
Compilers and Code

Optimization
EDOARDO FUSELLA

The course covers

 Compiler architecture

 Front-end

 Back-end

 LLVM

 Code optimization

 A case study: nu+

 Pre-requisite

 Strong programming background in C, C++

 Strong assembly language programming

and computer architecture background

 ISAs

 RISC vs CISC

 Assembly language coding

 Datapath (ALU) and controller

 Pipelining

 Memory Hierarchies

 Specialized Architectures

 Out of order execution

 …

Occupational Perspectives

 Compiler Technologists are a scarce resource!

 1.5 Compiler engineers for every 1000 Software Engineers

 2 compiler jobs for every 100 software engineering jobs

 Typical Employers for Compiler Technologists

 Semiconductor Industry: All major semiconductor companies have

their own compiler teams; major players in Europe include

STMicroelectronics (IT/FR), ARM (UK) and Sony (UK)

 Compiler Development Industry: Specialized compiler development

SMEs are another occupational option; major players in Europe

include Associated Compiler Experts (NL) and Codeplay (UK)

 Other areas: Electronic Design Automation; Security; System software

Occupational Perspectives
… also for non-specialists!

 EDA Tool Engineers

 Most Electronic Design Automation tools are actually very similar to compilers

 Software Engineers

 Many advanced SE techniques (automated refactoring, e.g.) require compiler
techniques

 Computer Architects & Embedded Software Engineers

 Architectural features cannot be easily exploited without compiler support

 Understanding performance of optimized code is critical for embedded
development

 Security Technologists

 Malware analysis, reversing, and other activities typical of the security domain
employ techniques not unlike those found in compilers

Resources

• A. Aho, M. S. Lam, R. Sethi, and J. D. Ullman,
Compilers: principles, techniques and tools, Prentice-
Hall, 2006

Book #1

• A. Appel, Modern compiler implementation in Java, 2nd
ed., Cambridge University Press, 2003Book #2

• LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation, by C. Lattner and V. Adve

• https://llvm.org/

LLVM paper
and site

What is a compiler?

A program that reads a program written in one

language and translates it into another language.

Source language Target language

 Traditionally, compilers go from high-level languages to low-level

languages.

 Source program must be equivalent to target program.

Compiler Technology

 Why Compiler Technology

 Code Transformations are critical for performance

 Naive implementations can generate code 60% slower (or more)
w.r.t. optimized code

 Performance also reflects on resource usage (energy, availability)

Structure of a compiler

 Lexical analysis & parsing

 Statement and Data Structure Lowering

 Optimization: machine independent and machine-dependent

 Code Generation

Aren’t compilers a solved problem?

“Optimization for scalar machines is a problem that was solved

ten years ago.”

-- David Kuck, Fall 1990

 Architectures keep changing

 Languages keep changing

 Applications keep changing

 When to compile keeps changing

Changes in

compilers

Role of compilers

 Bridge complexity and evolution in architectures, languages, &

applications

 Help programmers with correctness, reliability, program

understanding

 Compiler optimizations can significantly improve performance

(up to 10x on conventional processors)

 Performance stability: one line change can dramatically alter

performance

Performance Anxiety

 But does performance really matter?

 Computers are really fast

 Moore’s law (roughly):

hardware performance doubles every 18 months

 Real bottlenecks lie elsewhere:

 Disk

 Network

 Human! (think interactive apps)

 Human typing avg. 8 cps (max 25 cps)

 Waste time “thinking”

Compilers Don’t Help Much

 Do compilers improve performance anyway?

 Proebsting’s law

(Todd Proebsting, Microsoft Research):

 Difference between optimizing and non-optimizing compiler ~ 4x

 Assume compiler technology represents 36 years of progress

(actually more)

 Compilers double program performance every 18 years!

 Compiler optimization work makes only marginal contributions

 Not quite Moore’s Law…

A Big BUT
 Why use high-level languages anyway?

 Easier to write & maintain

 Safer (think Java)

 More convenient (think libraries, GC…)

 But: people will not accept massive performance hit for these gains

 Compile with optimization!

 Still use C and C++!!

 Hand-optimize their code!!!

 Even write assembler code !!!!

 Apparently performance does matter…

What qualities are important in a

compiler?

