorithms [6], and ii)
to shorten the distance between Level-1 and Level-
2 products in a user-oriented environment, in which
the fundamental requirements of repeatability, pro-
cessing automation, and ease of data interpretation
must be satisfied.

The main characteristic of these products, named
as Level-1α [4] and Level-1β [5], is that the
association color-object, being physical-based and
guided by electromagnetic scattering models, does
not depend on the scene. In this work, we focus in
particular on the built-up feature. This class of ob-
jects is characterized by precise temporal properties:
high (and stable) backscattering and high interfero-
metric coherence, even when computed with a long
temporal baseline. These properties make built-up
features appear white in Level-1α images, which are
obtained combining the backscattering amplitude of
two acquisitions and their interferometric coherence
(see [4] for details).

Coherence is estimated in a moving window,
whose typical dimensions are of several meters in
order to avoid bias [7]. However, this choice is
not optimal for all the scene targets. Moreover,
decorrelation can occur due to several causes, such
as orbital instability, baseline length, shadowing,
feature shape and so on. The lack of coherence
contribution makes the built-up class appear in cyan
(thanks to the contribution of the amplitude bands),
thus introducing an alteration of the expected se-
mantic.

In this work, we present a technique that aims
at improving the information content of the inter-
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ferometric coherence band. This technique exploits
an input Level-1α product for generating a priori
information that is used for i) adapting the coher-
ence window dimension to the scene target and
ii) introducing a texture measure which is used to
identify the built-up feature class when it does not
response to the variation of the coherence window
dimension.

This work was designed under the aegis of the
MODISTA project, and in collaboration with by
Ansaldo STS, which is one of the largest worldwide
players in the market of trains and rail infrastruc-
tures. The objective of the project is the satellite
monitoring of railway infrastructures, including rail-
roads, stations and all the objects placed in their
proximity, such as trellises or lamp posts. Railways
are particularly critical in the response to the inter-
ferometric coherence. In fact, their structure, con-
sisting of a small trihedral surrounded by stochastic
scatterers (soil, stones, vegetation), typically causes
an underestimation of the interferometric coherence.
Therefore, in this case the introduction of texture
can help in the restoration of the scene semantic.

In Section II we introduce the coherence feedback
system for the MAP3 framework. The results of the
feedback application are presented in Section III. In
Section IV, we face a building extraction application
using the enhanced Level-1α product and compare
it with two literature machine learning methods.
The assessment of the performed experiments is
provided in Section V. Conclusions are drawn at
the end of the work.

II. ENHANCED MAP3 FRAMEWORK

As known, the interferometric coherence is com-
puted by the relation:

γ =
E [I1 · I∗2 ]√

E
[
|I1|2

]
· E

[
|I2|2

] (1)

where E[·] and ∗ indicate the mathematical ex-
pectation and the complex conjugation operations,
and I1 and I2 are the master and slave images,
respectively.

In theory, the results of Equation (1) are obtained
by averaging a large number of images acquired
simultaneously. Obviously, this procedure is not
possible. Therefore, in practical situations, under the
assumption of ergodicity, it is possible to exchange
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Fig. 1: The expectation value |γ̂| as function of the true
coherence |γ| for various L.

the average of several images acquired simulta-
neously with a spatial average in a limited area
surrounding the considered pixel [7]. Therefore, the
maximum likelihood estimator of the coherence in
a window including N pixels is given by [8]

|γ̂| =

∣∣∣∑N
n=1 I

(n)
1 I

∗(n)
2

∣∣∣√∑N
n=1

∣∣∣I(n)1

∣∣∣2∑N
n=1

∣∣∣I(n)2

∣∣∣2 . (2)

The pdf of the coherence magnitude estimator can
be written as a function of the magnitude of the
true coherence |γ| and the number of independent
samples L > 2 [9]

pdf (|γ̂| , |γ| , L) = 2 (L− 1)
(
1− |γ|2

)L
|γ̂| ·(

1− |γ̂|2
)L−2

2F1

(
L,L, 1, |γ|2 , |γ̂|2

)
,

(3)

where 2F1 is the hypergeometric function.
The expectation for |γ̂| is given by [7]

E [|γ̂|] =
Γ (L) Γ (3/2)

Γ (L+ 1/2)
·

3F2

(
3/2, L, L;L+ 1/2, 1; |γ̂|2

) (
1− |γ̂|2

)L
,

(4)

where Γ is the gamma function and 3F2 is the
generalized hypergeometric function. The expecta-
tion expressed by Equation (4) is plotted in Fig. 1.
From this graph, it arises that the estimate is biased
towards higher values for low coherence and/or
when the estimation window is small [10].

Equation (2) requires the selection of the mean
window dimension, which determines the perfor-
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mance of the estimator with respect to the scene
objects [11]. As an example, rough surfaces (like
the sea) exhibit a stochastic and non-stationary
backscattering, which is expected to produce inco-
herent signals. Thus, as explained above, a small
coherence window could produce a noisy coher-
ence. Conversely, man-made structures, having a
deterministic stable scattering, typically exhibit high
coherence values. Especially if the urban texture
is not dense, a large computation window could
include features like vegetation, shadows, or roads
together with buildings, thus causing a decrease
in the resulting coherence, together with a poor
resolution of the computed map.

In Fig. 2a we show a 3-meters resolution Level-1α
product [4] of the city of Castel Volturno (Italy). The
product is composed as follows: on the blue band,
an image acquired on December 2009 (reference
image) is loaded; the green band depicts an image
acquired on August 2010 (test image); the red
band is reserved for the interferometric coherence
between the two images computed using an 11-pixel
side mean window. For further details about Level-
1α processing can be found in [4].

