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Abstract—In this paper, we present a new framework for the
fusion, representation, and analysis of multitemporal SAR data.
It leads to the definition of a new class of products representing
an intermediate level between the classic Level-1 and Level-
2 products. The proposed Level-1β products are particularly
oriented toward non-expert users. In fact, their principal charac-
teristics are the interpretability and the suitability to be processed
with standard algorithms. The main innovation of the paper
is the design of a suitable RGB representation of data aiming
to enhance the information content of time-series. The physical
rationale of the products is presented through examples in which
we show their robustness with respect to sensor, acquisition
mode and geographic area. A discussion about the suitability of
the proposed products with Sentinel-1 imagery is also provided,
showing the full compatibility with data acquired by the new ESA
sensor. Finally, we propose two applications based on the usage
of Kohonen’s self-organizing maps dealing with classification
problems.

Index Terms—Human-machine interaction, multitemporal
SAR, high-level processing, image enhancement, Level-1β prod-
ucts, Sentinel-1, self-organizing maps

I. MOTIVATIONS

The use of synthetic aperture radar (SAR) data has been
so far limited in applicative contexts, because the information
content held by images rarely emerges without a high tech-
nical expertise. The development of new products providing
user-friendly representations of the physical information is a
necessary condition for the full exploitation of SAR sensors.

High-level processing is a key task for enhancing the
interpretability and for emphasizing the underlying informa-
tion content of remote-sensing images. This depends on the
sensor acquiring the data. As an example, for hyperspectral
acquisitions, principal components analysis is probably the
most popular linear projection method. However, it presents
several drawbacks [1]. Therefore, refined methods have been
proposed in literature to overcome its limitations [1]–[3], and
to make it possible to display the information contained in
N channels (where N can be in the order of few hundreds)
on a standard tristimulus RGB device through a consistent
dimensionality reduction.

Dealing with SAR images, data interpretability problems are
principally related to: i) the geometrical distortions induced by
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the side-looking acquisition geometry [4], ii) the scattering
mechanisms, and iii) the gray-scale displaying, at least in
non-polarimetric modality. In fact, humans can easily interpret
color images, which support fast searching and comprehension
of data [2].

Multiple acquisitions of the same scene represent a rea-
sonable mean for increasing the dimensionality of SAR data
through the combination of information collected along the
time axis. The fusion problem is brilliantly focused in [5],
where the authors suggested a series of questions an image
fusion technique should answer. Indeed, these questions refer
to multisensor data fusion. Therefore, we slightly reworked
the aforementioned framework as follows:

1. What is the objective/application of the user?
2. What are the necessary pre-processing steps involved?

(See Section III).
3. Which combination of the data is the most successful?

(See Section IV-A.
4. Which is the “best” technique to fuse these data for that

particular application? (See Section IV-B).
The objective of this paper is the definition of a new class

of RGB SAR products exploiting multiemporal acquisitions.
This answers to the first question, establishing the purpose of
the whole processing to data representation.

Multitemporal SAR data have been widely exploited in the
recent literature for, as an example, forest monitoring [6],
flooding events [7] and land cover mapping [8]. Other, more
general, suggestions and answers to the above listed questions
can be found in [9] or in the past distinguished literature [10]–
[12]. In this paper, we want to emphasize the usefulness of an
appropriate and comfortable representation, allowing for an
easier visual data mining and a better design of the information
extraction process. In fact, a better knowledge/understanding
of the scene implies a higher awareness of the processing
necessary for information extraction.

The above listed questions can be summarized in the
following one (see [13]):

5. How the enormous amount of information contained in
remotely-sensed images can be extracted?

We will not provide a comprehensive answer to this ques-
tion. In fact, this work mainly deals with a part of the whole
problem, i.e. data representation. However, as stated in [14], “a
good knowledge representation design is the most important
part of solving the understanding problem”. In particular,
the proposed solution aims at creating an intermediate, user-
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oriented product level between the classic Level-1 and Level-
2 products. In fact, it is designed to: i) favour interpretation
and visual data mining; ii) favour the use of standard pro-
cessing algorithms, which are the most popular in the end-
users’ community. These characteristics lower the expertise
required to handle data, and make the retrieval of the physical
information (which is usually seen as Level-2 processing)
simplified, since it takes place exploiting a product level higher
than 1. As an example, dealing with crops classification, the
discrimination between summer and winter cultivations is not
Level-2 information, but anyway more than Level-1 one, and
could be helpful for moving toward higher levels following a
processing chain composed by:

- A model-driven data representation, which is just the
purpose of this paper (see also [15]);

- An application-oriented information extraction process;
- A decision, which should be taken among a very limited

range of options [16].

Information extraction can be performed at two different
levels: analysis and inversion. They can exist autonomously,
but the knowledge they can achieve is different. In partic-
ular, the analysis (data-driven) typically allows for reaching
high-level information. Inversion (model-based) allows for
the retrieval of objects’ physical parameters, but is usually
possible only in canonical situations (see as an example [17]).
Therefore, the most reliable solution for solving the under-
standing problem is probably the integration of the two levels.
This results in a framework where the analysis makes data
suitable for the implementation of inverse models. In other
words, data analysis should reduce the complexity of the case-
study in an application-oriented environment, thus supporting
the extraction of the physical information/parameter through
inversion. We think that the best examples of such integration
can be found in the image understanding systems literature of
’70s and ’80s [18]–[23]. Recently, a very interesting mixed
framework has been proposed for through-the-wall radar im-
age understanding in [24].

However, a lack of integration between these two levels
was found in the recent remote-sensing literature. In fact, a
great effort was made to develop automatic (often model-
free) techniques for data analysis, trying to make SAR data
available/accessible to end-users. Indeed, these techniques
are helpful and maybe necessary in the whole information
extraction process, but they can not totally replace the usage
of electromagnetic models, which represent the best way to
fully understand data.

SAR data interpretation requires the knowledge of the
scattering models underlying the image formation and of the
cognitive mechanisms ruling their perception. Thus, two kinds
of knowledge coexist: an objective knowledge, represented by
electromagnetic models, and a subjective knowledge, related
to the users. In Section II, some aspects related to cognitive
processes guiding humans’ mining of information from the
surrounding environment are recalled. In Section III, the gen-
eral workflow and the pre-processing chain for the generation
of the proposed products are described. Section IV, is devoted
to the definition of the proposed multitemporal synthesis. In

Section V, we present the obtained products and provide their
physical interpretation through examples. In Section VI, we
face two applicative scenarios in which the proposed products
are exploited as input of neural networks to solve high-level
classification problems. Conclusions are drawn at the end of
the work.

II. BACKGROUND

In Reference [25], Mendel argues that two distinct forms
of knowledge exist: an objective knowledge and a subjective
knowledge. SAR image interpretation is mainly a matter of
subjective knowledge. An expert SAR user has more possibil-
ities to successfully interpret data thanks to his/her habit to that
semantic context. For many multidisciplinary users, mining
information from the typical grey-scale Level-1 SAR image is
not straightforward. Therefore, they often prefer different data
sources, or leave the process of extraction of information to
automatic algorithms.

