
Compilers and Code

Optimization
EDOARDO FUSELLA

The course covers

 Compiler architecture

 Front-end

 Back-end

 LLVM

 Code optimization

 A case study: nu+

 Pre-requisite

 Strong programming background in C, C++

 Strong assembly language programming

and computer architecture background

 ISAs

 RISC vs CISC

 Assembly language coding

 Datapath (ALU) and controller

 Pipelining

 Memory Hierarchies

 Specialized Architectures

 Out of order execution

 …

Occupational Perspectives

 Compiler Technologists are a scarce resource!

 1.5 Compiler engineers for every 1000 Software Engineers

 2 compiler jobs for every 100 software engineering jobs

 Typical Employers for Compiler Technologists

 Semiconductor Industry: All major semiconductor companies have

their own compiler teams; major players in Europe include

STMicroelectronics (IT/FR), ARM (UK) and Sony (UK)

 Compiler Development Industry: Specialized compiler development

SMEs are another occupational option; major players in Europe

include Associated Compiler Experts (NL) and Codeplay (UK)

 Other areas: Electronic Design Automation; Security; System software

Occupational Perspectives
… also for non-specialists!

 EDA Tool Engineers

 Most Electronic Design Automation tools are actually very similar to compilers

 Software Engineers

 Many advanced SE techniques (automated refactoring, e.g.) require compiler
techniques

 Computer Architects & Embedded Software Engineers

 Architectural features cannot be easily exploited without compiler support

 Understanding performance of optimized code is critical for embedded
development

 Security Technologists

 Malware analysis, reversing, and other activities typical of the security domain
employ techniques not unlike those found in compilers

Resources

• A. Aho, M. S. Lam, R. Sethi, and J. D. Ullman,
Compilers: principles, techniques and tools, Prentice-
Hall, 2006

Book #1

• A. Appel, Modern compiler implementation in Java, 2nd
ed., Cambridge University Press, 2003Book #2

• LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation, by C. Lattner and V. Adve

• https://llvm.org/

LLVM paper
and site

What is a compiler?

A program that reads a program written in one

language and translates it into another language.

Source language Target language

 Traditionally, compilers go from high-level languages to low-level

languages.

 Source program must be equivalent to target program.

Compiler Technology

 Why Compiler Technology

 Code Transformations are critical for performance

 Naive implementations can generate code 60% slower (or more)
w.r.t. optimized code

 Performance also reflects on resource usage (energy, availability)

Structure of a compiler

 Lexical analysis & parsing

 Statement and Data Structure Lowering

 Optimization: machine independent and machine-dependent

 Code Generation

Aren’t compilers a solved problem?

“Optimization for scalar machines is a problem that was solved

ten years ago.”

-- David Kuck, Fall 1990

 Architectures keep changing

 Languages keep changing

 Applications keep changing

 When to compile keeps changing

Changes in

compilers

Role of compilers

 Bridge complexity and evolution in architectures, languages, &

applications

 Help programmers with correctness, reliability, program

understanding

 Compiler optimizations can significantly improve performance

(up to 10x on conventional processors)

 Performance stability: one line change can dramatically alter

performance

Performance Anxiety

 But does performance really matter?

 Computers are really fast

 Moore’s law (roughly):

hardware performance doubles every 18 months

 Real bottlenecks lie elsewhere:

 Disk

 Network

 Human! (think interactive apps)

 Human typing avg. 8 cps (max 25 cps)

 Waste time “thinking”

Compilers Don’t Help Much

 Do compilers improve performance anyway?

 Proebsting’s law

(Todd Proebsting, Microsoft Research):

 Difference between optimizing and non-optimizing compiler ~ 4x

 Assume compiler technology represents 36 years of progress

(actually more)

 Compilers double program performance every 18 years!

 Compiler optimization work makes only marginal contributions

 Not quite Moore’s Law…

A Big BUT
 Why use high-level languages anyway?

 Easier to write & maintain

 Safer (think Java)

 More convenient (think libraries, GC…)

 But: people will not accept massive performance hit for these gains

 Compile with optimization!

 Still use C and C++!!

 Hand-optimize their code!!!

 Even write assembler code !!!!

 Apparently performance does matter…

What qualities are important in a

compiler?