(a) (b)

Fig. 2: Castel Volturno: Level-1α product (reference image
December 2009, test image August 2010) computed setting
the coherence window to (a) 11 pixels and (b) 3 pixels.

About eight months passed between the two ac-
quisitions. Therefore, we expect that only stable
features, like buildings, keep high values of the
interferometric coherence. Being these features also
highly reflective, urban structures should be repre-
sented in white color. However, since the interfero-
metric coherence is computed using a mean window
(i.e. the interferometric coherence map has a coarser
resolution than the intensity products), stable targets
are surrounded by a red “crown”, which helps the
human photo-interpreter in their detection.

The product depicted in Fig. 2a is consistent with
the above considerations. Anyway, it is reasonable
to think that a mean window of about 30 meters
is too large for representing at best the details of
the urban areas. In fact, the reader may have the
impression that white/red pixels are a bit sparse
for being representative of a dense urban area.
This means that the choice of coherence window
dimension was not optimal since it did not allow
to fully exploit the characteristics of the estimator
defined in Equation (1).

In Fig. 2b we repeated the same experiment
setting the coherence window to three by three
pixels. In this case, it is clear that the image has
an unacceptable granularity, which is physically
inconsistent, besides being visually unpleasant. In
fact, as an example, wide portions of the sea surface
exhibit high coherence values. In this case the
estimate on stochastic targets is affected by a bias
which increases as the coherence window dimension
decreases [7]. Anyway, it is also true that the urban
area is better represented using a smaller window,
since it is possible to appreciate that more details
arise compared to the product depicted in Fig. 2a.
Therefore, a strategy for adapting the coherence
window to the scene target is needed.

To this end, we propose a feedback system, whose
rationale is depicted in Fig. 3. The system is struc-
tured as follows:

- Level-1α product analysis: the characteristics of
intensity and coherence of the MAP3 output are
evaluated;

- Adaptive coherence window generation: an
adaptive coherence window is implemented
based on the above analysis; in such way the co-
herence estimated by Equation (1) is optimized
for the considered target;

- New coherence map: the final coherence map is
assembled and given as input in the quantization
process for the generation of the refined Level-
1α products.

In the following, we provide details about the
implementation of the proposed feedback.

A. Fuzzification

The coherence feedback system is based on the
fuzzification of Level-1α’s coherence and intensity
bands. We modeled these variables using three
fuzzy sets with verbal attributes of “low” (Z-type),
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Fig. 3: Coherence feedback system for the MAP3 framework.

“medium” (π-type) and “high” (S-type). In particu-
lar, the following expression was adopted [12]:

S(DN, a, b, c) =

=


0, DN ≤ a

2 {(DN − a) / (c− a)}2 , a < DN ≤ b

1− 2 {(DN − c) / (c− a)}2 , b < DN ≤ c

1, DN > c,
(5)

in which DN means digital number and a, c and
b = (a + c)/2 are the parameters that model the
S-function (see TABLE I for details). The Z-type
fuzzy set is obtained from the S-type one being
Z(DN, a, b, c) = 1− S(DN, a, b, c). Finally, the π-
type function is built by combining a S-type and
a Z-type function sharing the parameters c and a,
respectively, as shown in TABLE I. The obtained
fuzzy sets are plotted in Fig. 4.

TABLE I: Parameters used for modeling the adopted fuzzy
set for Level-1α’s coherence and intensity bands and for the
coherence window.

Level-1α Coherence window
Function type a b c a b c
S-type 160 190 220 21 36 51
Z-type 0 60 120 0 2.5 5
π-type (S-part) 40 100 160 3 7 11
π-type (Z-part) 160 185 210 11 26 31

The purpose of this system is to adapt the di-
mension of the coherence window as a function of
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Fig. 4: Fuzzy set adopted for the fuzzification of the input
Level-1α product.

the phase-stability and reflectivity characteristics of
the target. Essentially, we aim at reducing the mean
window as the coherence and the intensity responses
increase. To this end, the system output (i.e. the
coherence window size) is fuzzified as well as the
characteristics of the input Level-1α products. In
particular, we considered three types of windows,
“small”, “medium” and “large”, which have been
modeled similarly with a S-rule, a π-rule, and a Z-
rule, respectively.

The assignment of the coherence window cate-
gory for each image target is now in order. The
rationale is quite simple: the more stable and reflec-
tive the target, the smaller the coherence window.
In TABLE II, we report the adopted rules for the
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assignment of the fuzzy categories “small” and
“medium” to the coherence window. All the other
cases are reserved to the “large” window attribute.

TABLE II: Adopted rules for the assignment of the coherence
window attribute.

Window Coherence Intensity 1 Intensity 2

Small

High High High
Medium High High

High Medium High
High High Medium

Medium

Medium Medium Medium
Low High High

Medium Medium High
Medium High Medium

High Medium Medium

The selected fuzzy sets for the coherence window
are depicted in Fig. 5. They have been partitioned
as a function of the membership degree. As an
example, the fuzzy set “small” is subdivided in
three parts. The first part corresponds to persistent
scatterers (PSs), and is reserved to pixels with the
highest membership within this fuzzy set, which
are likely to be the more reflective and coherent in
the input Level-1α product. As the membership of
“small” window decreases, the window dimension
increases to three and five pixels, since the corre-
spondent targets seem further away to behave as
PSs. Similar reasoning can be performed for the
“medium” window fuzzy set. As for the “large”
window fuzzy set, we do not define any partition,
since all the scatterers belonging to it are expected
to be stochastic.

The coherence window attribute (“small”,
“medium” or “large”) and, as a consequence, the
dimension of the coherence window according to
the aforementioned partitions of the fuzzy sets, is
assigned by computing the maximum membership
degree after the application of the rules reported in
TABLE II.