This brings to the concept of emergent semantics. According
to Reference [26], the informative content of an image, or
its meaning, is assumed to be not an intrinsic property, but
an emergent characteristic through the interaction with users.
Therefore:

- Image meaning becomes contextual, i.e. depends on the
condition in which a particular query is made and on the
user performing it;

- The knowledge about the image is assessed by the
user experience which, in this context, is built also by
exploration/inspection of data.

The necessity of restoring the user’s centrality in remote-
sensing data analysis (especially concerning SAR data) has
been already manifested in the past literature [15], [27]–[29]
and appears evident if the data analysis process is approached
from a semiotic viewpoint.

In Fig. 1, we report the Peirce’s semiotic triangle [30]. It
depicts how a concept is formed in our mind. Pierce claims
that this mechanism consists of three inter-related elements: a
sign, an object, and an interpretant. The sign is everything that
can be perceived, i.e. the world as filtered by the sensor. The
object is what the sign concerns, and consists in the real-world
physical object. Finally, the interpretant is the understanding
that the observer reaches about some sign/object relation.

This schema should highlight that the machine (at the
moment) can be only a support (although in many cases indis-
pensable) to the human activity. In fact, it can not participate
to the cycle depicted in Fig. 1, apart from helping a better
formation of the interpretant through its capacity of executing
complex tasks in a short time (see also [27]).

The purpose of this work is to highlight the potentialities of
an user-driven framework (provided that he/she is placed in the
best condition to produce the association sign-object), starting
from the basic activity of the information extraction process,
i.e. the inspection of data. In fact, in a context in which the
automatic extraction of information from large databases is
still rather limited, the enhancement of user experience with
data is crucial, he/she being in most cases designated for
assigning the scene semantics. The mean we use to improve
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Fig. 1: Peirce’s semiotic triangle. It consists of three objects:
the sign (i.e. the world as filtered by the sensor), the object (i.e.
the physical object), and the interpretant (i.e. the understanding
reached by the observer of some sign/object relation).

the human-machine interaction is the fusion, or synthesis, of
the information contained in a multitemporal SAR series in
a unique RGB frame, whose aim is to convey to the user as
much information as possible. Therefore, from this viewpoint,
the word synthesis assumes both its acceptation of combination
of separate things into a complete whole and of overviewing
a series of information. This can be useful as a first step for
the understanding of dynamic phenomena, segmentation and
mining.

These considerations should clarify the necessity to intro-
duce the rather general purpose, user-oriented data represen-
tation we are going to define. We used the locution “rather
general-purpose” because the quantity (and the quality) of
information one can mine from data is always dependent on
the type of representation chosen for it. In fact, as argued by
Marr, “a representation is a formal system for making explicit
certain entities of types of information” [20]. In other words,
data can be represented in different ways, and the choice
made greatly affects the information extraction process, since
it makes explicit some information at the expense of other that
is pushed back and could be quite hard to recover [20].

Summarizing, in this Section we explained the philosophical
background this work refers to. At the end of the work, the
reader should be successful in figuring out an operative model
that, placing the users at the center of the processing chain,
allows for an effective management of several applications,
replying to the fifth question introduced in Section I.

III. GENERAL WORKFLOW AND PRE-PROCESSING CHAIN

The general workflow to generate the proposed products is
depicted in the block diagram of Fig. 2. The pre-processing
block answers to the second question posed in Section I, and
involves all the operations necessary for obtaining a dataset
suitable for the multitemporal fusion. This block, exploded in
Fig. 3, is inspired from the MAP3 framework introduced in
[15], and here briefly recalled.

The input is a stack of SLC images. As first, they are
coregistered with standard algorithms. Complex data are used
for the extraction of the interferometric coherence; intensity

Fig. 2: Multitemporal syntesis general workflow. Pre-
processing is necessary to obtain images spatially and radio-
metrically comparable, thus suitable for the fusion. Analysis
is devoted to the extraction of the temporal features involved
into the synthesis.

data are subject to calibration. For more details on this topic
the reader should refer to [31] and [32] for COSMO-SkyMed
and TerraSAR-X data, respectively.

Fig. 3: Exploded view of the pre-processing block. Coregis-
tration, calibration, despeckling, and normalization allows for
obtaining a dataset suitable for the multitemporal fusion.

Despeckling is a key passage for making the semantics
of the time series emergent. The availability of multiple
acquisitions allows for exploiting filtering techniques which
use temporal information for reducing speckle with no loss in
spatial resolution [33].

Normalization is necessary to reduce images dynamics to
its more relevant part (such as natural cycles, agricultural
activities, etc.) through a saturation of spikes due to high
reflective targets. The variable amplitude levels equalization
(VALE) method introduced in [15] is used for this task. The
only remark is that here we keep the floating point values of
data, postponing the quantization step at the end of the fusion,
as detailed in the following sections.

IV. ANALYSIS AND SYNTHESIS

Reference [2] proposed some goals that the image fusion
should achieve for preserving information and enabling in-
terpretability. Here, we want to highlight the four properties
of summarization, consistent rendering, computational ease
and natural palette, recalling some concepts expressed in the
aforementioned work.

As for the summarization, an effective synthesis should
accurately summarize the original dataset, transferring to the
user an information he/she can not reach otherwise. This is
possible if the rendering of data is consistent, i.e. if the user
is able to easily produce the association sign-object or color-
feature.

To this end, the natural color palette is of course the best
intermediary, but coded techniques for SAR images displaying
recalling this representation are not available. Hence, an ad-
vance in this sense, with short computational times (consistent
with real-time or near real-time applications), is desirable.
The products we are going to define aim to provide an



DRAFT 4

effective answer to these requests by appropriately solving the
challenges concerning selection and fusion of the most suitable
temporal features. This makes it possible to meet the four
proprieties discussed above, and also represents the subject of
the third and fourth question introduced in Section I.

A. Multitemporal analysis

In this Section, an answer to the third question raised in
Section I will be provided: what is the most successful combi-
nation of data in order to obtain a RGB representation meeting
the four properties of summarization, consistent rendering,
computational ease and natural palette?

The idea is to compare (and combine) the mean intensity
values of the time series with some variability indicators. The
usage of the variance is a simple choice in order to evaluate
the deviation with respect to the mean behaviour.

Another information about the scene dynamics comes from
the maximum excursion of the backscattered energy. It allows
for the identification of outliers. Therefore, we use as third
element of our synthesis the saturation map, as defined in [34],
which exploits the information derived by the absolute maxima
σmax and minima σmin, calculated pixel-wise over the time
series as follows:

σs =
σmax − σmin

σmax
, σs ∈ [0, 1] , (1)

The drawback of this quantity is a pdf typically strongly
skewed to the right. This results, in the final composition, in
a sort of watermark covering the image and corresponding to
the color assigned to that band. In order to avoid this visually
unpleasant effect and reach a more balanced composition, we
consider a saturation index defined by:

σ̂s =
σmax − σmin

σmax + σmin
, σ̂s ∈ [0, 1] . (2)

This formulation of the saturation index allows for reducing
the skewness of the distribution with respect to Equation (1),
making it possible to obtain a higher balance of the RGB
channels.