1. Correct code

2. Output runs fast

3. Compiler runs fast

4. Compile time proportional to program size

5. Support for parallel compilation

6. Good diagnostics for syntax errors

7. Works well with the debugger

8. Good diagnostics for flow anomalies

9. Cross language calls

10. Consistent, predictable optimization

Compilers vs interpreters

 Interpreter: Reads a statement/code line at a time, performs the stated actions

 Short delay before starting execution

 Interactive execution (can execute a partially written code)

 Avoids compilation overheads if the code is not executed

 Compiler: Translates a compilation unit to machine code

 Optimizes across different statements

 Faster execution once the code is compiled

 Compilation needs to be performed only once

When to compile?

 Static Compiler: Translates source code to machine code well in advance of execution --
possibly even on a different machine

 No compilation overheads at runtime

 No possibility to adapt the code at runtime

 One code version needs to be generated for each target platform

 JIT (Just-in-Time) Compiler: Translates each function when it is first invoked

 Only code that is actually executed is translated

 Code is targeted for the specific architecture, possibly taking into account runtime constraints
(e.g., availability of resources)

 Code may be optimized taking into account runtime information (e.g., runtime constants)

 AOT (Ahead-of-Time) Compiler: Translates each function before it is first invoked

 Attempts to mix the two above styles to reap the benefits of both

 Popular with virtual machines (DotNet, Java)

What to compile?

 Compilation units

 Statement/Line of code: Small code regions

 Function/Procedure: Medium sized code regions which are reusable

through function call

 Module/Source file: Large sized code regions

 Tradeoffs

 Smaller: faster translation, may be used to provide interactive

compilation and execution

 Larger: more optimization, more complexity

Where to compile?

 Cross-compilation

 Generally useful when machine T has insufficient resources for handling
compilation tasks (e.g., embedded microcontrollers) or is not suited for
general purpose processing (e.g., GPGPU)

 Also useful for distributing to different platforms while having a single build
machine

 Split compilation

 Perform part of the compilation on machine H, producing an intermediate,
portable code (e.g., bytecode), and part on machine T

 Allows target-specific optimization to be performed more easily

 Simplifies distribution of code on wide ranges of different target platforms

Overview of a compiler framework

 intermediate representation (IR)

 Separation of Concerns

 front end maps legal code into IR

 back end maps IR onto target machine

 simplify retargeting

 allows multiple front ends

 multiple passes = better code

Front End

language specific

Back End

machine specific

Source

Language

Target

Language

Intermediate

Language

A fallacy!

Front-end, IR and back-end must encode knowledge

needed for all nxm combinations!

The Analysis-Synthesis Model

There are two parts to compilation:

 Front-end: Analysis determines the operations implied by the

source program which are recorded in a tree structure (machine

independent)

 Back-end: Synthesis takes the tree structure and translates the

operations therein into the target program (machine dependent)

Phases of a Compiler

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent

Code Optimizer

Code Generator

Machine-Dependent

Code Optimizer

target-machine

code

token stream

syntax tree

syntax tree

intermediate representation

target-machine code

intermediate representation

Symbol

Table

source program

F
ro

n
t-

e
n
d

B
a
c
k
-e

n
d

Lexical Analyzer

 Lexical analyzer are divided into a cascade of two

process.

 Scanning

Consists of the simple processes that do not require

tokenization of the input.

Deletion of comments.

Compaction of consecutive whitespace characters into one.

 Lexical analysis

The scanner produces the sequence of tokens as output.

Encode constants as tokens

Recognize Keywords and Identifiers

Store identifier names in a symbol table

Lexical Analyzer
Encode constants as tokens

 For a sequence of digits, the lexical analyzer must pass to the

parser a token.

 The token consists of the terminal along with an integer-valued

attribute computed from the digits.

 Example

 31 + 28 + 29

 <num, 31> <+> <num, 28> <+> <num,29>

token
token

attribute

Lexical Analyzer
Recognize Keywords and Identifiers

 Keyword

 A fixed character string as punctuation marks or to identify

constructs.

 Example

 for, while, if

 Identifier

 Use to name variables, arrays, functions, and the like.

 Parser treats identifiers as terminals.

 Example

 count = count + increment;

 <id, ”count”> <=> <id, “count”> <+> <id, “increment”> <;>

Lexical Analyzer
Store identifier names in a symbol table

 The lexical analyzer uses a table to hold character strings.