It is remarkable that an ambiguity arises concern-
ing the “medium” coherence window. In fact, due
to the bell-shape of this fuzzy-set, two windows
dimensions correspond to each membership degree,
one for the S-part of the π and one its Z-part.
However, these windows correspond to targets with
very different characteristics. In fact, on the S-part
of the π, we expect to have targets with medium-
high characteristics of reflectivity and coherence. On
the contrary, on the the Z-part of the π, we expect to
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Fig. 5: Fuzzy set adopted for the fuzzification of the coherence
window. The values labeling the curves indicates the dimen-
sion of the window used for that piece of curve. PS stands
for “permanent scatterer”; in this case the coherence is not
calculated but assumes a (high) default value.

find targets more likely to be incoherent. Therefore,
we require that targets which lie in the S-part of
the “medium” window fuzzy set must have “high”
reflectivity in both the images which compose the
Level-1α product. Otherwise, they are placed on the
Z-part of the π, on the side of the largest windows
associated to this fuzzy set.

B. Use of texture

Coherence response of targets depends on several
factors. Decorrelation can occur, also on stable
targets, due to imaging geometry (incidence angle),
shadowing, misalignment with respect to the flight
direction or the shape of the building. As an ex-
ample, a squared-shape building with smooth walls
is more likely to have a more coherent response
than one with an irregular shape or a pitched roof.
Therefore, it is possible that some buildings do not
exhibit a coherent response after the reduction of
the coherence window.

In Level-1α imagery, built-up features are repre-
sented in white color, due to the high contribution
of both amplitude and interferometric channels.
However, as explained above, decorrelation could
cause this feature to appear in cyan. Here, we want
to introduce a texture measure for enhancing the red
band informative content. This way, it is possible
to restore the semantic the user expects on built-up
features, making this feature class appear white.
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(a) (b) (c) (d)

Fig. 6: San Prisco (Italy): (a) Level-1α product, (b) two-categories k-means clustering, (c) edge map and (d) Nagao-Matsuyama
texture.

The principle we exploit is the convergence of
evidences [13]. Until now, we have assumed that
the built-up class is characterized by high ampli-
tude (in both the dates that constitute the Level-
1α bi-temporal composite) and high interferometric
coherence. The introduction of a fourth evidence,
i.e. the texture, allows to slacken the requirements
on the interferometric coherence and to consider as
built-up also the objects that, even after the feedback
application, do not exhibit a high response to the
coherence estimator but are highly reflective (in
both Level-1α’s acquisitions) and located in areas
characterized by high texture.

The texture measure we use was introduced by
Nagao and Matsuyama in [14]. To obtain it, we
first applied a k-means clustering to the input Level-
1α product (see Fig. 6b and Fig. 6a, respectively).
A coarse clustering is sufficient for our purposes.
In fact, as shown in Fig. 6b, we just separated the
white, red and cyan color (grouped in the white class
in the classified map) from all the others (green
class). The white class can be roughly associated
with built-up features.

The cluster map is used for contour extraction
through the application of the second Laplacian
operator [15] (see Fig. 6c). Finally, the Nagao-
Matsuyama texture can be computed. It is a very
simple rule: a moving window of dimension N is
applied to the contour map; if in a window fall at
least 2N + 1 border pixels, then the central pixel
of the window is classified as high texture area.
Otherwise, it is classified as a low texture area. The
result of the application of this rule to the computed
edge map is depicted in Fig. 6d.

The texture evidence is activated (for pixels clas-
sified as high texture areas) on objects characterized

by high backscattering in both Level-1α acquisitions
and low coherence. Obviously, the information con-
veyed by the red band for these targets does not
concern anymore their phase stability.

III. EXPERIMENTAL RESULTS

The proposed feedback aims at enhancing the
built-up features in Level-1α images in order to
make the urban area extraction/mapping process
easier. This is a current problem in the remote
sensing community, which provided several studies
about this topic. Reference [16] proposed a semi-
automatic solution for mapping urban areas using
backscattering, statistical information, and informa-
tion fusion techniques. In [17], a multi-resolution
and multi-sensor data fusion technique for mapping
urban areas is presented. Reference [18] proposed a
novel method for the automatic detection of building
footprints from a single VHR SAR image. Marin
et al. [19] introduced a new approach to building
change detection in multitemporal VHR SAR im-
ages based on backscattering variability. A semi-
automatic segmentation-based tool for urban area
interpretation in SAR images was proposed in [20].
Reference [21] presented a new model combining
amplitude SAR data and textural information into a
Markov random field model to address the problem
of classifying images of urban areas. Reference
[22] proposed an interactive framework exploiting
Markov random fields for the classification of mul-
titemporal SAR data.

The objective of the feedback introduced in Sec-
tion II is to make Level-1α images suitable to be
processed with a simple rule, in a end-user-oriented
framework, for extracting the built-up feature. It
is based on the convergence of four evidences:
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(a) (b) (c)

(d) (e) (f)

Fig. 7: (a) Google Earth view of Macerata Campania stadium with its correspondent Level-1α products (b) before and (c)
after the feedback application. (e) Google Earth view of Sant’Angelo in Formis rail station with its correspondent Level-1α
products (d) before and (f) after the feedback application.

the amplitudes of the two acquisition composing
the input Level-1α product, their interferometric
coherence and the texture. The first three evidences
can be considered strong, since high characteristic
of reflectivity and coherence are almost an exclusive
property of built-up features. Texture, instead, is
assumed to be a weak evidence, because in SAR
imagery high texture areas are not necessarily ur-
ban areas. However, the convergence of two strong
evidences (i.e. the high backscattering in the two
Level-1α’s acquisitions) and one weak evidence (i.e.
the texture) make us confident that the target we are
considering is man-made.