B. Multitemporal synthesis

As detailed in the previous Section, the quantities that will
be used for the multitemporal synthesis are the mean intensity,
the variance, and the saturation index expressed in (2). The
answer to the fourth question posed in Section I, i.e. how to
fuse the selected data, is now in order.

One of the basic problems in computer vision is to allow the
observer to segment the image into meaningful regions [35],
preventing the emergence of bright saturated regions, which
has been judged as distracting and confusing [2]. Hence, it
is fundamental that the visualization favours the pre-attentive
processing [36], i.e. the unconscious accumulation of informa-
tion from the environment. As a consequence, we design our
fusion mechanism in order to output highly contrasted images
(which makes edge detection easier), with limited occurrences
of saturated regions, and a good classes separability.

The fusion is implemented by maximizing the entropy of
the channels involved in the composition. In particular, this is
performed by clipping recursively the image pdf (at both left
and right edges) for different percentages of the cumulative
histogram until the maximum entropy value is reached. This
procedure allows for obtaining more stretched histograms and
a higher contrast. In fact, the flatter the histogram the higher
the entropy, see [37] and [15] for more details about entropy
maximization in SAR images).

As shown in Fig. 3, the synthesis has a fourth participant,
i.e. the interferometric coherence. This quantity is useful
for separating high-reflective natural targets from man-made
surfaces. In order to insert this information in our RGB
composite we proceeded as follows:

a. A master image is fixed, and assumed as reference for
the entire time series;

b. The interferometric coherence between the master image
and all the slaves is computed;

c. The mean coherence value γ is extracted;
d. The mean coherence map is linearly quantized between a

user-defined maximum and minimum. Reasonable values
for these parameters are ∈ [0.3, 0.4] for the minimum and
∈ [0.5, 0.6] for the maximum. This means that, assuming
γmin = 0.3 and γmax = 0.5 all the pixels whose coherence
value is below 0.3 are set to null coherence; pixels with
a coherence value in the range [0.3, 0.5] are linearly
distributed in the range [0, 255]; pixels whose coherence
value is above 0.5 are set to 255. In the following we
refer to this map as time-series coherence map.

e. The obtained time series coherence map is used in
combination with the saturation index map. In particular,
we adopted the following rule: if the mean interferometric
coherence after quantization is 0 (i.e. if the coherence is
below the user-defined threshold) then display the satu-
ration index; otherwise display the mean interferometric
coherence.

In the following sections, when the saturation index map is
referred, the reader should have in mind the above described
modification with respect to its original definition.

As for the combination of the selected bands, we propose a
solution aiming to satisfy the requirements of consistent ren-
dering and natural palette introduced in Section IV. Therefore,
the products shown in the following sections have been built
using the following sequence:

- Red band: time series variance;
- Green band: time series mean;
- Blue band: saturation index map powered with the time

series coherence map as explained above.

C. Data

The proposed synthesis algorithm has been tested on four
multitemporal series acquired by three different sensors. In
particular:

- The first stack is composed by 15 COSMO-SkyMed
stripmap images with three meters spatial resolution in
azimuth/ground range directions, and acquired over the
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TABLE I: Summary of the available data. Resolution is expressed in azimuth/ground range.

Location # of images Sensor Resolution [m] Polarization/Modality Period
Campania (Italy) 15 COSMO-SkyMed 3× 3 HH/Stripmap 12/2009-10/2011
Calabria (Italy) 35 TerraSAR-X 3× 3 HH/Stripmap 4/2008-6/2010

Saxony (Germany) 6 Sentinel-1 20× 5 VV/IWS 10/2014-12/2014
Yatenga (Burkina Faso) 21 COSMO-SkyMed 1× 1 HH/Spotlight 5/2014-9/2014

Campania region, Italy, between December 2009 and Oc-
tober 2011. Data are HH polarized and shot in ascending
orbit;

- The second stack is composed by 35 TerraSAR-X
stripmap images with three meters spatial resolution in
azimuth/ground range directions, and acquired over the
Calabria region, Italy, between April 2008 and June 2010.
Data are HH polarized and shot in descending orbit;

- The third stack is composed by six Sentinel-1 interfer-
ometric wide swath (IWS) images with 20 × 5 meters
spatial resolution in azimuth/ground range directions, and
acquired over Saxony region, Germany, between October
2014 and December 2014. Data are VV polarized and
shot in ascending orbit;

- The fourth stack is composed by 21 COSMO-SkyMed
spotlight images with one meter spatial resolution in
azimuth/ground range directions, and acquired over the
Yatenga region, Burkina Faso, between May 2014 and
September 2014. Data are HH polarized and shot in
descending orbit.

The characteristics of the processed datasets are summarized
in TABLE I.

V. PRODUCTS AND THEIR PHYSICAL INTERPRETATION

In this Section, we propose three applicative scenarios
for introducing the multitemporal products derived from the
datasets described in Section IV-C. In the following, we will
adopt the nomenclature introduced in [15], referring to the
proposed products as Level-1β products.

A. Scenario 1 - Monitoring seasonal crops in temperate
environment with Mediterranean climate

In this scenario, our objective is the detection of summer
cultivations using the Campania dataset. To this end, a subset
of the available time series concerning the summer season was
used. Indeed, since the sowing time is slightly moved up and
the harvest could be delayed by some weeks, we considered
9 images between 5 April 2010 and 28 October 2010. The
obtained Level-1β product is shown in Fig. 4.

Before examining the monitoring activity, it is worthwhile
to linger on this representation, which allows for highlighting
some characteristics of the proposed products and the identi-
fication of some phenomena, as listed below:

- Sea appears in almost pure blue due to the low contribu-
tion of the mean and variance bands, and the high values
of the saturation index. This is due to different sea states
producing different backscatter in time. Indeed, this be-
havior (i.e. the blue color) can be observed on other weak

scatterers, which could exhibit an unstable response, such
as roads, shadows, or surfaces in backslope;

- A more stagnant surface water, typical of rivers and
irrigation tanks turns the response of the composition
toward the black (see Fig. 5a);

- Some irrigation tanks are subject to a more intensive
usage during summer and dry up completely. Hence, their
response acquires a strong red (i.e. variance) component
which, combined with an increased contribution of the
mean band, results in a violet color, as shown in Fig. 5b.
In the following we will refer to these structures as
“temporary tanks”;

- Urban areas appears in cyan due to the combined contri-
bution of the interferometric coherence and of the mean
backscattering. The former contribution, in particular,
allows for the distinction of man-made targets from the
pine-wood which is characterized by a strong response
of the mean, as shown in Fig. 5c and Fig. 5d.