1. Correct code

2. Output runs fast

3. Compiler runs fast

4. Compile time proportional to program size

5. Support for parallel compilation

6. Good diagnostics for syntax errors

7. Works well with the debugger

8. Good diagnostics for flow anomalies

9. Cross language calls

10. Consistent, predictable optimization

Compilers vs interpreters

 Interpreter: Reads a statement/code line at a time, performs the stated actions

 Short delay before starting execution

 Interactive execution (can execute a partially written code)

 Avoids compilation overheads if the code is not executed

 Compiler: Translates a compilation unit to machine code

 Optimizes across different statements

 Faster execution once the code is compiled

 Compilation needs to be performed only once

When to compile?

 Static Compiler: Translates source code to machine code well in advance of execution --
possibly even on a different machine

 No compilation overheads at runtime

 No possibility to adapt the code at runtime

 One code version needs to be generated for each target platform

 JIT (Just-in-Time) Compiler: Translates each function when it is first invoked

 Only code that is actually executed is translated

 Code is targeted for the specific architecture, possibly taking into account runtime constraints
(e.g., availability of resources)

 Code may be optimized taking into account runtime information (e.g., runtime constants)

 AOT (Ahead-of-Time) Compiler: Translates each function before it is first invoked

 Attempts to mix the two above styles to reap the benefits of both

 Popular with virtual machines (DotNet, Java)

What to compile?

 Compilation units

 Statement/Line of code: Small code regions

 Function/Procedure: Medium sized code regions which are reusable

through function call

 Module/Source file: Large sized code regions

 Tradeoffs

 Smaller: faster translation, may be used to provide interactive

compilation and execution

 Larger: more optimization, more complexity

Where to compile?

 Cross-compilation

 Generally useful when machine T has insufficient resources for handling
compilation tasks (e.g., embedded microcontrollers) or is not suited for
general purpose processing (e.g., GPGPU)

 Also useful for distributing to different platforms while having a single build
machine

 Split compilation

 Perform part of the compilation on machine H, producing an intermediate,
portable code (e.g., bytecode), and part on machine T

 Allows target-specific optimization to be performed more easily

 Simplifies distribution of code on wide ranges of different target platforms

Overview of a compiler framework

 intermediate representation (IR)

 Separation of Concerns

 front end maps legal code into IR

 back end maps IR onto target machine

 simplify retargeting

 allows multiple front ends

 multiple passes = better code

Front End

language specific

Back End

machine specific

Source

Language

Target

Language

Intermediate

Language

A fallacy!

Front-end, IR and back-end must encode knowledge

needed for all nxm combinations!

The Analysis-Synthesis Model

There are two parts to compilation:

 Front-end: Analysis determines the operations implied by the

source program which are recorded in a tree structure (machine

independent)

 Back-end: Synthesis takes the tree structure and translates the

operations therein into the target program (machine dependent)

Phases of a Compiler

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent

Code Optimizer

Code Generator

Machine-Dependent

Code Optimizer

target-machine

code

token stream

syntax tree

syntax tree

intermediate representation

target-machine code

intermediate representation

Symbol

Table

source program

F
ro

n
t-

e
n
d

B
a
c
k
-e

n
d

Lexical Analyzer

 Lexical analyzer are divided into a cascade of two

process.

 Scanning

Consists of the simple processes that do not require

tokenization of the input.

Deletion of comments.

Compaction of consecutive whitespace characters into one.

 Lexical analysis

The scanner produces the sequence of tokens as output.

Encode constants as tokens

Recognize Keywords and Identifiers

Store identifier names in a symbol table

Lexical Analyzer
Encode constants as tokens

 For a sequence of digits, the lexical analyzer must pass to the

parser a token.

 The token consists of the terminal along with an integer-valued

attribute computed from the digits.

 Example

 31 + 28 + 29

 <num, 31> <+> <num, 28> <+> <num,29>

token
token

attribute

Lexical Analyzer
Recognize Keywords and Identifiers

 Keyword

 A fixed character string as punctuation marks or to identify

constructs.

 Example

 for, while, if

 Identifier

 Use to name variables, arrays, functions, and the like.

 Parser treats identifiers as terminals.

 Example

 count = count + increment;

 <id, ”count”> <=> <id, “count”> <+> <id, “increment”> <;>

Lexical Analyzer
Store identifier names in a symbol table

 The lexical analyzer uses a table to hold character strings.