In Fig. 7a we show a Google Earth view of
Macerata Campania, a small city in southern Italy.
In Fig. 7b and Fig. 7c the correspondent Level-1α
products before (coherence window set to 11 pixels)
and after the feedback application, respectively, are
depicted. Qualitatively, the reader should appreciate

as the feedback system improves the representation
of the built-up feature class. In fact, in Fig. 7c,
more bright targets are visible than in Fig. 7b.
Moreover, the red “crown” surrounding coherent
targets is practically disappeared. This means that
the resolution of the coherence map is higher.

In Fig. 7d we show a Google Earth view of the
city of Sant’Angelo in Formis (Italy), with its rail
station and railway at the left of the residential area
(see annotations on the picture). In Fig. 7b and
Fig. 7c the correspondent Level-1α products before
(coherence window set to 11 pixels) and after the
feedback application, respectively, are depicted. The
same considerations made for the Macerata Cam-
pania scene can be made: the feedback application
allows to retrieve a number of bright targets, i.e.
more buildings, in the residential area, more details
on the railway and improves the resolution of the
coherence map.
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These claims will be much more evident if Fig. 8
is considered. In particular, in Fig. 8a and Fig. 8b we
reported the red band (i.e. the one representing the
coherence information) of the products displayed in
Fig. 7b and Fig. 7c. In Fig. 8c and Fig. 8d the red
band of the products displayed in Fig. 7e and Fig. 7f
are depicted. All the maps in Fig. 8 have been
obtained through linear quantization of the input
coherence product between the interval [0.45, 0.6].

(a) (b)

(c) (d)

Fig. 8: Macerata Campania: coherence map (a) before and
(b) after the feedback application corresponding with Level-
1α products depicted in Fig. 7b and Fig. 7c, respectively.
Sant’Angelo in Formis: coherence map (c) before and (d)
after the feedback application corresponding with Level-1α
products depicted in Fig. 7e and Fig. 7f, respectively.

It is remarkable that more bright points appear in
Fig. 8b and Fig. 8d (after the feedback application)
than in the maps depicted in Fig. 8a and Fig. 8c
obtained by applying Equation (1) with fixed 11
pixels window. This means that the urban area
is better characterized. In fact, as an example, in
Fig. 8b, the shape of the stadium is recognizable
(see the annotation on the picture) while in Fig. 8a
it is not.

In Fig. 8d (after the feedback application) it is
remarkable that more details of the railway station
arise than in Fig. 8c. Moreover, the shape of the
railway is now visible at the left of the residential
area (see annotation on Fig. 8d).

These experiments should qualitatively convince
the reader of the effectiveness of the proposed
algorithm. A quantitative assessment is provided in
the following section.

IV. FEATURE EXTRACTION

We tested the effectiveness of the proposed
methodology with a feature extraction application,
i.e. building extraction. The technique we used is
a simple, user-oriented band product [23]. The ob-
tained results are then compared with those given by
some literature technique based on machine learn-
ing. In particular, support vector machines (SVMs)
and self-organizing maps (SOMs) will be used to
classify data. In such way, we will prove that the
enhancement of the informative content of the input
Level-1α product, in combination with a simple
band product, provides results fully comparable
with those achievable using more and more com-
plicated techniques, both supervised (SVMs) and
unsupervised (SOMs).

A. Building extraction using the Building Index

The feedback application, enhancing the informa-
tive content of the red band of Level-1α imagery,
allows for an effective feature extraction using a
simple band product. The Building Index (BI) has
been proposed in [23], and it is here reported for
the ease of the reader:

BI =
RGB

2553
, (6)

where R, G and B are the values of the red,
green and blue bands of the input Level-1α product,
respectively.

Equation (6) has been applied to the input Level-
1α product before and after the feedback appli-
cation. In both cases a threshold of 0.1 has been
adopted for maps binarization.

The results of this activity are presented in Section
V. They will be compared with a ground truth
extracted from the Urban Atlas of the European
Environmental Agency.

B. Buildings extraction using self-organizing maps

Self-organizing maps (SOMs) are a machine
learning technique introduced by Kohonen [24],
which are exploited for the classification of the most
diverse data types in several applications [25]–[27].
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SOMs have been widely exploited in remote sensing
applications, in combination both with SAR and
multispectral/hyperspectral data [5], [28]–[33]. The
flexibility of the tool allowed for such a widespread
diffusion.

A SOM is a network composed by a user-defined
number of nodes, connected with (usually) a rect-
angular structure. They are randomly initialized and
trained with sample vectors randomly taken from
the data. Each time a training element is presented
to the network, the most similar node is detected
and identified as Best Matching Unit (BMU). The
BMU and its neighborhood, defined by a radius are
updated to become more similar to the presented
training element. This operation is repeated for all
the training vectors and for several cycles. As the
cycle number increases, the neighbour of the BMU
decreases; in such way the SOM becomes stable
(usually a high number of cycle is needed) and the
obtained nodes can be used to classify data.

Here, we used 1000 training vectors and 200
epochs for performing buildings extraction using
a 3 × 3 SOM. The input was a couple of SAR
images, i.e. the same amount of information used
for extracting features using the BI. After classifica-
tion, the clusters representative of building features
were selected. The obtained results are discussed in
Section V.

C. Buildings extraction using support vector machines

In the last decade, support vector machines
(SVMs) have been extensively introduced in the
statistical learning theory domain for regression and
classification problems [34]. In this methodology,
the optimal separation surface between classes are
used to identify the most representative training
samples, which are called “support vectors”. The
quality of the support vectors and of the classifi-
cation result depends on many parameters such as
number of training samples, kernel, penalty param-
eter. Therefore, some expertise and a tuning phase
are necessary to use this tool.