Fig. 4: Campania dataset, summery Level-1β product ob-
tained by processing eight images from April to October
2010. Roughly, the following color-object association can be
made: blue-sea, black-stagnant water/weak scatterers, green-
grasslands/unchanged land cover, cyan-built-up, yellow/pink-
growing vegetation. The original image dimension is about
4400× 5000 pixels.

As a general comment, a high contribution of the blue band
can be found both on very stable targets (such as buildings,
due to the contribution of the time series coherence), and on
very dynamic objects (such as cropfields or the sea surface,
due to the contribution of the saturation index). Indeed these
two phenomena, in principle ambiguous if only the blue band
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(a) (b) (c) (d)

Fig. 5: Campania dataset, particulars of the Level-1β product: (a) stagnant water in rivers and in) “permanent” irrigation tanks,
(b) “temporary” irrigation tanks, (c) a urban area, and (d) a pine-wood. The original patch dimension is 400× 400 pixels.

is considered, are well separable. In fact, on stable (man-made)
targets, a negligible contribution of variance is observed.
Conversely, a high variance is expected on dynamic natural
surfaces.

As argued by Marr, “the usefulness of a representation
depends upon how well suited it is to the purpose for which
it is used” [20]. When in Section II we referred to Level-1β
imagery as a “rather general-purpose data representation”, we
wanted to remark this aspect. In fact, the proposed composi-
tion, besides the advantage for human operators, would have
limited applicability, as an example, in sea parameter estima-
tion or ship detection. On the other hand, it is particularly
indicated for land monitoring and agricultural applications.

For mining information about cultivated fields, we used as
reference the CORINE land cover map [38] (see Fig. 6a).
In Fig. 6b, CORINE contours have been overlayed to the
Level-1β product. These two representations should highlight
the large-scale correspondence between the RGB product
semantics and CORINE classes.

In fact, the reader should easily distinguish, for example,
the classes urban area and water on the Level-1β product.
Their topology is respected compared to the CORINE map.
The pine-wood at the bottom left corner of the scene, as well
as the stripe of sparse vegetation and brushwoods close to the
seaside are in the same way identifiable. Actually, the classes
brushwoods and sparse vegetation are indistinguishable on the
Level-1β product, but they form a whole close to the coast that
is clearly separated from the adjacent urban area and conifer
woods.

It is worthwhile to remark that the product we are analyzing
has been produced considering a series of images belonging
to summer. Hence, seasonal cultivations are expected to have
high values of the mean intensity and variance bands due to
the enhancement of backscattering derived by the volumetric
scattering contribution of plants growth [39]. Indeed, the
saturation index is also expected to be high due to harvesting.
Therefore, summery cultivations exhibit high values in all
the bands of the composition, but their balance is dictated
by cultivation type (determining the harvesting time), terrain
roughness, foliage density, plants height and fruits dimensions.
This means that there is no unique colour association that

identify all agricultural fields. However, given that the variance
contribution is significant, a higher contribution of the mean
intensity (green band) results into a yellow color. A dominance
of the saturation index (blue band) turns the response of the
composition into a pink tonality. As an example, if the field
appears in yellow, a high foliage density or taller plants have
to be expected, as in the case of orchards (see the upper part
of thematic map of Fig. 6a).

Coming back to the overlay depicted in Fig. 6b, the
reader should note how the contour color for the classes
“Springy/summery grain cereals”, “Springy/summery veg-
etable crops”, “Springy/summery industrial crops” and “Pro-
tected crops - vegetables and fruits” is the same (yellow),
i.e. these categories have been grouped in a macro-class. This
helps to highlight that the Level-1β product is congruent on
average with the CORINE thematic map. In fact, fields whose
response turn into pink or yellow are enclosed in the contour
of that macro-class.

The classes “Autumnal/wintery grain cereals” and “Grass-
lands”, identified in Fig. 6b by red and amethyst contours
can be also fused in an unique class. In fact, grasslands are
objects almost stable and therefore their response is dominated
by the mean intensity band (green). During summer, winter-
cultivated fields are usually destined to fallow; hence, they are
most likely covered by vegetation, and their response turns into
green, too. In our case, grasslands and wintery cultivations are
grouped in the center of the scene (see the thematic map of
Fig. 6a) and this is confirmed by the Level-1β product which,
in that zone, exhibits a large dominance of the mean intensity
band response.

The above listed outcomes are sensor independent. In
Fig. 7a and Fig. 7b we show two Level-1β products relevant
to the city of Cirò Marina, Calabria, (southern) Italy. In both
cases, the SLC images were acquired by the sensor TerraSAR-
X. In particular, the product depicted in Fig. 7a has been
obtained by fusing a time series acquired between April-
October 2008. The product depicted in Fig. 7b is the result of
the fusion of a time series acquired in the same period of the
year 2009. In order to make the two time series comparable,
a metric was established. Therefore, we assumed as reference
the series relevant to the year 2008, fixing the maximum and
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(a) (b)

Fig. 6: Campania dataset: (a) CORINE land cover map and (b) CORINE land cover contour overlayed to the Level-1β
product. This representation should allow the reader for appreciating the large scale correspondence between Level-1β colors
and CORINE classes.

minimum values of the quantities involved in the synthesis of
the Level-1β product. In other words, when the byte-scaling of
the 2009 series is performed, the zeroth and 255th amplitude
levels coincide for each band with those of the reference series.

The reader can appreciate how the semantics of these
compositions is consistent with that illustrated above for the
Campania dataset. The principal cultivation of the study area
is the grapevine, which is a summer cultivation. It is easily
identifiable in the coastal stripe of Fig. 7a with the fields with
a yellow response. Moreover, due to the calibration, variations
in the colorimetric response between the two products can be
exploited for studying the behavior of the cultivations during
the two farming seasons, as explained in Section VI-A.

B. Scenario 2: A first look on Sentinel-1 data in regions with
continental climate

Sentinel-1 started to acquire data on April 2014. The success
of the mission requires the development of repeatable and
reliable processing to produce attractive products for the end-
user community. The potential of the mission has been widely
explored in the remote sensing literature [40], also through the
use of simulated data [41]. Here, we will show that Level-1β
imagery is fully compatible with the characteristics of the new
sensor.

To prove this claim, we processed a multitemporal se-
ries of six images acquired between 3 October 2014 and
2 December 2014 in IWS mode over the Saxony region
(Germany). Preliminary processing, such as TOPS [42] deburst
and calibration, has been performed using the ESA Sentinel-1
Toolbox software.

In Fig. 8 we show a detail of the acquisition made on 3
October 2014, and relevant to the city of Dresden. The image

has been processed up to 15 equivalent number of looks using
multilooking with factor 1 × 4 in azimuth/ground range (to
make the pixel square), and multitemporal despeckling. It has
a spatial resolution of about 15 meters. The whole product
has a coverage of about 180 × 250 kilometers and can be
handled in stack with the other images of the time series by
the algorithms described in Section IV and in Section IV-A
with a processing time of about one hour on a four cores, 12
GB RAM machine.

In Fig. 9 we show the full Level-1β product of the study
area. The spatial resolution is 15 meters. The yellow dot on
the map identifies the city of Dresden. In the same image, the
relevant CORINE land cover portion is also reported.