 Symbol table contain information about an identifer

 character string (or lexeme)

 its type

 its position in storage

 any other relevant information

 A string table can be implemented by a hash table.

 Single Representation

Lexical Analyzer
 Position is a lexeme that would

be mapped into a token <id, 1>,
where id is an abstract symbol
standing for identifier and 1
points to the symbol-table entry
for position.

 The assignment symbol = is
mapped into the token <=>

 Initial is a lexeme that is mapped
into the token <id, 2>, where 2
points to the symbol-table entry
for initial.

 The add symbol + is mapped
into the token <+>

 …

Lexical Analyzer

position = initial + rate * 60

<id,1> <=> <id,2> <+> <id,3> <*> <60>

SYMBOL TABLE

Syntax Analyzer
or parsing

Syntax analyzer generates a parse tree (or syntax

tree)

 In a syntax tree, each interior node represents an operation

and the children of the node represent the arguments of the

operation.

Token arrangements are checked against the source

code grammar, i.e. the parser checks if the expression

made by the tokens is syntactically correct.

Syntax Analyzer
 The tree has an interior

node labeled * with (id, 3) as
its left child and the integer
60 as its right child. The
node (id, 3) represents the
identifer rate.

 The node labeled +
indicates that we must add
the result of this
multiplication to the value of
initial.

 The root of the tree, labeled
=, indicates that we must
store the result of this
addition into the location for
the identifer position.

Syntax Analyzer

<id,1> <=> <id,2> <+> <id,3> <*> <60>

=

<id,1>

<id,2>

<id,3>

+

*

60

SYMBOL TABLE

Semantic Analyzer
Check the source program for semantic consistency

Static semantics check

Making sure identifiers are declared before use

Type checking for assignments and operators

Checking types and number of parameters to

subroutines

Making sure functions contain return statements

Simplify the structure of the parse tree (from parse tree

to abstract syntax tree (AST))

Semantic Analyzer
 Suppose that position, initial, and

rate have been declared to be
floating-point numbers, and that
the lexeme 60 by itself forms an
integer.

 Semantic analyzer discovers that
the operator * is applied to a
floating-point number rate and
an integer 60.

 The integer must be converted
into a floating-point number.

Semantic Analyzer

=

<id,1>

<id,2>

<id,3>

+

*

inttofloat

60

=

<id,1>

<id,2>

<id,3>

+

*

60

Intermediate Code Generator

Go through the parse tree from bottom up,

turning rules into code.

e.g. A sum expression results in the code that

computes the sum and saves the result

Result: inefficient code in a machine-

independent language

Two Forms of Intermediate Code

 Abstract syntax trees

 Each interior node represents

an operator

 The children of the node

represent the operands of the

operator

do-while

body

assign

i +

i 1

>

[]

a

v

i

 Tree-Address instructions

 Each instruction has at most one

operator on the right side.

 The compiler must generate a

temporary name to hold the value

computed by an instruction.

 Some instructions have fewer

than three operands

Intermediate Code Generator

Machine-Independent

Code Optimizer

 Perform various transformations that improve

the code, e.g.

 Find and reuse common subexpressions

 Take calculations out of loops if possible

 Eliminate redundant operations

Machine-Independent

Code Optimizer

 The inttofloat operation can be

eliminated by replacing the integer

60 by the floating-point number

60.0.

 Moreover, t1 and t3 are used only

once to transmit their values to t2

and id1 so the optimizer can

remove them

Code Generator

 Translate IR into target machine code

 Choose instructions for each IR operation

 Decide what to keep in registers at each point

 Ensure conformance with instruction set

 Make improvements that require specific knowledge of machine
architecture, e.g.

 Optimize use of available registers

 Reorder instructions to avoid waits

Code Generator
Instruction selection

 Produce compact, fast code

 Use available addressing modes

 Pattern matching problem

 Ad hoc techniques

 Tree pattern matching

 String pattern matching

 Dynamic programming

Code Generator
Register allocation

 Have value in a register when used

 Limited resources

 Changes instruction choices

 Can move loads and stores

 Optimal allocation is difficult

Code Generator

 Make improvements that

require specific

knowledge of machine

architecture, e.g.

Optimize use of available

registers

Reorder instructions to

avoid waits