SVMs have been widely exploited for the classi-
fication and segmentation of remote sensing images
[31], [35], [36]. Here, we ran a SVM with radial
basis kernel on the stack composed by the two inten-
sity SAR images composing the Level-1α product
for identifying buildings. The obtained results are
discussed in Section V.

V. ASSESSMENT

The Urban Atlas was used for a quantitative
assessment of the experiments above illustrated.
It is a land cover map in which the density of
urban areas is measured with respect to the soil
sealing (SL), i.e. the covering of the ground by
an impermeable material. In particular, here we
are particularly interested in five urban categories
of the urban atlas: “Continuous urban fabric” (SL
> 80%)”, “Discontinuous Dense Urban Fabric” (SL
50− 80%), “Discontinuous Medium Density Urban
Fabric” (SL 30−50%), “Discontinuous Low Density
Urban Fabric” (SL 10 − 30%) and “Discontinuous
Very Low Density Urban Fabric” (SL < 10%).

The binary maps retrieved using the BI, the SOM,
and the SVM were compared with the polygons
provided by the Urban Atlas. In particular, we
compute the zonal statistics for each class, obtaining
the total number of building pixels that fall in the
polygons belonging to that class. Therefore, for each
class, the following equation was computed

N i =
∑
ki

ni
k, (7)

where N i is the total number of building pixels
for the i − th class, ki is the index of the polygon
belonging to the i− th class, and ni

k is the number
of building pixels which fall in the k − th polygon
of the i− th class.

The Urban Atlas class list can be found in TA-
BLE III together with the SL (when specified) and
the total area of the classes relatively to the study
area.

Once N i has been computed for each class, the
percentage of soil (on average) covered by built-up
pixelsfor the i− th class is obtained by relation

S̄L
i

= 100r
N i

Ai
, (8)

where r is the map cell size and Ai the total area
covered by polygons belonging to the i− th class.

In Fig. 9 a picture of the study area containing
both the input Level-1α product and the urban atlas
layer is shown. The results of the application of the
above described assessment procedure are reported
in TABLE III.

As expected, the percentage of soil covered by the
built-up class significantly increased after the feed-
back application. In particular, the SL index passes:
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TABLE III: Area covered by built-up pixels compared with Urban Atlas categories before and after the feedback application.
In the table headings SL stands for soil sealing; BI for building index; SOM for self-organizing map; SVM for support vector
machine.

Urban atlas categories SL (%) Area BI SL before BI SL after SL SOM SL SVM
[km2] (%) (%) (%) (%)

Continuous Urban Fabric > 80 2.77 12.11 24.83 24.23 31.11
Discontinuous Dense Urban Fabric 50-80 5.22 9.6 20.54 20.09 26.09
Discontinuous Medium Density Urban Fabric 30-50 1.09 4.81 11.04 11 14.61
Discontinuous Low Density Urban Fabric 10-30 0.46 2.33 5.59 5.55 7.49
Discontinuous Very Low Density Urban Fabric < 10 0.08 1.39 3.35 3.05 4.57
Agricultural, Semi-natural areas, Wetlands 42.1 0.13 0.7 0.73 1.02
Isolated structures 0.6 1.82 3.96 3.96 5.35
Industrial, commercial, public, military and private units 4.13 4.11 9.18 9.46 12.76
Other roads and associated land 25.6 0.54 1.32 1.23 1.64
Land without current use 0.2 1.33 3.56 4.3 6.06
Fast transit roads and associated land 0.41 0.14 0.5 0.52 0.71
Railways and associated land 0.43 1.54 4.61 3.5 6.44
Mineral extraction and dump sites 0.32 0.2 10.28 7.89 11.87
Construction sites 0.04 5.26 7.62 7.12 9.42
Green urban areas 0.09 4.03 10.21 9.31 12.06
Sports and leisure facilities 0.34 4.28 8.4 8.59 11.02
Forests 6.37 0.06 2.32 2.17 2.92
Water bodies 1.16 0.09 0.2 0.59 0.94

Fig. 9: Level-1α product of the study area with the correspon-
dent urban atlas layer.

from 12.11% to 24.83% for the class “Continuous
Urban Fabric”, from 9.6% to 20.54 for the class
“Discontinuous Dense Urban Fabric”, from 4.81%
to 11.04% for the class “Discontinuous Medium
Density Urban Fabric”, from 2.33% to 5.59% for the
class “Discontinuous Low Density Urban Fabric”
and from 1.39% to 3.35% for the class “Discon-
tinuous Very Low Density Urban Fabric”. It is
remarkable that, even after the feedback, this values

are very far from the percentages indicated in the
urban atlas class description (see TABLE III). This
can be explained. In fact, consulting the urban
atlas mapping guide, we know that the macro-
class “Urban Fabric” (i.e. the one that contains all
those above mentioned) is formed by “built-up areas
and their associated land, such as gardens, parks,
planted areas and non-surfaced public areas and the
infrastructure” [37]. Therefore: i) in the reference
urban atlas class, other land covers are included
beyond built-up; ii) some of this land cover (roads,
sidewalks, car parks) do not have the fundamental
property of high backscattering we use for the de-
tection; iii) shadowing effects, influencing backscat-
tering, partially prevent the feature detection using
Equation (6). The last phenomenon is more severe
as the density of the urban area increases. That’s
why the more dense the urban area, the more distant
the soil sealing index retrieved through Equation
(8) on the Level-1α product compared to the one
indicated in the urban atlas.

Concerning the MODISTA project, it is remark-
able that the proposed algorithm brings significant
benefits in the representation and detection of the
class “Railways and associated land”. In fact, in
this case, the percentage of land covered by built-up
features increased from 1.54% before the feedback
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to 4.61% after its application.
The results obtained using the SOM are reported

in the sixth column of TABLE III. They are com-
parable with those obtained by application of Equa-
tion (6) on the enhanced Level-1α product, thus
confirming the reliability and the effectiveness of
the proposed representation to be exploited for the
extraction of the feature of interest using a simple
and user-oriented technique [6].