Macroscopically, the reader should note that the colors
restituted by the composition are constantly associated to
the same image feature. Cities are rendered in cyan. In the
middle of the image, at South of Dresden, a wide stripe of
woods is identifiable, due to the dominant green component.
Looking at the CORINE land cover, in the top-left corner of
Fig. 9, the dominant classes in this area are “Broad-leaved
forest” and “Conifer Forest”, rendered in green and dark green,
respectively.

At East and West of the city of Dresden (see the light
yellow class on the CORINE land cover), croplands are
distinguishable, as well as at South, above the woodland stripe.
At North-West of Dresden, instead, another wide woody area
can be identified with some water bodies of different size.

Summarizing, the proposed Sentinel-1 Level-1β product re-
spects macroscopically the semantic indicated by the CORINE
land cover.

The same reasoning can be repeated on a finer scale con-
sidering the close up of the Dresden city depicted in Fig. 10.
The relevant CORINE land cover is displayed in the bottom-
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Fig. 7: Calabria dataset: (a) April-October 2008 and (b) April-October 2009 Level-1β products. The semantic exhibited by
these compositions (i.e. the association color-object) is consistent with that of the Campania dataset previously analyzed. The
original dimension of images is about 3200× 2300 pixels.

Fig. 8: A fragment of the Sentinel-1 acquisition of the Dresden
city. The image has been processed up to 15 ENL using spatial
multilooking and multitemporal despeckling. It has a spatial
resolution of about 15 meters. The original patch size is about
1000× 1700 pixels.

left corner of the image. This representation should allow the
reader to better appreciate the matching between the semantics
extractable from the Level-1β product and that established by
the CORINE land cover.

As an example, it is easy to link the green-dominant
response in the area at North-West of the Elbe river with the
conifer forest indicated in dark green in the CORINE map. In
the same way, the Dresden city park, rendered in light pink
on the reference land cover, is clearly distinguishable in the
Level-1β image thanks to its green response.

In synthesis, based on the discussion provided in Section
V-A about the Campania dataset, the reader should be able to
reconstruct the semantics of the Level-1β response of the city
of Dresden. This testifies the robustness of our framework in
the color-object association (or sign-object in the Peirce view),
and its suitability to Sentinel-1 imagery. For a quantitative
analysis of this dataset, the reader is addressed to Section
VI-B.

C. Scenario 3: Level-1β products in semi-arid environment

In this section, we discuss the reliability of the proposed
framework when the climatic zone is changed. In this case, we
deal with a semi-arid environment, where agricultural activities
are strongly related to the cycle of rainfalls [43], determining
the effectiveness of seasonal cultivations and the quantity of
water which can be harvested for facing the dry season [44].

In Fig. 11 we show a Level-1β product depicting the Laaba
basin. It has been obtained by processing eight spotlight
images acquired between 3 July 2014 and 4 August 2014,
i.e. in the middle of the rainy season [43]. In this scenario, it
is of interest to monitor water and cultivation dynamics, due
to their importance for local community wellness, as well as
the presence of small human settlements, since updated maps
are not always available.

Level-1β imagery provides useful information regarding all
these activities. As an example, the Laaba basin is clearly
distinguishable at the center of the image. As stated above,
it is highly influenced by rainfall cycles. In fact, it dries up
completely during the dry season due to evapotranspiration and
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Fig. 9: Sentinel-1 full Saxony Level-1β product with 15 meters spatial resolution. The yellow dot identifies the city of
Dresden. The relevant CORINE land cover is reported at the top left corner of the image in order to show, macroscopically,
the correspondence between the Level-1β color meaning and the classes of the reference map.

human consumption, and it is filled by rain water during the
wet season [44]. This behavior is almost constant in different
years. However, basin contours are strongly variable even
during the wet season, since the available water is used for
irrigation and human activity. This emerges when analyzing
the Level-1β product in the basin area. In fact, in its bottom
part, regions characterized by a pink response are present
(see also Fig. 12a), due to the combination of variance and
saturation index. Physically, it is possible to associate this

response to areas characterized by an unstable water coverage.

The same phenomenon characterizes bright regions within
the basin area and on its contour. However, in this case, the
high contribution of the mean indicates that the terrain is not
covered by water in the most part of the considered acquisi-
tions. Therefore, if a mask of the maximum basin extension
is available, Level-1β imagery allows for the extraction of
information about the water coverage extent in the considered
time interval.
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Fig. 10: Sentinel-1 Level-1β product of the Dresden city area
with its relevant CORINE land cover map.

Fig. 11: Yatenga dataset (Burkina Faso): spotlight COSMO-
SkyMed Level-1β product obtained by fusion of eight images
acquired between July and August 2014. The blue area in the
middle of the image identifies the Laaba basin. The original
image dimension is about 4700× 4900 pixels.

In Fig. 12b and Fig. 12c, the reader should note how both
the change in acquisition modality and climatic area do not af-

fect the response of features such as cultivated fields (Fig. 12b)
and “urban areas” (Fig. 12c). We used quotation marks since in
this case we are considering very small settlements, composed
by few constructions behaving as stable targets.

In Fig. 12d, we show a detail relevant to a feature charac-
teristic of a semi-arid environment, that is an eroded area [45],
i.e. a region which has lost its capability to retain and absorb
water. For this reason, it is completely barren and characterized
by a low reflectivity. Thus, the response of Level-1β imagery
for this feature turns out toward the black or a very dark blue
because of the contribution of the saturation index.

It is worthwhile to remark that, dealing with semi-arid envi-
ronments, in which the imaged scenes are mostly natural and,
during the rainy season, characterized by a strong dynamics,
the temporal sampling of the images involved in the Level-1β
composition is very important, as well as the considered time
span. In fact, a thin set of images or a long time interval could
give rise to anomalous response due to the effects of variance
and/or of the saturation index.

VI. APPLICATIONS

In this Section, we explore the suitability of the proposed
products to practical scenarios. In fact, visual data mining and
interpretation are not enough to extract information at large
scale from satellite images. As a consequence, it is highly
desirable that such an easy-to-read data representation can be
effectively processed with standard algorithms.

It is quite clear that a more interpretable product is very
well suited for supervised classification [46]. However, the
recent remote-sensing literature paid great attention to neural
network techniques because they can handle effectively large
multidimensional datasets. Therefore, in the following, we
will linger on the usage of such techniques, with particular
reference to one of the most consolidated and widespread, i.e.
the Kohonen’s self-organizing map (SOM) [47]. In particular,
we will show that, for the considered applications, Level-
1β products convey most of the information, so that useful
clustering results are obtained.

A. Scenario 1: Monitoring two-year agricultural activities

In this Section, we face the problem of information mining
from the Calabria scene introduced in Section V-A. We consid-
ered images acquired in two successive years (2008 and 2009)
for generating two calibrated Level-1β products representative
of the two summer seasons. Operatively, these representations
can be exploited for making qualitative evaluations about the
status of cultivations using SOMs.