 Symbol table contain information about an identifer

 character string (or lexeme)

 its type

 its position in storage

 any other relevant information

 A string table can be implemented by a hash table.

 Single Representation

Lexical Analyzer
 Position is a lexeme that would

be mapped into a token <id, 1>,
where id is an abstract symbol
standing for identifier and 1
points to the symbol-table entry
for position.

 The assignment symbol = is
mapped into the token <=>

 Initial is a lexeme that is mapped
into the token <id, 2>, where 2
points to the symbol-table entry
for initial.

 The add symbol + is mapped
into the token <+>

 …

Lexical Analyzer

position = initial + rate * 60

<id,1> <=> <id,2> <+> <id,3> <*> <60>

SYMBOL TABLE

Syntax Analyzer
or parsing

Syntax analyzer generates a parse tree (or syntax

tree)

 In a syntax tree, each interior node represents an operation

and the children of the node represent the arguments of the

operation.

Token arrangements are checked against the source

code grammar, i.e. the parser checks if the expression

made by the tokens is syntactically correct.

Syntax Analyzer
 The tree has an interior

node labeled * with (id, 3) as
its left child and the integer
60 as its right child. The
node (id, 3) represents the
identifer rate.

 The node labeled +
indicates that we must add
the result of this
multiplication to the value of
initial.

 The root of the tree, labeled
=, indicates that we must
store the result of this
addition into the location for
the identifer position.

Syntax Analyzer

<id,1> <=> <id,2> <+> <id,3> <*> <60>

=

<id,1>

<id,2>

<id,3>

+

*

60

SYMBOL TABLE

Semantic Analyzer
Check the source program for semantic consistency

Static semantics check

Making sure identifiers are declared before use

Type checking for assignments and operators

Checking types and number of parameters to

subroutines

Making sure functions contain return statements

Simplify the structure of the parse tree (from parse tree

to abstract syntax tree (AST))

Semantic Analyzer
 Suppose that position, initial, and

rate have been declared to be
floating-point numbers, and that
the lexeme 60 by itself forms an
integer.

 Semantic analyzer discovers that
the operator * is applied to a
floating-point number rate and
an integer 60.

 The integer must be converted
into a floating-point number.

Semantic Analyzer

=

<id,1>

<id,2>

<id,3>

+

*

inttofloat

60

=

<id,1>

<id,2>

<id,3>

+

*

60

Intermediate Code Generator

Go through the parse tree from bottom up,

turning rules into code.

e.g. A sum expression results in the code that

computes the sum and saves the result

Result: inefficient code in a machine-

independent language

Two Forms of Intermediate Code

 Abstract syntax trees

 Each interior node represents

an operator

 The children of the node

represent the operands of the

operator

do-while

body

assign

i +

i 1

>

[]

a

v

i

 Tree-Address instructions

 Each instruction has at most one

operator on the right side.

 The compiler must generate a

temporary name to hold the value

computed by an instruction.

 Some instructions have fewer

than three operands

Intermediate Code Generator

Machine-Independent

Code Optimizer

 Perform various transformations that improve

the code, e.g.

 Find and reuse common subexpressions

 Take calculations out of loops if possible

 Eliminate redundant operations

Machine-Independent

Code Optimizer

 The inttofloat operation can be

eliminated by replacing the integer

60 by the floating-point number

60.0.

 Moreover, t1 and t3 are used only

once to transmit their values to t2

and id1 so the optimizer can

remove them

Code Generator

 Translate IR into target machine code

 Choose instructions for each IR operation

 Decide what to keep in registers at each point

 Ensure conformance with instruction set

 Make improvements that require specific knowledge of machine
architecture, e.g.

 Optimize use of available registers

 Reorder instructions to avoid waits

Code Generator
Instruction selection

 Produce compact, fast code

 Use available addressing modes

 Pattern matching problem

 Ad hoc techniques

 Tree pattern matching

 String pattern matching

 Dynamic programming

Code Generator
Register allocation

 Have value in a register when used

 Limited resources

 Changes instruction choices

 Can move loads and stores

 Optimal allocation is difficult

Code Generator

 Make improvements that

require specific

knowledge of machine

architecture, e.g.

Optimize use of available

registers

Reorder instructions to

avoid waits