SVM showed the highest percentage of soil seal-
ing for all the considered categories. However, this
is not necessarily an index of better detection since
data concerning false alarms are not available. In-
deed, using this technique, their amount is expected
to be not negligible. This can be assessed qualita-
tively considering Fig. 10. The arrows point to some
areas in which false alarms in the SVM detection
have been found by visual inspection. A Google
Earth patch of these areas is also reported, together
with the close-up taken from the Level-1α product
itself. Moreover, a close up from a classification
difference map is attached. In this representation,
points detected by both building index and SVM
are depicted in green. Points detected only by the
SVM are depicted in red. Points detected only by
the building index are depicted in yellow. From the
analysis of this pictures, it arises that SVM classifies
as buildings also changing natural areas (see patch
1 in Fig. 10). In the same way, buildings depicted
in patch 2 and 3 of Fig. 10 are arranged by SVM in
structures with some landscape pixels. Conversely,
the classification based on the building index has a
negligible contribution of natural surfaces pixels.

By analyzing the results reported in TABLE III
it arises that, as the urban density decreases, the
performances of all the examined solutions tend to
be equivalent. In fact, if we consider an electromag-
netically isolated building in a stationary landscape
(see Fig. 11), the obtained masks are very similar,
regardless of the technique adopted. Conversely, in
denser urban areas, the SVM tends to aggregate in
the building mask also pixels that do not exhibit
a backscattering among the highest in the scene.
This results in a higher soil sealing index, but, as
explained above, also in a higher probability of
false alarms. This behavior could also be due to a
non-optimal selection of the SVM training samples.
A more refined solution could be to exploit the
building index for the automatic selection of the

Fig. 10: Qualitative evaluation of false alarm using Google
Earth patches and a classification difference map in which
exclusive SVM detections are depicted in red, exclusive BI
detections in yellow and SVM/BI detections in green. It arises
that SVM (red pixels) tends to classify as buildings also
changing landscape. Therefore a more significant probability
of false alarms is expected than for BI detections.

training samples for the SVM.
As for the computational burden, the SVM ran in

about 10 minutes on a scene of about 3000× 5200
pixels using a 12 GB RAM machine with eight
cores. SOM completed the job in more or less the
same time. As for the proposed methodology, the
feedback took about 5 minutes, while the building
extraction process has a negligible impact on com-
putational time. The proposed methodology intro-
duces an advantage in computational time, that can
be important when the amount of data to classify is
high.

The last observation concerns layover. Using a
very coarse clustering, it is likely that the texture
evidence brings to an incorrect decision on layover
features. This is more clear considering Fig. 12.
In Fig. 12a we show the Level-1α product before
the feedback. Here, layover is correctly represented,
since we have no response of the red band (i.e. of
the interferometric coherence). The texture evidence
action makes this feature to appear as a bright target,
thus introducing a confusion with the built-up class
(see Fig. 12b). This problem can be solved using
topographic corrections before building Level-1α
products or by applying a layover mask in post-
processing. We opted for this choice. We used
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(a) (b) (c) (d) (e)

Fig. 11: Electromagnetically isolated building in a stable landscape: (a) Google Earth view, (b) Level-1α view. Building mask
extracted (c) using the building index and the parameters reported in TABLE I, (d) using SOM and (e) using SVM.

a 20 meters resolution DEM for generating the
layover mask depicted in Fig. 12c. Qualitatively, the
masking operation applied to the Level-1α product
after the feedback algorithm mitigates the confusion
between layover (which should be displayed in
cyan) and the built-up class, as showed in Fig. 12c.

(a) (b)

(c) (d)

Fig. 12: Layover treatment: Level-1α product (a) before and
(b) after the feedback application. (c) Layover mask. (d) Level-
1α product after the application of feedback and layover
masking.

Quantitatively, the influence of layover in the soil
sealing index calculated through Equation (8) on
the Level-1α product can be found in the class
“Forests” of TABLE III. In the urban atlas layer,
this class is mainly located in the upper left part
of our study area (see Fig. 9, where the presence
of a relevant topography makes layover to occur.

The application of the proposed feedback causes
the soil sealing to increase from 0.06% (before the
feedback) to 2.2% due to layover features included
in the computation. The application of the layover
mask allows to reduce this value to 1.14%. Better
results could be using a finer resolution DEM.

A. Sensitivity to parameters

The study of the sensitivity of the proposed
method with respect to the parameters reported in
TABLE I concerning the fuzzification of the input
Level-1α product is presented.

As a general comment, if these parameters are
increased, the curves plotted in Fig. 4 move to
the right and the reflectivity requirements for the
detection are reinforced. Vice-versa, if the param-
eters are decreased, the curves in Fig. 4 move to
the left, slackening the requirements of reflectivity
for the detection. Operatively, the positioning of the
curves in the plan digital-number/fuzzy membership
affects: i) the dimension of the window in which the
coherence is calculated and ii) the activation of the
texture evidence.

Indeed, the variation of coherence window dimen-
sion is expected to give negligible variations in the
detection, provided that the scheme in TABLE I is
maintained. In fact, if the variation of the parameters
is small, a variation of category is likely to occur
only for targets placed at the borders of the fuzzy
sets. As an example, if a change from the category
“small window” to “medium window” occurs, the
coherence window dimension passes from 5 pixels
to 7 pixels, therefore the variation of the estimated
coherence value is expected to be small. In the
same way, if we a have a change from the category
“medium window” to “large window”, this would
affect targets whose characteristics are likely to be
non-coherent; therefore, the passage from the 11
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TABLE IV: Summary of the obtained results. The variation of the parameters reported in TABLE I for the fuzzification of the
input Level-1α product does not affect significantly the result of the building extraction application.