1) Objective and approach: SOMs, also known as Kohonen
Maps, are a machine learning technique of the artificial neural
networks (ANN) family. They are used for the classification of
the most diverse data types. Their application, since their intro-
duction by Kohonen [47], has been experimented in different
sectors, like gene expression analysis [48], financial diagnosis
[49], synoptic climatology [50], microbial community dynam-
ics [51], bankrupt prediction [52] and political science [53].
SOMs have been widely applied to remote sensing since the



DRAFT 11

(a) (b) (c) (d)

Fig. 12: Fragments of the Yatenga image displayed in Fig. 11: (a) an area characterized by instable water coverage, (b) crops
in the nearby of the dam, (c) a small human settlement, and (d) an eroded area. The original patch dimension is of 400× 400
pixels.

’90s [54] as well, and new applications are still studied and
proposed today.

This widespread use of the SOMs is due to the extreme
flexibility of the tool. Compared to other classical statistical
methods, ANN do not make assumptions on the statistical
distribution of the data. They can be easily applied to large
datasets and modified and/or integrated to be adapted to
different data structures [55] and learning techniques [56]. The
robustness to large amounts of data makes them a suitable
instrument for unsupervised or semi-supervised classification
in a big data scenario, which is, and will increasingly more
be in the future, a key issue in remote sensing. SOMs proved
to be an outstanding method for unsupervised classification of
multispectral images, because of their dimensionality reduc-
tion capacity [56], [57].

Dealing with SAR data, SOMs have been employed, for
example, for polarimetric data classification [58], change de-
tection [59] or for flood mapping [60]. Here, we want to
evaluate the cropfields behavior in the two considered years
running a SOM on the stack composed by the two Level-1β
products. The network is set up with nodes containing together
the RGB values for the two considered years and is initialized
and trained with couples of RGB triplets selected randomly
from the two Level-1β products to classify. Presenting the
two year values together allows the network not only to
classify the images based on the characteristics of the pixels,
but also on their relative change during the two years. As a
consequence, the changes in the two following years detected
by the SOM can be interpreted as changes in the crops
behavior or production.

This application is critical since it involves two different
characteristic times relevant to the synthesis of the single
multitemporal products and to the two-years cropfields be-
havior classification. This forced us to consider a strategy
in which the SOM clustering was supported by hierarchical
agglomeration and object-based reasoning. This allowed for
reconstructing a more homogeneous cluster map and a better
understanding of the study area. In particular, we used an
agglomerative hierarchical clustering method to unify similar
classes after classifying the input Level-1β products in 64

categories through an overdimensioned 8 × 8 SOM [61].
Therefore, a top-down model was followed [18]. In fact, our
world model suggests that 64 categories are too much to
describe the dynamics of our scene. As a consequence, the
initial number of clusters will be reduced according to the
characteristics of the scene and to the application we are
dealing with, reducing the clusters fragmentation at the same
time.

2) SOM principles and application: A SOM is a network
composed by a predefined number of nodes, connected with
a usually hexagonal or rectangular structure, like in our case.
The nodes are elements of the same typology of the training
elements. Each time a training element is presented to the
network, the most similar node is detected and identified as
Best Matching Unit (BMU). The BMU and its neighborhood,
defined by a radius (which decreases as the training epoch
increases), are updated to become more similar to the pre-
sented training element. Updating the neighbourhood of the
BMU allows the SOM to maintain topological properties of
the training data, i.e. to maintain topologically close on the
network the identified classes that have similar characteristics
[47]. At the end of the training phase, the obtained nodes are
used to classify each element of the data.

Several parameters can be adjusted to change the behaviour
of the SOM classification. Usually, a Gaussian neighborhood
function is used, so that the strength of the adaption to
the presented training vector decays exponentially around the
BMU [62]. The number of training elements and the number
of training epochs are adjusted in order to obtain a stable
result, i.e. to obtain similar resulting patterns with multiple
repetitions of the training and classification algorithm. In fact,
different realizations of the Kohonen’s algorithm with the
selected parameters do not show exactly the same topology,
because of the random initialization and training set, but show
the same final patterns. Here, we used 1000 training elements
and 200 epochs.

In Fig. 13a and Fig. 13b, the two subsets of the Level-
1β products relevant to the year 2008 and 2009 are depicted.
SOM clusters are reported in Fig. 13c. In Fig. 14, a realization
of the 8 × 8 Kohonen network is provided. Each element is
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Fig. 13: Calabria dataset subset: Level-1β products relevant with years (a) 2008 and (b) 2009. (c) Clustered product. The 64
clusters identified by the SOM depicted in Fig. 14 (counted from top to bottom and then from left to right) are associated to
64 different colors. The original patch size is 400× 400 pixels.

represented by a plot showing the change of RGB values in
the 2008 and 2009 years.

The clusters map depicted in Fig. 13c, although overseg-
mented, has a smooth representation because at neighbouring
pixels, having a similar behavior, are associated neighbouring
classes, thus similar colors. In fact, observing the Kohonen
network of Fig. 14, the reader can see that adjacent nodes
represent similar patterns in the pixel behavior between the
two years.

3) Agglomerative hierarchical clustering and object-based
reasoning: In order to reduce the map fragmentation, we
performed an agglomeration of the obtained clusters to fuse
those carrying similar information.

A dendrogram represents a quick solution for evaluating
the relation between SOM clusters (see Fig. 15). Here, we
adopted as metric the Ward’s distance [63]. The red dashed line
represents the distance under which dendrogram’s branches
are considered for fusion. Clusters interested by fusion have
been displayed in yellow, green, magenta, blue and red. This
representation is consistent with the SOM grid depicted in
Fig. 14, in which the colored rectangles enclose fused clusters,
for a total of five categories. Looking at the dendrogram,
the output of the fusion process is given by the intersection
between the horizontal red dashed line and the black leaves
above the colored groups of clusters.

The output of the hierarchical clustering is depicted in
Fig. 16a, in which an unpleasant granularity arises. It consists
in small regions mainly sunk into an uniform background. In
this picture, the cluster-color association is consistent with the
dendrogram of Fig. 15 and with the SOM grid of Fig. 14,
in which the semi-transparent colored rectangles enclose the
agglomerated clusters.

Physical-based consideration and object-based reasoning
can be used to improve the quality of the obtained clusters
map.

We propose a simple processing based on connected com-
ponents labeling [64]. This algorithm assigns an increasing nu-

meric index to each connected region found within the image.
For these objects, as suggested in [65], some shape parameters
can be computed, as well as spatial relations between them.
Here, we propose to compute some parameters, such as area,
compactness, number of neighbours and percentage of shared
borders between adjacent regions. These parameters were used
to generate an appropriate physical-based and application-
tailored set of rules. In this case, we want to reconstruct
the homogeneity of the clusters representing the behavior of
the cropfields. Therefore, the implemented rules aim at fusing
small objects (also with irregular shape) to the background.

In Fig. 16b, the result of the object-based image analysis
is reported. It is quite evident that the fusion operation has
definitely improved the quality of the cluster map. In fact, with
respect to the map presented in Fig. 16a, the number of regions
is dramatically reduced, decreasing from 12529 to 207, also
bringing undebatable benefits to the physical interpretation of
the map.

4) Interpretation: The physical interpretation of the re-
trieved clusters is now in order.

From the available data extracted from the CORINE land
cover [38], it appears that the study area is mainly destined
to vineyards. Thus, observing the Level-1β subsets depicted
in Fig. 13a and Fig. 13b, the clustered image reported in
Fig. 16b, and the SOM grid of Fig. 14, it is possible to infer
the following:

- Yellow cluster: The RGB values in this cluster are
medium to high, constant between the two years or
with a slightly increasing red value. The red (variance)
and the green (mean) values are generally higher than
the blue (saturation index). This means that the yellow
cluster is associated with agricultural areas that have a
pink/yellow color in the Level-1β product in 2008 and
remained similar in 2009, or slightly turned to pink when
they were yellow in the first year. These areas exhibit
an almost constant behavior in the two examined years.
Assuming that the study area is destined to vineyard, as
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Fig. 14: 8×8 SOM grid showing the RGB values (reported on the y-axis) for year 1 and their change to year 2 (see x-axis). The
colored rectangles represent the clusters after hierarchical agglomeration (see Section VI-A3 and the dendrogram in Fig. 15).

stated in the CORINE map, we can argue that this cluster
represent the fields in which the optimum behavior of the
cultivation is reached. In fact, vineyards experience their
full development between April and October, which is
actually the period considered for building the Level-1β
products used for the classification (see Section V-A).
Therefore, in this period the growth of the cultivation
results in high values of the considered multitemporal
quantities;

- Green cluster: In this cluster the green value is medium
and remains constant, but red and blue values are gener-
ally decreasing from high to low. This is associated with
areas that were pink in the 2008 Level-1β product and
turned into green. Physically, the decrease in variance and
saturation index could be related to a smaller development
of the cultivation, thus to a reduction of the volumetric
scattering contribution. This can be associated to a lower
development of the cultivation in the year 2009. However,
since the contribution of the mean remains high in both
years, despite the decreasing in variance and saturation
index, it is possible to argue that the cultivation is
structurally characterized by a rather dense foliage, such
as that of a vineyard, whose structure and dynamics are
fully compatible with the phenomenology inferable from

the cluster analysis;
- Red cluster: The RGB values are constant or slightly

decreasing, but generally lower than the values in the
Yellow cluster. This cluster is mainly associated with
green areas which remains almost constant in the two
years. From the above considerations, we can infer that
the behavior of the vineyards grouped in this cluster is
not optimal in both the considered years;

- Blue cluster: Areas in this cluster have high blue and
red values in the first year, decreasing in the second
year, while the green remains constant. The red value
generally decreases more than the blue one. This cluster is
associated with areas that were pink in the 2008 Level-1β
image and turned into blue in 2009. It is mainly located
in the field at the top-left corner in Fig. 13a, Fig. 13a
and Fig. 16b. It represents an anomaly with respect to
the behavior of the previously analyzed cluster. In fact,
the abrupt fall in variance and the low values of the mean
bring us to argue that this cluster is a fallow land on which
some activities have been performed in the year 2008;

- Magenta cluster: these areas have very low values of
RGB. They are almost constant in the two years. This is
associated with dark blue areas in the Level-1β products.
The very small variance indicates that the pixels are quite
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Fig. 15: SOM cluster dendrogram. The red dashed line represents the distance under which diagram’s branches are considered
for fusion. Clusters interested by the fusion are depicted in yellow, green, blue, red and magenta (see also the SOM grid
depicted in Fig. 14).

(a) (b)

Fig. 16: Clusters map (a) after the hierarchical agglomeration
and (b) after the object-based region fusion. The cluster-color
association is consistent the dendrogram of Fig. 15 and with
the SOM grid of Fig. 14.

stable. In fact, looking at the shapes, it is clear that they
are associated to roads.

The outcomes of clusters interpretation are summarized
in TABLE II. In this table, RGB attributes refer to the
2008 Level-1β product and their derivatives are qualitatively
evaluated based on the SOM grid depicted in Fig. 14. However,
we want to remark that this analysis is inferred by available

data, but no ground truth for this experiment is available.

B. Scenario 2: Sentinel-1 land cover mapping

In the previous Section, we used Level-1β products and
SOMs for solving a critical problem, i.e. the qualitative
evaluation of the agricultural production in two successive
years. Here, we face a more classical problem, such the land
cover mapping derived from multitemporal data [34].

In this case, SOMs offer the possibility of an immediate
semantic transferring from the Level-1β product to the classi-
fied map. In fact, during the training, the SOM (randomly
initialized) nodes are updated to be representative of the
training elements, which are chosen within the RGB product.
Thus, the resulting node colors will have the same semantics
of the input Level-1β products.

We performed a land cover classification on a fragment of
the Sentinel-1 Level-1β product presented in Section V-B rel-
evant to the Dresden city area. Unlike the technique presented
in [66], here we used a 2 × 2 SOM grid for producing a 4-
class land cover product. The SOM training parameters were
the same used for the Calabria experiment discussed in Section
VI-A. The original Level-1β product and the SOM land cover
classification are shown in Fig. 17a and Fig. 17b, respectively.

As stated above, the use of a SOM allows for transferring
immediately the semantics from one product to another. In
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TABLE II: Summary of cluster interpretation outcomes. RGB attributes are referred to the 2008 Level-1β product. In table
headings, t refers to time.

Cluster color R G B R(t) G(t) B(t) Interpretation
Yellow High High High = = = Optimal crops behavior
Green High Medium/High Medium ↓↓ = ↓ Non-optimal behavior in year 2
Red Medium Medium Medium/Low ↓ = = Non-optimal behavior in both years
Blu High Low High ↓↓ = ↓ Fallow lands
Magenta Low Low Low = = = Roads/Low scatterers

(a)

(b)

Fig. 17: Dresden area: (a) Sentinel-1 Level-1β product and
(b) its 4-classe land cover map. The use of SOM allows
for obtaining a classification map whose appearance is very
similar to the input RGB products. This way, an immediate
semantic transfer between the two products is possible. The
original images dimension is about 1500× 2300 pixels.

particular, the interpretation of the class meaning, following
the guidelines given in Section V, is provided below:

- Dodger Blue class - Urban area: This class corresponds
to cyan areas in the Level-1β product due to the high
contribution of the mean and of the interferometric co-
herence;

- Light green class - Grasslands: It corresponds to light
green areas in the Level-1β product, showing low vari-

ance and saturation index and a higher contribution of the
mean due to the backscattering contribution of terrains;

- Orange class - Growing crops/vegetation: This category
includes areas characterized by tones from yellow to
pink in the Level-1β product due to a medium/high
contribution of all the considered indicators;

- Dark green class - Low scatterers: This is the more
heterogeneous class, enclosing the darker objects of the
scene (water bodies, bare soils and shadows).