Urban atlas category BI BI (+10%) BI (+5%) BI (-10%) BI (-5%) SOM SVM
SL (%) SL (%) SL (%) SL (%) SL (%) SL (%) SL (%)

Continuous Urban Fabric 24.83 23.75 24.72 28.23 26.98 24.23 31.11
Discontinuous Dense Urban Fabric 20.54 19.55 20.43 23.42 22.34 20.09 26.09
Discontinuous Medium Density Urban Fabric 11.04 10.09 10.55 12.29 11.69 11 14.61
Discontinuous Low Density Urban Fabric 5.59 4.9 5.13 5.95 5.65 5.55 7.49
Discontinuous Very Low Density Urban Fabric 3.35 2.79 2.89 3.49 3.21 3.05 4.57
Isolated structures 3.96 3.41 3.59 4.2 3.99 3.96 5.35
Railways and associated land 4.61 3.5 3.83 5.11 4.68 3.5 6.44

pixels window to the 51 pixels window would be
inconsequential.

The most important effect of a variation of the
fuzzy set is expected on the texture evidence. In
fact, if the reflectivity attribute changes from “high”
to “medium” even in only one acquisition, then the
texture evidence is not activated. This can slightly
affect the detection.

In order to give a measure of such variation, we
repeated the whole processing chain varying the
parameters reported in TABLE I concerning the
fuzzification of the input Level-1α product of +5%,
+10%, -5% and -10%. The result of this experiment
are reported in TABLE IV, together with a recap of
the previously obtained results for a comparison. For
brevity, only the classes of the Urban Atlas most
relevant with the building extraction application
have been reported in the table.

As expected, a higher percentage of soil sealing
is obtained decreasing the parameters reported in
TABLE I. The lower the parameters, the higher the
soil sealing. However, a higher probability of false
alarms is expected, since the texture evidence is ac-
tivated for less reflective targets. Vice-versa, a lower
percentage of soil sealing is obtained by increasing
those parameters. The higher the parameters, the
lower the soil sealing, as well as the probability of
false alarm.

Anyway, if the variation of the parameters is
small (in the order of ±5%), the detection rate is
rather stable. In fact, fuzzy variables allow for an
effective modeling of the uncertainty. This makes
the technique scarcely sensitive to the parameters
of TABLE I, even if significant variations (±10%)
of selected values are applied.

VI. CONCLUSIONS

In this paper, we introduced a technique for en-
hancing the information content of the red band of
a Level-1α product. This band is usually reserved
to the interferometric coherence information and
therefore it is aimed at the enhancement of targets
characterized by high phase stability over the time,
such as built-up features. The proposed technique
is devoted at enhancing the performances of the
coherence estimator through an adaptive selection
of the moving window dimension. To this end, the
input Level-1α product is used to generate an a
priori knowledge which is used to build the expert
system for the choice of the coherence window
dimension through fuzzy rules.

Texture evidence is used for supporting the en-
hancement of built-up features where the feedback
fails due to decorrelation. We proposed the use
of the Nagao-Matsuyama rule for improving the
informative content of the red band of the refined
Level-1α product in areas characterized by high
backscattering and texture.

We assessed the performance of the proposed
algorithm qualitatively and quantitatively. Quali-
tatively, the visual experience of the operator is
enhanced by the feedback application. This makes
easier to detect the urban area through the enhance-
ment of its built-up features. Quantitatively, we
used the Urban Atlas layer for comparing the soil
sealing measured on the Level-1α product (before
and after the feedback) with data provided in the
reference layer description. We found that the feed-
back application significantly increased the number
of detected pixels belonging to the built-up class for
all the relevant classes. In particular, it is appreciable
the improvement obtained on railways and their
associated land. the obtained results, in terms of
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measured soil sealing, are congruent with the data
provided by the Urban Atlas, compatibly with SAR
imaging characteristics and classes definition.

The obtained results were compared with those
retrieved using two machine learning techniques
such as SOMs and SVMs. The comparison showed
that the proposed methodology, provided the en-
hancement of the informative content of the input
Level-1α product, can represent a good and user-
oriented alternative to more refined techniques. In
fact, a simple band product can be understood and
managed even by non-expert users, while SOM
and SVM require a higher expertise and a certain
confidence with machine learning to be used.

ACKNOWLEDGMENTS

The authors thank the Italian Aerospace Research
Center (CIRA) for providing the COSMO-SKyMed
dataset of Castel Volturno. This study was done in
collaboration with Ansaldo STS under the aegis of
the MODISTA project.

REFERENCES

[1] M. Datcu and K. Seidel, “Human-Centered Concepts for Exploration
and Understanding of Earth Observation Images,” IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 3, pp. 52–59, 2005.

[2] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis and Ma-
chine Vision. Pacific Grove, CA, 93950, USA: Brooks/Cole Publishing
Company, 1999.

[3] V. Madhok and D. A. Landgrebe, “A Process Model for Remote Sensing
Data Analysis,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 3, pp.
680–686, 2002.

[4] D. Amitrano, G. Di Martino, A. Iodice, D. Riccio, and G. Ruello, “A
New Framework for SAR Multitemporal Data RGB Representation:
Rationale and Products,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 1, pp. 117–133, 2015.

[5] D. Amitrano, F. Cecinati, G. Di Martino, A. Iodice, D. Riccio, and
G. Ruello, “Sentinel-1 Multitemporal SAR Products,” in IEEE Int.
Geosci. Remote Sens. Symp., 2015, pp. 3973–3976.

[6] D. Amitrano, G. Di Martino, A. Iodice, D. Riccio, and G. Ruello, “An
end-user-oriented framework for the classification of multitemporal SAR
images,” Int. J. Remote Sens., vol. 37, no. 1, pp. 248–261, 2016.

[7] R. F. Hanssen, Radar Interferometry - Data Interpretation and Error
Analysis. Dordrecht: Kluwer Academic Publishers, 2001.

[8] M. S. Seymour and I. G. Cumming, “Maximum likelyhood estimation
for sar interferometry,” in IEEE Int. Geosci. Remote Sens. Symp-, 1994,
pp. 2272–2275.

[9] R. Touzi and A. Lopes, “Statistics of the Stokes Parameters and of the
Complex Coherence Parameters in One-Look and Multilook Speckle
Fields,” IEEE Trans. Geosci. Remote Sens., vol. 34, no. 2, pp. 519–531,
1996.

[10] R. J. A. Tough, D. Blacknell, and S. Quegan, “A statistical description
of polarimetric and interferometric synthetic aperture radar,” Proc. R.
Soc. Lond. A, vol. 449, pp. 567–589, 1995.

[11] M. Arrigoni, D. D’Aria, and A. Monti Guarnieri, “Space-adaptive
coherence estimation,” in ESA FRINGE Workshop, 2005.

[12] O. J. Tobias and R. Seara, “Image segmentation by histogram thresh-
olding using fuzzy sets,” IEEE Trans. Image Process., vol. 11, no. 12,
pp. 1457–1465, 2002.

[13] T. Matsuyama and V. S.-H. Hwang, SIGMA - A Knowledge-Based Aerial
Image Understanding System. New York: Plenum Press, 1990.

[14] M. Nagao and T. Matsuyama, A Structural Analysis of Complex Aerial
Photographs. New York: Plenum Press, 1980.

[15] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of
the Royal Society B, vol. 207, no. 1167, pp. 187–217, 1980.

[16] H. Chaabouni-Chouayakh and M. Datcu, “Backscattering and Statistical
Information Fusion for Urban Area Mapping Using TerraSAR-X Data,”
IEEE J. Sel. Topics Appl. Earh Obs., vol. 3, no. 4, pp. 718–730, 2010.

[17] A. Santinig and P. Gamba, “Combining SAR-Based and Multispectral-
Based Extractions to Map Urban Areas at Multiple Spatial Resolutions,”
IEEE Geosci. Remote Sens. Mag., vol. 3, no. 3, pp. 100–112, 2015.

[18] A. Ferro, D. Brunner, and L. Bruzzone, “Automatic Detection and
Reconstruction of Building Radar Footprints From Single VHR SAR
Images,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 935–
952, 2013.

[19] C. Marin, F. Bovolo, and L. Bruzzone, “Building Change Detection in
Multitemporal Very High Resolution SAR Images,” IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 3, pp. 2664–2682, 2015.

[20] H. Chaabouni-Chouayakh and M. Datcu, “Coarse-to-Fine Approach
for Urban Area Interpretation Using TerraSAR-X Data,” IEEE Geosci.
Remote Sens. Lett., vol. 7, no. 1, pp. 78–82, 2010.

[21] A. Voisin, V. A. Krylov, G. Moser, S. B. Serpico, and J. Zerubia,
“Classication of Very High Resolution SAR Images of Urban Areas
Using Copulas and Texture in a Hierarchical Markov Random Field
Model,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 1, pp. 96–100,
2013.

[22] R. Gaetano, D. Amitrano, G. Masi, G. Poggi, A. Verdoliva, G. Ruello,
and G. Scarpa, “Exploration of Multitemporal COSMO-SkyMed Data
Via Tree-Structured MRF Segmentation,” IEEE J. Sel. Topics Appl.
Earth Observ., vol. 7, no. 7, pp. 2763–2775, 2014.

[23] D. Amitrano, G. Di Martino, A. Iodice, D. Riccio, and G. Ruello, “Urban
Areas Enhancement in Multitemporal SAR RGB Images Through a
Feedback System,” in IEEE Joint Urban Remote Sens. Event, 2015.

[24] T. Kohonen, Self-Organizing Maps. Berlin, Heidelberg: Springer-
Verlag, 2001.

[25] P. Törönen, M. Kolehmainen, G. Wong, and E. Castrén, “Analysis of
gene expression data using self-organizing maps,” FEBS Lett., vol. 45,
no. 2, pp. 142–146, 1999.

[26] P. T. Pearson and C. I. Cooper, “Using Self Organizing Maps to Analyze
Demographics and Swing State Voting in the 2008 U.S. Presidential
Election,” in Artificial Neural Networks in Pattern Recognition, ser.
Lecture Notes in Computer Science, N. Mana, F. Schwenker, and
E. Trentin, Eds. Springer Berlin Heidelberg, 2012, vol. 7477, pp. 201–
212.

[27] B. C. Hewitson and R. G. Crane, “Self-organizing maps: applications
to synoptic climatology,” Climate Res., vol. 22, pp. 13–26, 2002.

[28] H. Yuan, C. F. Van Der Wiele, and S. Khorram, “An Automated Artificial
Neural Network System for Land Use/Land Cover Classification from
Landsat TM Imagery,” Remote Sens., vol. 1, pp. 243–265, 2009.

[29] Y. Ito and S. Omatu, “Polarimetric SAR data classification using
competitive neural networks,” Int. J. Remote Sens., vol. 19, no. 14, pp.
2265–2684, 1998.

[30] S. Skakun, “A Neural Network Approach to Flood Mapping Using
Satellite Imagery,” Computing and Informatics, vol. 29, pp. 1013–1024,
2010.

[31] S. Patra and L. Bruzzone, “A Novel SOM-SVM-Based Active Learning
Technique for Remote Sensing Image Classification,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 11, pp. 606–616, 2014.
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