This experiment outputs a very heterogeneous cluster (the
Dark green one) enclosing objects of different nature. Thus,
with respect to the Calabria scene analyzed in Section VI-A,
the problem is inverted, since we may be interested in splitting
this cluster in at least two more significant categories.

To this end, we analyze the reasons that led to the associa-
tion of black and dark green objects in the Level-1β product
within a unique cluster.

As stated above, the SOM nodes are trained with RGB
triplets randomly selected within the input product. However,
looking at Fig. 17b, it arises that the “black object class” is the
less represented in the data. Therefore, it is highly uncertain
that a SOM node can gain such color, since few training sets
relevant to this class are presented to the network.

The flexibility of a SOM, joined to a knowledge about the
mapping of the real world into Level-1β imagery [18], allows
us to easily solve this problem. In fact, in a Level-1β product,
an insufficient presence of an object class can occur mainly
for water surfaces (as in the analyzed case) and urban areas,
if an extended natural scene is considered. In the presented
experiment, this caused substantially the aggregation of the
class water bodies into the class woods, which is the closer
for chromatic characteristics.

In order to split this class into its two major features, it
is sufficient to force a significant number of training sets (in
the order of 15-20% of the total) to point toward the less
represented class. In such way, we induced one of the SOM
nodes to assume the corresponding color. In this case, we
used a 2x1 SOM, acting the modification of the training sets
toward the black color after masking out all the classes except
the Dark green one. It is worthwhile to note that when the
dimension of the SOM is reduced, the neighbor influenced by
the winner neuron should be modified accordingly.

In Fig. 18, we show the final 5-class land cover map,
after the application of the above described splitting of the
Dark Green class into a Dark Green cluster (again) mainly
representative of woods and a Black cluster relevant to water
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surfaces. It is remarkable how the land cover map looks very
similar to the input Level-1β product.

Fig. 18: Dresden area, Sentinel-1 5-classe land cover map after
the splitting of the Dark Green class.

However, the Black cluster does not include only water
surfaces, since other features, such as shadows and bare soils,
are chromatically similar to them. This allows for enforcing
the consideration made at Section I about the extraction
of information from remote-sensing data. SOMs, although
representing, as demonstrated, a very flexible and suitable
tool, can provide only a partial answer to this problem. In
fact, they act on a single image attribute, i.e. on its chromatic
characteristics. An object-based reasoning, as discussed in
Section VI-A3 can improve the effectiveness of a SOM-based
analysis, but a complete image understanding system can not
overlook the integration of image analysis techniques (such as
SOMs) and scattering models. In fact, the separation of water
surfaces from backslope areas or bare soils can be obtained by
analyzing the electromagnetic scattering of these features [67],
[68]. In the same way, as an example, the characteristics of
the urban area can be retrieved only by evaluating the complex
scattering mechanisms triggered by an urban environment
[69], [70]. We think that all the ambiguity derived by the
SAR scattering mechanism should be resolved at model level.
In fact, however user-friendly may be this or that technique,
including also commercial suites, it can not solve problems as
those discussed above without taking into account scattering
models. Thus, the role of the SAR experts should consist in
the integration of electromagnetic models into user-oriented
data analysis techniques for making them fully effective in
the solution of disambiguation problems and, at the same time,
manageable with the lowest level of expertise by the end-user
community.

VII. CONCLUSIONS

In this paper, we introduced a new class of multitemporal
SAR products. The proposed Level-1β products have been
designed to help the human photo-interpreter, thanks to a
rendering as much as possible consistent with human visual
understanding. The aim of the proposed products is to lower
the expertise required to correctly interpret the data. In fact,

in a scenario in which the automatic extraction of information
from large databases is rather limited, users are in many cases
appointed to extract information from the analyzed scene,
i.e. to transfer a semantics to the imaged objects. Level-1β
products comply with this necessity, which is more and more
felt in the end-users community, making the human-machine
interaction easier and more comfortable.

We tested the reliability of our products by implementing
the proposed processing chain using images acquired by
three different sensors on four scenes (Campania, Calabria,
Yatenga and Saxony). All the available acquisition modalities
(stripmap, spotlight and scan) were tested, as well as differ-
ent climatic zones (temperate with Mediterranean/continental
climate and semi-arid). The obtained results confirmed the
semantic stability of the proposed products, i.e. the consistency
of the association between the displayed colors and the objects
on the scene.

In Section VI we tested the minability of the proposed
products and their suitability for data analysis techniques.
The application of Self-Organizing Maps was selected for the
robustness to big data, flexibility, and the capacity to maintain
the chromatic semantics of the input image. In the first
application, we demonstrated the suitability of the products
and of the tool to convey a complex information, i.e. the
qualitative evaluation of changes in the agricultural production
of two consecutive years. In the second example, we tested the
capability of the Self-Organizing Map to classify a Sentinel-
1 composite relevant to the city of Dresden, maintaining the
semantics associated to the color response of the input Level-
1β product. In both applications, the combination of the Level-
1β images and self-orgainizing maps performed particularly
well and demonstrated the suitability of the product to data
analysis techniques.

In Section I, we recalled five questions proposed in the past
literature concerning the reliability of a data fusion technique.
We proposed an answer for all of them with regard to the
problem of data representation. However, question 5 (concern-
ing how to extract the enormous amount of information from
remotely sensed data) is only partially answered. It could not
be otherwise, considering that this work mainly deals with a
part of the whole problem, i.e. data representation. Here, we
can linger on the following consideration: what is the role of
the electromagnetic models in remote sensing data analysis?

At first, electromagnetic models constitute the basis of the
interpretation of any SAR product. In fact, unlike the case
of optical data, humans have no experience of radar imaging
directly linked to the world they live, and from which they
can take inspiration for understanding data. Therefore, Level-
1β imagery gains its semantics from the knowledge of the
phenomenology dictated by the interaction of the electro-
magnetic fields with Earth surfaces. The proposed products
subtend the expertise required for understanding these complex
mechanisms, re-elaborating the scene dynamic in a more user-
friendly color display in which the non-expert user can more
easily encounter his/her expectation about object appearance.
However, models are often left aside in favour of the devel-
opment of techniques, which are highly conditioned by the
application and by the correct selection of free parameters.
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Actually, we think that a data analysis technique can be a
valid alternative to the application of electromagnetic models,
which are probably out of reach for non-expert users, when
high-level information are sought. Instead, understanding the
scene at its lowest level requires the application of scattering
models. As an example, the knowledge of the precise destina-
tion of a terrain belonging to the class “Cropfields” requires
the mastery of a vegetation scattering model. In the same way,
the retrieval of the height of an object classified as “Urban
structure” requires the knowledge of the complex scattering
mechanism triggered by an urban environment.

At the end of the day, the message we convey is that
a more effective integration of techniques and models is
needed, especially looking toward automatic systems of image
understanding which seem to become the essential core of
remotely sensed data analysis in a big data scenario. We
think that the full development of such systems can provide a
complete answer to the question we left partially suspended.
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